OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_pm.c

7655 lines
213 KiB
C
Raw Normal View History

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/cpufreq.h>
#include "i915_drv.h"
#include "intel_drv.h"
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
drm/i915: touch VGA MSR after we enable the power well Fixes regression introduced by: commit bf51d5e2cda5d36d98e4b46ac7fca9461e512c41 Author: Paulo Zanoni <paulo.r.zanoni at intel.com> Date: Wed Jul 3 17:12:13 2013 -0300 drm/i915: switch disable_power_well default value to 1 The bug I'm seeing can be reproduced with: - Have vgacon configured/enabled - Make sure the power well gets disabled, then enabled. You can check this by seeing the messages print by hsw_set_power_well - Stop your display manager - echo 0 > /sys/class/vtconsole/vtcon1/bind I can easily reproduce this by blacklising snd_hda_intel and booting with eDP+HDMI. If you do this and then look at dmesg, you'll see we're printing infinite "Unclaimed register" messages. This is happening because we're stuck on an infinite loop inside console_unlock(), which is calling many functions from vgacon.c. And the code that's triggering the error messages is from vgacon_set_cursor_size(). After we re-enable the power well, every time we read/write the VGA address 0x3d5 we get an "unclaimed register" interrupt (ERR_INT) and print error messages. If we write anything to the VGA MSR register (it doesn't really matter which value you write to bit 0), any reads/writes to 0x3d5 _don't_ trigger the "unclaimed register" errors anymore (even if MSR bit 0 is zero). So what happens with the current code is that when we unbind i915 and bind vgacon, we call console_unlock(). Function console_unlock() is responsible for printing any messages that were supposed to be print when the console was locked, so it calls the TTY layer, which calls the console layer, which calls vgacon to print the messages. At this point, vgacon eventually calls vgacon_set_cursor_size(), which touches 0x3d5, which triggers unclaimed register interrupts. The problem is that when we get these interrupts, we print the error messages, so we add more work to console_unlock(), which will try to print it again, and then call vgacon again, trigger a new interrupt, which will put more stuff to the buffer, and then we'll be stuck at console_unlock() forever. If you patch intel_uncore.c to not print anything when we detect unclaimed registers, we won't get into the console_unlock() infinite loop and the driver unbind will work just fine. We will still be getting interrupts every time vgacon touches those registers, but we will survive. This is a valid experiment, but IMHO it's not the real fix: if we don't print any error messages we will still keep getting the interrupts, and if we disable ERR_INT we won't get the interrupt anymore, but we will also stop getting all the other error interrupts. I talked about this problem with the HW engineer and his recommendation is "So don't do any VGA I/O or memory access while the power well is disabled, and make to re-program MSR after enabling the power well and before using VGA I/O or memory accesses.". Notice that this is just a partial fix to fd.o #67813. This fixes the case where the power well is already enabled when we unbind, not when it's disabled when we unbind. V2: - Rebase (first version was sent in September). V3: - Complete rewrite of the same fix: smaller implementation, improved commit message. Testcase: igt/drv_module_reload Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=67813 Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-12 04:50:10 +08:00
#include <linux/vgaarb.h>
#include <drm/i915_powerwell.h>
#include <linux/pm_runtime.h>
/**
* RC6 is a special power stage which allows the GPU to enter an very
* low-voltage mode when idle, using down to 0V while at this stage. This
* stage is entered automatically when the GPU is idle when RC6 support is
* enabled, and as soon as new workload arises GPU wakes up automatically as well.
*
* There are different RC6 modes available in Intel GPU, which differentiate
* among each other with the latency required to enter and leave RC6 and
* voltage consumed by the GPU in different states.
*
* The combination of the following flags define which states GPU is allowed
* to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
* RC6pp is deepest RC6. Their support by hardware varies according to the
* GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
* which brings the most power savings; deeper states save more power, but
* require higher latency to switch to and wake up.
*/
#define INTEL_RC6_ENABLE (1<<0)
#define INTEL_RC6p_ENABLE (1<<1)
#define INTEL_RC6pp_ENABLE (1<<2)
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
* framebuffer contents in-memory, aiming at reducing the required bandwidth
* during in-memory transfers and, therefore, reduce the power packet.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns.
*
* FBC-related functionality can be enabled by the means of the
* i915.i915_enable_fbc parameter
*/
static void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
DRM_DEBUG_KMS("disabled FBC\n");
}
static void i8xx_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int cfb_pitch;
int i;
u32 fbc_ctl;
cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
/* FBC_CTL wants 32B or 64B units */
if (IS_GEN2(dev))
cfb_pitch = (cfb_pitch / 32) - 1;
else
cfb_pitch = (cfb_pitch / 64) - 1;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
if (IS_GEN4(dev)) {
u32 fbc_ctl2;
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
}
/* enable it... */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
}
static bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
static void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 blt_ecoskpd;
/* Make sure blitter notifies FBC of writes */
/* Blitter is part of Media powerwell on VLV. No impact of
* his param in other platforms for now */
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT);
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
POSTING_READ(GEN6_BLITTER_ECOSKPD);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
}
static void ironlake_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dev_priv->fbc.threshold++;
switch (dev_priv->fbc.threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= DPFC_CTL_FENCE_EN;
if (IS_GEN5(dev))
dpfc_ctl |= obj->fence_reg;
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
}
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
static void ironlake_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool ironlake_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
static void gen7_enable_fbc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 dpfc_ctl;
dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dev_priv->fbc.threshold++;
switch (dev_priv->fbc.threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
if (dev_priv->fbc.false_color)
dpfc_ctl |= FBC_CTL_FALSE_COLOR;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_IVYBRIDGE(dev)) {
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
} else {
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
HSW_FBCQ_DIS);
}
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
}
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* If it wasn't never enabled by kernel parameter or platform default
* we can avoid reading registers so many times in vain
*/
if (!i915.enable_fbc)
return false;
if (!dev_priv->display.fbc_enabled)
return false;
return dev_priv->display.fbc_enabled(dev);
}
void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_GEN8(dev))
return;
if (!intel_fbc_enabled(dev))
return;
I915_WRITE(MSG_FBC_REND_STATE, value);
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct intel_fbc_work *work =
container_of(to_delayed_work(__work),
struct intel_fbc_work, work);
struct drm_device *dev = work->crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
if (work == dev_priv->fbc.fbc_work) {
/* Double check that we haven't switched fb without cancelling
* the prior work.
*/
if (work->crtc->primary->fb == work->fb) {
dev_priv->display.enable_fbc(work->crtc);
dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
dev_priv->fbc.y = work->crtc->y;
}
dev_priv->fbc.fbc_work = NULL;
}
mutex_unlock(&dev->struct_mutex);
kfree(work);
}
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
if (dev_priv->fbc.fbc_work == NULL)
return;
DRM_DEBUG_KMS("cancelling pending FBC enable\n");
/* Synchronisation is provided by struct_mutex and checking of
* dev_priv->fbc.fbc_work, so we can perform the cancellation
* entirely asynchronously.
*/
if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
/* tasklet was killed before being run, clean up */
kfree(dev_priv->fbc.fbc_work);
/* Mark the work as no longer wanted so that if it does
* wake-up (because the work was already running and waiting
* for our mutex), it will discover that is no longer
* necessary to run.
*/
dev_priv->fbc.fbc_work = NULL;
}
static void intel_enable_fbc(struct drm_crtc *crtc)
{
struct intel_fbc_work *work;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.enable_fbc)
return;
intel_cancel_fbc_work(dev_priv);
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (work == NULL) {
DRM_ERROR("Failed to allocate FBC work structure\n");
dev_priv->display.enable_fbc(crtc);
return;
}
work->crtc = crtc;
work->fb = crtc->primary->fb;
INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
dev_priv->fbc.fbc_work = work;
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*
* WaFbcWaitForVBlankBeforeEnable:ilk,snb
*/
schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_cancel_fbc_work(dev_priv);
if (!dev_priv->display.disable_fbc)
return;
dev_priv->display.disable_fbc(dev);
dev_priv->fbc.plane = -1;
}
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
enum no_fbc_reason reason)
{
if (dev_priv->fbc.no_fbc_reason == reason)
return false;
dev_priv->fbc.no_fbc_reason = reason;
return true;
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @dev: the drm_device
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= max_hdisplay in width, max_vdisplay in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
void intel_update_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL, *tmp_crtc;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb;
struct drm_i915_gem_object *obj;
const struct drm_display_mode *adjusted_mode;
unsigned int max_width, max_height;
if (!HAS_FBC(dev)) {
set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
return;
}
if (!i915.powersave) {
if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
DRM_DEBUG_KMS("fbc disabled per module param\n");
return;
}
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - more than one pipe is active
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
for_each_crtc(dev, tmp_crtc) {
if (intel_crtc_active(tmp_crtc) &&
to_intel_crtc(tmp_crtc)->primary_enabled) {
if (crtc) {
if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
goto out_disable;
}
crtc = tmp_crtc;
}
}
if (!crtc || crtc->primary->fb == NULL) {
if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
DRM_DEBUG_KMS("no output, disabling\n");
goto out_disable;
}
intel_crtc = to_intel_crtc(crtc);
fb = crtc->primary->fb;
obj = intel_fb_obj(fb);
adjusted_mode = &intel_crtc->config.adjusted_mode;
if (i915.enable_fbc < 0) {
if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
DRM_DEBUG_KMS("disabled per chip default\n");
goto out_disable;
}
if (!i915.enable_fbc) {
if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
DRM_DEBUG_KMS("fbc disabled per module param\n");
goto out_disable;
}
if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
goto out_disable;
}
if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
max_width = 4096;
max_height = 4096;
} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
max_width = 4096;
max_height = 2048;
} else {
max_width = 2048;
max_height = 1536;
}
if (intel_crtc->config.pipe_src_w > max_width ||
intel_crtc->config.pipe_src_h > max_height) {
if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
goto out_disable;
}
if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
intel_crtc->plane != PLANE_A) {
if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
DRM_DEBUG_KMS("plane not A, disabling compression\n");
goto out_disable;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
goto out_disable;
}
drm/i915: Add 180 degree primary plane rotation support Primary planes support 180 degree rotation. Expose the feature through rotation drm property. v2: Calculating linear/tiled offsets based on pipe source width and height. Added 180 degree rotation support in ironlake_update_plane. v3: Checking if CRTC is active before issueing update_plane. Added wait for vblank to make sure we dont overtake page flips. Disabling FBC since it does not work with rotated planes. v4: Updated rotation checks for pending flips, fbc disable. Creating rotation property only for Gen4 onwards. Property resetting as part of lastclose. v5: Resetting property in i915_driver_lastclose properly for planes and crtcs. Fixed linear offset calculation that was off by 1 w.r.t width in i9xx_update_plane and ironlake_update_plane. Removed tab based indentation and unnecessary braces in intel_crtc_set_property and intel_update_fbc. FBC and flip related checks should be done only for valid crtcs. v6: Minor nits in FBC disable checks for comments in intel_crtc_set_property and positioning the disable code in intel_update_fbc. v7: In case rotation property on inactive crtc is updated, we return successfully printing debug log as crtc is inactive and only property change is preserved. v8: update_plane is changed to update_primary_plane, crtc->fb is changed to crtc->primary->fb and return value of update_primary_plane is ignored. v9: added rotation property to primary plane instead of crtc. Removing reset of rotation property from lastclose. rotation_property is moved to drm_mode_config, so drm layer will take care of resetting. Adding updation of fbc when rotation is set to 0. Allowing rotation only if value is different than old one. v10: Calling intel_primary_plane_setplane instead of update_primary_plane in set_property(Daniel). v11: Using same set_property function for both primary and sprite, Adding primary plane specific code in the same function (Matt). v12: Removing disabling/ enabling of fbc from set_property because it is done from intel_pipe_set_base. Other formatting v13: we need to call disable_fbc before changing the rotation to 180, disable_fbc from intel_pipe_set_base gets called very late, that will be used to re-enable fbc if rotation is set to 0 (Ville). Testcase: igt/kms_rotation_crc Signed-off-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Sagar Kamble <sagar.a.kamble@intel.com> Signed-off-by: Sonika Jindal <sonika.jindal@intel.com> [danvet: Add FIXME to explain why we need the open-coded update_fbc hunk to disable fbc when rotated 180 degree. And make checkpatch happier.] Acked-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-22 16:36:04 +08:00
if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
goto out_disable;
}
/* If the kernel debugger is active, always disable compression */
if (in_dbg_master())
goto out_disable;
if (i915_gem_stolen_setup_compression(dev, obj->base.size,
drm_format_plane_cpp(fb->pixel_format, 0))) {
if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
goto out_disable;
}
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->fbc.plane == intel_crtc->plane &&
dev_priv->fbc.fb_id == fb->base.id &&
dev_priv->fbc.y == crtc->y)
return;
if (intel_fbc_enabled(dev)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("disabling active FBC for update\n");
intel_disable_fbc(dev);
}
intel_enable_fbc(crtc);
dev_priv->fbc.no_fbc_reason = FBC_OK;
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
i915_gem_stolen_cleanup_compression(dev);
}
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
tmp = I915_READ(CLKCFG);
switch (tmp & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_533:
dev_priv->fsb_freq = 533; /* 133*4 */
break;
case CLKCFG_FSB_800:
dev_priv->fsb_freq = 800; /* 200*4 */
break;
case CLKCFG_FSB_667:
dev_priv->fsb_freq = 667; /* 167*4 */
break;
case CLKCFG_FSB_400:
dev_priv->fsb_freq = 400; /* 100*4 */
break;
}
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
dev_priv->mem_freq = 533;
break;
case CLKCFG_MEM_667:
dev_priv->mem_freq = 667;
break;
case CLKCFG_MEM_800:
dev_priv->mem_freq = 800;
break;
}
/* detect pineview DDR3 setting */
tmp = I915_READ(CSHRDDR3CTL);
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 ddrpll, csipll;
ddrpll = I915_READ16(DDRMPLL1);
csipll = I915_READ16(CSIPLL0);
switch (ddrpll & 0xff) {
case 0xc:
dev_priv->mem_freq = 800;
break;
case 0x10:
dev_priv->mem_freq = 1066;
break;
case 0x14:
dev_priv->mem_freq = 1333;
break;
case 0x18:
dev_priv->mem_freq = 1600;
break;
default:
DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
dev_priv->mem_freq = 0;
break;
}
dev_priv->ips.r_t = dev_priv->mem_freq;
switch (csipll & 0x3ff) {
case 0x00c:
dev_priv->fsb_freq = 3200;
break;
case 0x00e:
dev_priv->fsb_freq = 3733;
break;
case 0x010:
dev_priv->fsb_freq = 4266;
break;
case 0x012:
dev_priv->fsb_freq = 4800;
break;
case 0x014:
dev_priv->fsb_freq = 5333;
break;
case 0x016:
dev_priv->fsb_freq = 5866;
break;
case 0x018:
dev_priv->fsb_freq = 6400;
break;
default:
DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
csipll & 0x3ff);
dev_priv->fsb_freq = 0;
break;
}
if (dev_priv->fsb_freq == 3200) {
dev_priv->ips.c_m = 0;
} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
dev_priv->ips.c_m = 1;
} else {
dev_priv->ips.c_m = 2;
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
struct drm_device *dev = dev_priv->dev;
u32 val;
if (IS_VALLEYVIEW(dev)) {
I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
} else if (IS_PINEVIEW(dev)) {
val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
I915_WRITE(DSPFW3, val);
} else if (IS_I945G(dev) || IS_I945GM(dev)) {
val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
_MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
I915_WRITE(FW_BLC_SELF, val);
} else if (IS_I915GM(dev)) {
val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
_MASKED_BIT_DISABLE(INSTPM_SELF_EN);
I915_WRITE(INSTPM, val);
} else {
return;
}
DRM_DEBUG_KMS("memory self-refresh is %s\n",
enable ? "enabled" : "disabled");
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int pessimal_latency_ns = 5000;
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_wm_info = {
.fifo_size = G4X_FIFO_SIZE,
.max_wm = G4X_MAX_WM,
.default_wm = G4X_MAX_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
.fifo_size = VALLEYVIEW_FIFO_SIZE,
.max_wm = VALLEYVIEW_MAX_WM,
.default_wm = VALLEYVIEW_MAX_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
.fifo_size = I945_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i915_wm_info = {
.fifo_size = I915_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_a_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_bc_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM/2,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i845_wm_info = {
.fifo_size = I830_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
wm_size = fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
/*
* Bspec seems to indicate that the value shouldn't be lower than
* 'burst size + 1'. Certainly 830 is quite unhappy with low values.
* Lets go for 8 which is the burst size since certain platforms
* already use a hardcoded 8 (which is what the spec says should be
* done).
*/
if (wm_size <= 8)
wm_size = 8;
return wm_size;
}
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
for_each_crtc(dev, crtc) {
if (intel_crtc_active(crtc)) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pineview_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
intel_set_memory_cxsr(dev_priv, false);
return;
}
crtc = single_enabled_crtc(dev);
if (crtc) {
const struct drm_display_mode *adjusted_mode;
int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
int clock;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
intel_set_memory_cxsr(dev_priv, true);
} else {
intel_set_memory_cxsr(dev_priv, false);
}
}
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int htotal, hdisplay, clock, pixel_size;
int line_time_us, line_count;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (!intel_crtc_active(crtc)) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
pixel_size = crtc->primary->fb->bits_per_pixel / 8;
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
/* Use the large buffer method to calculate cursor watermark */
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
return true;
}
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
return true;
}
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int hdisplay, htotal, pixel_size, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
pixel_size = crtc->primary->fb->bits_per_pixel / 8;
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
int pixel_size,
int *prec_mult,
int *drain_latency)
{
int entries;
int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
if (WARN(clock == 0, "Pixel clock is zero!\n"))
return false;
if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
return false;
entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
DRAIN_LATENCY_PRECISION_32;
*drain_latency = (64 * (*prec_mult) * 4) / entries;
if (*drain_latency > DRAIN_LATENCY_MASK)
*drain_latency = DRAIN_LATENCY_MASK;
return true;
}
/*
* Update drain latency registers of memory arbiter
*
* Valleyview SoC has a new memory arbiter and needs drain latency registers
* to be programmed. Each plane has a drain latency multiplier and a drain
* latency value.
*/
static void vlv_update_drain_latency(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pixel_size;
int drain_latency;
enum pipe pipe = intel_crtc->pipe;
int plane_prec, prec_mult, plane_dl;
plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
(DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
if (!intel_crtc_active(crtc)) {
I915_WRITE(VLV_DDL(pipe), plane_dl);
return;
}
/* Primary plane Drain Latency */
pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
DDL_PLANE_PRECISION_64 :
DDL_PLANE_PRECISION_32;
plane_dl |= plane_prec | drain_latency;
}
/* Cursor Drain Latency
* BPP is always 4 for cursor
*/
pixel_size = 4;
/* Program cursor DL only if it is enabled */
if (intel_crtc->cursor_base &&
vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
DDL_CURSOR_PRECISION_64 :
DDL_CURSOR_PRECISION_32;
plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
}
I915_WRITE(VLV_DDL(pipe), plane_dl);
}
#define single_plane_enabled(mask) is_power_of_2(mask)
static void valleyview_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
int ignore_plane_sr, ignore_cursor_sr;
unsigned int enabled = 0;
bool cxsr_enabled;
vlv_update_drain_latency(crtc);
if (g4x_compute_wm0(dev, PIPE_A,
&valleyview_wm_info, pessimal_latency_ns,
&valleyview_cursor_wm_info, pessimal_latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&valleyview_wm_info, pessimal_latency_ns,
&valleyview_cursor_wm_info, pessimal_latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&plane_sr, &ignore_cursor_sr) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
2*sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&ignore_plane_sr, &cursor_sr)) {
cxsr_enabled = true;
} else {
cxsr_enabled = false;
intel_set_memory_cxsr(dev_priv, false);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
"B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
(planea_wm << DSPFW_PLANEA_SHIFT));
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void cherryview_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, planec_wm;
int cursora_wm, cursorb_wm, cursorc_wm;
int plane_sr, cursor_sr;
int ignore_plane_sr, ignore_cursor_sr;
unsigned int enabled = 0;
bool cxsr_enabled;
vlv_update_drain_latency(crtc);
if (g4x_compute_wm0(dev, PIPE_A,
&valleyview_wm_info, pessimal_latency_ns,
&valleyview_cursor_wm_info, pessimal_latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&valleyview_wm_info, pessimal_latency_ns,
&valleyview_cursor_wm_info, pessimal_latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (g4x_compute_wm0(dev, PIPE_C,
&valleyview_wm_info, pessimal_latency_ns,
&valleyview_cursor_wm_info, pessimal_latency_ns,
&planec_wm, &cursorc_wm))
enabled |= 1 << PIPE_C;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&plane_sr, &ignore_cursor_sr) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
2*sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&ignore_plane_sr, &cursor_sr)) {
cxsr_enabled = true;
} else {
cxsr_enabled = false;
intel_set_memory_cxsr(dev_priv, false);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
"B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
"SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
planec_wm, cursorc_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
(planea_wm << DSPFW_PLANEA_SHIFT));
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
I915_WRITE(DSPFW9_CHV,
(I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
DSPFW_CURSORC_MASK)) |
(planec_wm << DSPFW_PLANEC_SHIFT) |
(cursorc_wm << DSPFW_CURSORC_SHIFT));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void valleyview_update_sprite_wm(struct drm_plane *plane,
struct drm_crtc *crtc,
uint32_t sprite_width,
uint32_t sprite_height,
int pixel_size,
bool enabled, bool scaled)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = to_intel_plane(plane)->pipe;
int sprite = to_intel_plane(plane)->plane;
int drain_latency;
int plane_prec;
int sprite_dl;
int prec_mult;
sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
(DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
&drain_latency)) {
plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
DDL_SPRITE_PRECISION_64(sprite) :
DDL_SPRITE_PRECISION_32(sprite);
sprite_dl |= plane_prec |
(drain_latency << DDL_SPRITE_SHIFT(sprite));
}
I915_WRITE(VLV_DDL(pipe), sprite_dl);
}
static void g4x_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
bool cxsr_enabled;
if (g4x_compute_wm0(dev, PIPE_A,
&g4x_wm_info, pessimal_latency_ns,
&g4x_cursor_wm_info, pessimal_latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&g4x_wm_info, pessimal_latency_ns,
&g4x_cursor_wm_info, pessimal_latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr)) {
cxsr_enabled = true;
} else {
cxsr_enabled = false;
intel_set_memory_cxsr(dev_priv, false);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
"B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
(planea_wm << DSPFW_PLANEA_SHIFT));
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i965_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
bool cxsr_enabled;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
const struct drm_display_mode *adjusted_mode =
&to_intel_crtc(crtc)->config.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * to_intel_crtc(crtc)->cursor_width;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
cxsr_enabled = true;
} else {
cxsr_enabled = false;
/* Turn off self refresh if both pipes are enabled */
intel_set_memory_cxsr(dev_priv, false);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
(8 << DSPFW_CURSORB_SHIFT) |
(8 << DSPFW_PLANEB_SHIFT) |
(8 << DSPFW_PLANEA_SHIFT));
I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
(8 << DSPFW_PLANEC_SHIFT_OLD));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i830_a_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = crtc->primary->fb->bits_per_pixel / 8;
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
enabled = crtc;
} else {
planea_wm = fifo_size - wm_info->guard_size;
if (planea_wm > (long)wm_info->max_wm)
planea_wm = wm_info->max_wm;
}
if (IS_GEN2(dev))
wm_info = &i830_bc_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = crtc->primary->fb->bits_per_pixel / 8;
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else {
planeb_wm = fifo_size - wm_info->guard_size;
if (planeb_wm > (long)wm_info->max_wm)
planeb_wm = wm_info->max_wm;
}
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
if (IS_I915GM(dev) && enabled) {
struct drm_i915_gem_object *obj;
obj = intel_fb_obj(enabled->primary->fb);
/* self-refresh seems busted with untiled */
if (obj->tiling_mode == I915_TILING_NONE)
enabled = NULL;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
intel_set_memory_cxsr(dev_priv, false);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
const struct drm_display_mode *adjusted_mode =
&to_intel_crtc(enabled)->config.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else if (IS_I915GM(dev))
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i845_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
uint32_t fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
&i845_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
4, pessimal_latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pixel_rate;
pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
* adjust the pixel_rate here. */
if (intel_crtc->config.pch_pfit.enabled) {
uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
pipe_w = intel_crtc->config.pipe_src_w;
pipe_h = intel_crtc->config.pipe_src_h;
pfit_w = (pfit_size >> 16) & 0xFFFF;
pfit_h = pfit_size & 0xFFFF;
if (pipe_w < pfit_w)
pipe_w = pfit_w;
if (pipe_h < pfit_h)
pipe_h = pfit_h;
pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
pfit_w * pfit_h);
}
return pixel_rate;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
uint32_t latency)
{
uint64_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
return ret;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
uint32_t horiz_pixels, uint8_t bytes_per_pixel,
uint32_t latency)
{
uint32_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
ret = (latency * pixel_rate) / (pipe_htotal * 10000);
ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
uint8_t bytes_per_pixel)
{
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}
struct ilk_pipe_wm_parameters {
bool active;
uint32_t pipe_htotal;
uint32_t pixel_rate;
struct intel_plane_wm_parameters pri;
struct intel_plane_wm_parameters spr;
struct intel_plane_wm_parameters cur;
};
struct ilk_wm_maximums {
uint16_t pri;
uint16_t spr;
uint16_t cur;
uint16_t fbc;
};
/* used in computing the new watermarks state */
struct intel_wm_config {
unsigned int num_pipes_active;
bool sprites_enabled;
bool sprites_scaled;
};
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value,
bool is_lp)
{
uint32_t method1, method2;
if (!params->active || !params->pri.enabled)
return 0;
method1 = ilk_wm_method1(params->pixel_rate,
params->pri.bytes_per_pixel,
mem_value);
if (!is_lp)
return method1;
method2 = ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->pri.horiz_pixels,
params->pri.bytes_per_pixel,
mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value)
{
uint32_t method1, method2;
if (!params->active || !params->spr.enabled)
return 0;
method1 = ilk_wm_method1(params->pixel_rate,
params->spr.bytes_per_pixel,
mem_value);
method2 = ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->spr.horiz_pixels,
params->spr.bytes_per_pixel,
mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t mem_value)
{
if (!params->active || !params->cur.enabled)
return 0;
return ilk_wm_method2(params->pixel_rate,
params->pipe_htotal,
params->cur.horiz_pixels,
params->cur.bytes_per_pixel,
mem_value);
}
/* Only for WM_LP. */
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
uint32_t pri_val)
{
if (!params->active || !params->pri.enabled)
return 0;
return ilk_wm_fbc(pri_val,
params->pri.horiz_pixels,
params->pri.bytes_per_pixel);
}
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 3072;
else if (INTEL_INFO(dev)->gen >= 7)
return 768;
else
return 512;
}
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
int level, bool is_sprite)
{
if (INTEL_INFO(dev)->gen >= 8)
/* BDW primary/sprite plane watermarks */
return level == 0 ? 255 : 2047;
else if (INTEL_INFO(dev)->gen >= 7)
/* IVB/HSW primary/sprite plane watermarks */
return level == 0 ? 127 : 1023;
else if (!is_sprite)
/* ILK/SNB primary plane watermarks */
return level == 0 ? 127 : 511;
else
/* ILK/SNB sprite plane watermarks */
return level == 0 ? 63 : 255;
}
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
int level)
{
if (INTEL_INFO(dev)->gen >= 7)
return level == 0 ? 63 : 255;
else
return level == 0 ? 31 : 63;
}
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 31;
else
return 15;
}
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
bool is_sprite)
{
unsigned int fifo_size = ilk_display_fifo_size(dev);
/* if sprites aren't enabled, sprites get nothing */
if (is_sprite && !config->sprites_enabled)
return 0;
/* HSW allows LP1+ watermarks even with multiple pipes */
if (level == 0 || config->num_pipes_active > 1) {
fifo_size /= INTEL_INFO(dev)->num_pipes;
/*
* For some reason the non self refresh
* FIFO size is only half of the self
* refresh FIFO size on ILK/SNB.
*/
if (INTEL_INFO(dev)->gen <= 6)
fifo_size /= 2;
}
if (config->sprites_enabled) {
/* level 0 is always calculated with 1:1 split */
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
if (is_sprite)
fifo_size *= 5;
fifo_size /= 6;
} else {
fifo_size /= 2;
}
}
/* clamp to max that the registers can hold */
return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
}
/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config)
{
/* HSW LP1+ watermarks w/ multiple pipes */
if (level > 0 && config->num_pipes_active > 1)
return 64;
/* otherwise just report max that registers can hold */
return ilk_cursor_wm_reg_max(dev, level);
}
static void ilk_compute_wm_maximums(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
max->cur = ilk_cursor_wm_max(dev, level, config);
max->fbc = ilk_fbc_wm_reg_max(dev);
}
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
int level,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_reg_max(dev, level, false);
max->spr = ilk_plane_wm_reg_max(dev, level, true);
max->cur = ilk_cursor_wm_reg_max(dev, level);
max->fbc = ilk_fbc_wm_reg_max(dev);
}
static bool ilk_validate_wm_level(int level,
const struct ilk_wm_maximums *max,
struct intel_wm_level *result)
{
bool ret;
/* already determined to be invalid? */
if (!result->enable)
return false;
result->enable = result->pri_val <= max->pri &&
result->spr_val <= max->spr &&
result->cur_val <= max->cur;
ret = result->enable;
/*
* HACK until we can pre-compute everything,
* and thus fail gracefully if LP0 watermarks
* are exceeded...
*/
if (level == 0 && !result->enable) {
if (result->pri_val > max->pri)
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
level, result->pri_val, max->pri);
if (result->spr_val > max->spr)
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
level, result->spr_val, max->spr);
if (result->cur_val > max->cur)
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
level, result->cur_val, max->cur);
result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
result->enable = true;
}
return ret;
}
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
int level,
const struct ilk_pipe_wm_parameters *p,
struct intel_wm_level *result)
{
uint16_t pri_latency = dev_priv->wm.pri_latency[level];
uint16_t spr_latency = dev_priv->wm.spr_latency[level];
uint16_t cur_latency = dev_priv->wm.cur_latency[level];
/* WM1+ latency values stored in 0.5us units */
if (level > 0) {
pri_latency *= 5;
spr_latency *= 5;
cur_latency *= 5;
}
result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
result->spr_val = ilk_compute_spr_wm(p, spr_latency);
result->cur_val = ilk_compute_cur_wm(p, cur_latency);
result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
result->enable = true;
}
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
u32 linetime, ips_linetime;
if (!intel_crtc_active(crtc))
return 0;
/* The WM are computed with base on how long it takes to fill a single
* row at the given clock rate, multiplied by 8.
* */
linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
mode->crtc_clock);
ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
intel_ddi_get_cdclk_freq(dev_priv));
return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
PIPE_WM_LINETIME_TIME(linetime);
}
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
uint64_t sskpd = I915_READ64(MCH_SSKPD);
wm[0] = (sskpd >> 56) & 0xFF;
if (wm[0] == 0)
wm[0] = sskpd & 0xF;
wm[1] = (sskpd >> 4) & 0xFF;
wm[2] = (sskpd >> 12) & 0xFF;
wm[3] = (sskpd >> 20) & 0x1FF;
wm[4] = (sskpd >> 32) & 0x1FF;
} else if (INTEL_INFO(dev)->gen >= 6) {
uint32_t sskpd = I915_READ(MCH_SSKPD);
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
} else if (INTEL_INFO(dev)->gen >= 5) {
uint32_t mltr = I915_READ(MLTR_ILK);
/* ILK primary LP0 latency is 700 ns */
wm[0] = 7;
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
}
}
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK sprite LP0 latency is 1300 ns */
if (INTEL_INFO(dev)->gen == 5)
wm[0] = 13;
}
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK cursor LP0 latency is 1300 ns */
if (INTEL_INFO(dev)->gen == 5)
wm[0] = 13;
/* WaDoubleCursorLP3Latency:ivb */
if (IS_IVYBRIDGE(dev))
wm[3] *= 2;
}
int ilk_wm_max_level(const struct drm_device *dev)
{
/* how many WM levels are we expecting */
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 4;
else if (INTEL_INFO(dev)->gen >= 6)
return 3;
else
return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
const char *name,
const uint16_t wm[5])
{
int level, max_level = ilk_wm_max_level(dev);
for (level = 0; level <= max_level; level++) {
unsigned int latency = wm[level];
if (latency == 0) {
DRM_ERROR("%s WM%d latency not provided\n",
name, level);
continue;
}
/* WM1+ latency values in 0.5us units */
if (level > 0)
latency *= 5;
DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
name, level, wm[level],
latency / 10, latency % 10);
}
}
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
uint16_t wm[5], uint16_t min)
{
int level, max_level = ilk_wm_max_level(dev_priv->dev);
if (wm[0] >= min)
return false;
wm[0] = max(wm[0], min);
for (level = 1; level <= max_level; level++)
wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
return true;
}
static void snb_wm_latency_quirk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
bool changed;
/*
* The BIOS provided WM memory latency values are often
* inadequate for high resolution displays. Adjust them.
*/
changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
if (!changed)
return;
DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}
static void ilk_setup_wm_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
if (IS_GEN6(dev))
snb_wm_latency_quirk(dev);
}
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
struct ilk_pipe_wm_parameters *p)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_plane *plane;
if (!intel_crtc_active(crtc))
return;
p->active = true;
p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
p->cur.bytes_per_pixel = 4;
p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
p->cur.horiz_pixels = intel_crtc->cursor_width;
/* TODO: for now, assume primary and cursor planes are always enabled. */
p->pri.enabled = true;
p->cur.enabled = true;
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
struct intel_plane *intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe) {
p->spr = intel_plane->wm;
break;
}
}
}
static void ilk_compute_wm_config(struct drm_device *dev,
struct intel_wm_config *config)
{
struct intel_crtc *intel_crtc;
/* Compute the currently _active_ config */
for_each_intel_crtc(dev, intel_crtc) {
const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
if (!wm->pipe_enabled)
continue;
config->sprites_enabled |= wm->sprites_enabled;
config->sprites_scaled |= wm->sprites_scaled;
config->num_pipes_active++;
}
}
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
const struct ilk_pipe_wm_parameters *params,
struct intel_pipe_wm *pipe_wm)
{
struct drm_device *dev = crtc->dev;
const struct drm_i915_private *dev_priv = dev->dev_private;
int level, max_level = ilk_wm_max_level(dev);
/* LP0 watermark maximums depend on this pipe alone */
struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = params->spr.enabled,
.sprites_scaled = params->spr.scaled,
};
struct ilk_wm_maximums max;
pipe_wm->pipe_enabled = params->active;
pipe_wm->sprites_enabled = params->spr.enabled;
pipe_wm->sprites_scaled = params->spr.scaled;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
max_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (params->spr.scaled)
max_level = 0;
ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
/* At least LP0 must be valid */
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
return false;
ilk_compute_wm_reg_maximums(dev, 1, &max);
for (level = 1; level <= max_level; level++) {
struct intel_wm_level wm = {};
ilk_compute_wm_level(dev_priv, level, params, &wm);
/*
* Disable any watermark level that exceeds the
* register maximums since such watermarks are
* always invalid.
*/
if (!ilk_validate_wm_level(level, &max, &wm))
break;
pipe_wm->wm[level] = wm;
}
return true;
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
static void ilk_merge_wm_level(struct drm_device *dev,
int level,
struct intel_wm_level *ret_wm)
{
const struct intel_crtc *intel_crtc;
ret_wm->enable = true;
for_each_intel_crtc(dev, intel_crtc) {
const struct intel_pipe_wm *active = &intel_crtc->wm.active;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
continue;
/*
* The watermark values may have been used in the past,
* so we must maintain them in the registers for some
* time even if the level is now disabled.
*/
if (!wm->enable)
ret_wm->enable = false;
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
}
}
/*
* Merge all low power watermarks for all active pipes.
*/
static void ilk_wm_merge(struct drm_device *dev,
const struct intel_wm_config *config,
const struct ilk_wm_maximums *max,
struct intel_pipe_wm *merged)
{
int level, max_level = ilk_wm_max_level(dev);
int last_enabled_level = max_level;
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
config->num_pipes_active > 1)
return;
/* ILK: FBC WM must be disabled always */
merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
/* merge each WM1+ level */
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
ilk_merge_wm_level(dev, level, wm);
if (level > last_enabled_level)
wm->enable = false;
else if (!ilk_validate_wm_level(level, max, wm))
/* make sure all following levels get disabled */
last_enabled_level = level - 1;
/*
* The spec says it is preferred to disable
* FBC WMs instead of disabling a WM level.
*/
if (wm->fbc_val > max->fbc) {
if (wm->enable)
merged->fbc_wm_enabled = false;
wm->fbc_val = 0;
}
}
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
/*
* FIXME this is racy. FBC might get enabled later.
* What we should check here is whether FBC can be
* enabled sometime later.
*/
if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
for (level = 2; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
wm->enable = false;
}
}
}
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 2 * level;
else
return dev_priv->wm.pri_latency[level];
}
static void ilk_compute_wm_results(struct drm_device *dev,
const struct intel_pipe_wm *merged,
enum intel_ddb_partitioning partitioning,
struct ilk_wm_values *results)
{
struct intel_crtc *intel_crtc;
int level, wm_lp;
results->enable_fbc_wm = merged->fbc_wm_enabled;
results->partitioning = partitioning;
/* LP1+ register values */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
const struct intel_wm_level *r;
level = ilk_wm_lp_to_level(wm_lp, merged);
r = &merged->wm[level];
/*
* Maintain the watermark values even if the level is
* disabled. Doing otherwise could cause underruns.
*/
results->wm_lp[wm_lp - 1] =
(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
(r->pri_val << WM1_LP_SR_SHIFT) |
r->cur_val;
if (r->enable)
results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
if (INTEL_INFO(dev)->gen >= 8)
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
else
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT;
/*
* Always set WM1S_LP_EN when spr_val != 0, even if the
* level is disabled. Doing otherwise could cause underruns.
*/
if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
WARN_ON(wm_lp != 1);
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
} else
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
}
/* LP0 register values */
for_each_intel_crtc(dev, intel_crtc) {
enum pipe pipe = intel_crtc->pipe;
const struct intel_wm_level *r =
&intel_crtc->wm.active.wm[0];
if (WARN_ON(!r->enable))
continue;
results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
r->cur_val;
}
}
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
* case both are at the same level. Prefer r1 in case they're the same. */
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
struct intel_pipe_wm *r1,
struct intel_pipe_wm *r2)
{
int level, max_level = ilk_wm_max_level(dev);
int level1 = 0, level2 = 0;
for (level = 1; level <= max_level; level++) {
if (r1->wm[level].enable)
level1 = level;
if (r2->wm[level].enable)
level2 = level;
}
if (level1 == level2) {
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
return r2;
else
return r1;
} else if (level1 > level2) {
return r1;
} else {
return r2;
}
}
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
const struct ilk_wm_values *old,
const struct ilk_wm_values *new)
{
unsigned int dirty = 0;
enum pipe pipe;
int wm_lp;
for_each_pipe(dev_priv, pipe) {
if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
dirty |= WM_DIRTY_LINETIME(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
dirty |= WM_DIRTY_PIPE(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
}
if (old->enable_fbc_wm != new->enable_fbc_wm) {
dirty |= WM_DIRTY_FBC;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->partitioning != new->partitioning) {
dirty |= WM_DIRTY_DDB;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
/* LP1+ watermarks already deemed dirty, no need to continue */
if (dirty & WM_DIRTY_LP_ALL)
return dirty;
/* Find the lowest numbered LP1+ watermark in need of an update... */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
break;
}
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
for (; wm_lp <= 3; wm_lp++)
dirty |= WM_DIRTY_LP(wm_lp);
return dirty;
}
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
unsigned int dirty)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
bool changed = false;
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
changed = true;
}
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
changed = true;
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
changed = true;
}
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
return changed;
}
/*
* The spec says we shouldn't write when we don't need, because every write
* causes WMs to be re-evaluated, expending some power.
*/
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
struct ilk_wm_values *results)
{
struct drm_device *dev = dev_priv->dev;
struct ilk_wm_values *previous = &dev_priv->wm.hw;
unsigned int dirty;
uint32_t val;
dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
if (!dirty)
return;
_ilk_disable_lp_wm(dev_priv, dirty);
if (dirty & WM_DIRTY_PIPE(PIPE_A))
I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
if (dirty & WM_DIRTY_PIPE(PIPE_B))
I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
if (dirty & WM_DIRTY_PIPE(PIPE_C))
I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
if (dirty & WM_DIRTY_LINETIME(PIPE_A))
I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
if (dirty & WM_DIRTY_LINETIME(PIPE_B))
I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
if (dirty & WM_DIRTY_LINETIME(PIPE_C))
I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
if (dirty & WM_DIRTY_DDB) {
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
val = I915_READ(WM_MISC);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~WM_MISC_DATA_PARTITION_5_6;
else
val |= WM_MISC_DATA_PARTITION_5_6;
I915_WRITE(WM_MISC, val);
} else {
val = I915_READ(DISP_ARB_CTL2);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~DISP_DATA_PARTITION_5_6;
else
val |= DISP_DATA_PARTITION_5_6;
I915_WRITE(DISP_ARB_CTL2, val);
}
}
if (dirty & WM_DIRTY_FBC) {
val = I915_READ(DISP_ARB_CTL);
if (results->enable_fbc_wm)
val &= ~DISP_FBC_WM_DIS;
else
val |= DISP_FBC_WM_DIS;
I915_WRITE(DISP_ARB_CTL, val);
}
if (dirty & WM_DIRTY_LP(1) &&
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
if (INTEL_INFO(dev)->gen >= 7) {
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
dev_priv->wm.hw = *results;
}
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}
static void ilk_update_wm(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_maximums max;
struct ilk_pipe_wm_parameters params = {};
struct ilk_wm_values results = {};
enum intel_ddb_partitioning partitioning;
struct intel_pipe_wm pipe_wm = {};
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct intel_wm_config config = {};
ilk_compute_wm_parameters(crtc, &params);
intel_compute_pipe_wm(crtc, &params, &pipe_wm);
if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
return;
intel_crtc->wm.active = pipe_wm;
ilk_compute_wm_config(dev, &config);
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
/* 5/6 split only in single pipe config on IVB+ */
if (INTEL_INFO(dev)->gen >= 7 &&
config.num_pipes_active == 1 && config.sprites_enabled) {
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
} else {
best_lp_wm = &lp_wm_1_2;
}
partitioning = (best_lp_wm == &lp_wm_1_2) ?
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
ilk_write_wm_values(dev_priv, &results);
}
static void
ilk_update_sprite_wm(struct drm_plane *plane,
struct drm_crtc *crtc,
uint32_t sprite_width, uint32_t sprite_height,
int pixel_size, bool enabled, bool scaled)
{
struct drm_device *dev = plane->dev;
struct intel_plane *intel_plane = to_intel_plane(plane);
intel_plane->wm.enabled = enabled;
intel_plane->wm.scaled = scaled;
intel_plane->wm.horiz_pixels = sprite_width;
intel_plane->wm.vert_pixels = sprite_width;
intel_plane->wm.bytes_per_pixel = pixel_size;
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
intel_wait_for_vblank(dev, intel_plane->pipe);
ilk_update_wm(crtc);
}
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_pipe_wm *active = &intel_crtc->wm.active;
enum pipe pipe = intel_crtc->pipe;
static const unsigned int wm0_pipe_reg[] = {
[PIPE_A] = WM0_PIPEA_ILK,
[PIPE_B] = WM0_PIPEB_ILK,
[PIPE_C] = WM0_PIPEC_IVB,
};
hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
active->pipe_enabled = intel_crtc_active(crtc);
if (active->pipe_enabled) {
u32 tmp = hw->wm_pipe[pipe];
/*
* For active pipes LP0 watermark is marked as
* enabled, and LP1+ watermaks as disabled since
* we can't really reverse compute them in case
* multiple pipes are active.
*/
active->wm[0].enable = true;
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
active->linetime = hw->wm_linetime[pipe];
} else {
int level, max_level = ilk_wm_max_level(dev);
/*
* For inactive pipes, all watermark levels
* should be marked as enabled but zeroed,
* which is what we'd compute them to.
*/
for (level = 0; level <= max_level; level++)
active->wm[level].enable = true;
}
}
void ilk_wm_get_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct drm_crtc *crtc;
for_each_crtc(dev, crtc)
ilk_pipe_wm_get_hw_state(crtc);
hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
if (INTEL_INFO(dev)->gen >= 7) {
hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
}
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
else if (IS_IVYBRIDGE(dev))
hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
hw->enable_fbc_wm =
!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(crtc);
}
void intel_update_sprite_watermarks(struct drm_plane *plane,
struct drm_crtc *crtc,
uint32_t sprite_width,
uint32_t sprite_height,
int pixel_size,
bool enabled, bool scaled)
{
struct drm_i915_private *dev_priv = plane->dev->dev_private;
if (dev_priv->display.update_sprite_wm)
dev_priv->display.update_sprite_wm(plane, crtc,
sprite_width, sprite_height,
pixel_size, enabled, scaled);
}
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
struct drm_i915_gem_object *ctx;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ctx = i915_gem_alloc_object(dev, 4096);
if (!ctx) {
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
return NULL;
}
ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
if (ret) {
DRM_ERROR("failed to pin power context: %d\n", ret);
goto err_unref;
}
ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
if (ret) {
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
goto err_unpin;
}
return ctx;
err_unpin:
i915_gem_object_ggtt_unpin(ctx);
err_unref:
drm_gem_object_unreference(&ctx->base);
return NULL;
}
/**
* Lock protecting IPS related data structures
*/
DEFINE_SPINLOCK(mchdev_lock);
/* Global for IPS driver to get at the current i915 device. Protected by
* mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
assert_spin_locked(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
return true;
}
static void ironlake_enable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl = I915_READ(MEMMODECTL);
u8 fmax, fmin, fstart, vstart;
spin_lock_irq(&mchdev_lock);
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
I915_WRITE(MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
dev_priv->ips.fstart = fstart;
dev_priv->ips.max_delay = fstart;
dev_priv->ips.min_delay = fmin;
dev_priv->ips.cur_delay = fstart;
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
/*
* Interrupts will be enabled in ironlake_irq_postinstall
*/
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
mdelay(1);
ironlake_set_drps(dev, fstart);
dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
I915_READ(0x112e0);
dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
dev_priv->ips.last_count2 = I915_READ(0x112f4);
dev_priv->ips.last_time2 = ktime_get_raw_ns();
spin_unlock_irq(&mchdev_lock);
}
static void ironlake_disable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
spin_lock_irq(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
/* Go back to the starting frequency */
ironlake_set_drps(dev, dev_priv->ips.fstart);
mdelay(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
mdelay(1);
spin_unlock_irq(&mchdev_lock);
}
/* There's a funny hw issue where the hw returns all 0 when reading from
* GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
* ourselves, instead of doing a rmw cycle (which might result in us clearing
* all limits and the gpu stuck at whatever frequency it is at atm).
*/
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
{
u32 limits;
/* Only set the down limit when we've reached the lowest level to avoid
* getting more interrupts, otherwise leave this clear. This prevents a
* race in the hw when coming out of rc6: There's a tiny window where
* the hw runs at the minimal clock before selecting the desired
* frequency, if the down threshold expires in that window we will not
* receive a down interrupt. */
limits = dev_priv->rps.max_freq_softlimit << 24;
if (val <= dev_priv->rps.min_freq_softlimit)
limits |= dev_priv->rps.min_freq_softlimit << 16;
return limits;
}
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
int new_power;
if (dev_priv->rps.is_bdw_sw_turbo)
return;
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = dev_priv->rps.power;
switch (dev_priv->rps.power) {
case LOW_POWER:
if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = BETWEEN;
break;
case BETWEEN:
if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = LOW_POWER;
else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = HIGH_POWER;
break;
case HIGH_POWER:
if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = BETWEEN;
break;
}
/* Max/min bins are special */
if (val == dev_priv->rps.min_freq_softlimit)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = LOW_POWER;
if (val == dev_priv->rps.max_freq_softlimit)
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
new_power = HIGH_POWER;
if (new_power == dev_priv->rps.power)
return;
/* Note the units here are not exactly 1us, but 1280ns. */
switch (new_power) {
case LOW_POWER:
/* Upclock if more than 95% busy over 16ms */
I915_WRITE(GEN6_RP_UP_EI, 12500);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
/* Downclock if less than 85% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
case BETWEEN:
/* Upclock if more than 90% busy over 13ms */
I915_WRITE(GEN6_RP_UP_EI, 10250);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
/* Downclock if less than 75% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
case HIGH_POWER:
/* Upclock if more than 85% busy over 10ms */
I915_WRITE(GEN6_RP_UP_EI, 8000);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
/* Downclock if less than 60% busy over 32ms */
I915_WRITE(GEN6_RP_DOWN_EI, 25000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
break;
}
dev_priv->rps.power = new_power;
dev_priv->rps.last_adj = 0;
}
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
u32 mask = 0;
if (val > dev_priv->rps.min_freq_softlimit)
mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
if (val < dev_priv->rps.max_freq_softlimit)
mask |= GEN6_PM_RP_UP_THRESHOLD;
mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
mask &= dev_priv->pm_rps_events;
/* IVB and SNB hard hangs on looping batchbuffer
* if GEN6_PM_UP_EI_EXPIRED is masked.
*/
if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
mask |= GEN6_PM_RP_UP_EI_EXPIRED;
if (IS_GEN8(dev_priv->dev))
mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
return ~mask;
}
/* gen6_set_rps is called to update the frequency request, but should also be
* called when the range (min_delay and max_delay) is modified so that we can
* update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
void gen6_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq_softlimit);
WARN_ON(val < dev_priv->rps.min_freq_softlimit);
/* min/max delay may still have been modified so be sure to
* write the limits value.
*/
if (val != dev_priv->rps.cur_freq) {
gen6_set_rps_thresholds(dev_priv, val);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(val));
else
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(val) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
}
/* Make sure we continue to get interrupts
* until we hit the minimum or maximum frequencies.
*/
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
POSTING_READ(GEN6_RPNSWREQ);
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(val * 50);
}
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
*
* * If Gfx is Idle, then
* 1. Mask Turbo interrupts
* 2. Bring up Gfx clock
* 3. Change the freq to Rpn and wait till P-Unit updates freq
* 4. Clear the Force GFX CLK ON bit so that Gfx can down
* 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
/* Latest VLV doesn't need to force the gfx clock */
if (dev->pdev->revision >= 0xd) {
valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
return;
}
/*
* When we are idle. Drop to min voltage state.
*/
if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
return;
/* Mask turbo interrupt so that they will not come in between */
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
vlv_force_gfx_clock(dev_priv, true);
dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
dev_priv->rps.min_freq_softlimit);
if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
& GENFREQSTATUS) == 0, 5))
DRM_ERROR("timed out waiting for Punit\n");
vlv_force_gfx_clock(dev_priv, false);
I915_WRITE(GEN6_PMINTRMSK,
gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
}
drm/i915: Boost RPS frequency for CPU stalls If we encounter a situation where the CPU blocks waiting for results from the GPU, give the GPU a kick to boost its the frequency. This should work to reduce user interface stalls and to quickly promote mesa to high frequencies - but the cost is that our requested frequency stalls high (as we do not idle for long enough before rc6 to start reducing frequencies, nor are we aggressive at down clocking an underused GPU). However, this should be mitigated by rc6 itself powering off the GPU when idle, and that energy use is dependent upon the workload of the GPU in addition to its frequency (e.g. the math or sampler functions only consume power when used). Still, this is likely to adversely affect light workloads. In particular, this nearly eliminates the highly noticeable wake-up lag in animations from idle. For example, expose or workspace transitions. (However, given the situation where we fail to downclock, our requested frequency is almost always the maximum, except for Baytrail where we manually downclock upon idling. This often masks the latency of upclocking after being idle, so animations are typically smooth - at the cost of increased power consumption.) Stéphane raised the concern that this will punish good applications and reward bad applications - but due to the nature of how mesa performs its client throttling, I believe all mesa applications will be roughly equally affected. To address this concern, and to prevent applications like compositors from permanently boosting the RPS state, we ratelimit the frequency of the wait-boosts each client recieves. Unfortunately, this techinique is ineffective with Ironlake - which also has dynamic render power states and suffers just as dramatically. For Ironlake, the thermal/power headroom is shared with the CPU through Intelligent Power Sharing and the intel-ips module. This leaves us with no GPU boost frequencies available when coming out of idle, and due to hardware limitations we cannot change the arbitration between the CPU and GPU quickly enough to be effective. v2: Limit each client to receiving a single boost for each active period. Tested by QA to only marginally increase power, and to demonstrably increase throughput in games. No latency measurements yet. v3: Cater for front-buffer rendering with manual throttling. v4: Tidy up. v5: Sadly the compositor needs frequent boosts as it may never idle, but due to its picking mechanism (using ReadPixels) may require frequent waits. Those waits, along with the waits for the vrefresh swap, conspire to keep the GPU at low frequencies despite the interactive latency. To overcome this we ditch the one-boost-per-active-period and just ratelimit the number of wait-boosts each client can receive. Reported-and-tested-by: Paul Neumann <paul104x@yahoo.de> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=68716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: No extern for function prototypes in headers.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:56 +08:00
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
drm/i915: Boost RPS frequency for CPU stalls If we encounter a situation where the CPU blocks waiting for results from the GPU, give the GPU a kick to boost its the frequency. This should work to reduce user interface stalls and to quickly promote mesa to high frequencies - but the cost is that our requested frequency stalls high (as we do not idle for long enough before rc6 to start reducing frequencies, nor are we aggressive at down clocking an underused GPU). However, this should be mitigated by rc6 itself powering off the GPU when idle, and that energy use is dependent upon the workload of the GPU in addition to its frequency (e.g. the math or sampler functions only consume power when used). Still, this is likely to adversely affect light workloads. In particular, this nearly eliminates the highly noticeable wake-up lag in animations from idle. For example, expose or workspace transitions. (However, given the situation where we fail to downclock, our requested frequency is almost always the maximum, except for Baytrail where we manually downclock upon idling. This often masks the latency of upclocking after being idle, so animations are typically smooth - at the cost of increased power consumption.) Stéphane raised the concern that this will punish good applications and reward bad applications - but due to the nature of how mesa performs its client throttling, I believe all mesa applications will be roughly equally affected. To address this concern, and to prevent applications like compositors from permanently boosting the RPS state, we ratelimit the frequency of the wait-boosts each client recieves. Unfortunately, this techinique is ineffective with Ironlake - which also has dynamic render power states and suffers just as dramatically. For Ironlake, the thermal/power headroom is shared with the CPU through Intelligent Power Sharing and the intel-ips module. This leaves us with no GPU boost frequencies available when coming out of idle, and due to hardware limitations we cannot change the arbitration between the CPU and GPU quickly enough to be effective. v2: Limit each client to receiving a single boost for each active period. Tested by QA to only marginally increase power, and to demonstrably increase throughput in games. No latency measurements yet. v3: Cater for front-buffer rendering with manual throttling. v4: Tidy up. v5: Sadly the compositor needs frequent boosts as it may never idle, but due to its picking mechanism (using ReadPixels) may require frequent waits. Those waits, along with the waits for the vrefresh swap, conspire to keep the GPU at low frequencies despite the interactive latency. To overcome this we ditch the one-boost-per-active-period and just ratelimit the number of wait-boosts each client can receive. Reported-and-tested-by: Paul Neumann <paul104x@yahoo.de> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=68716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: No extern for function prototypes in headers.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:56 +08:00
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (IS_CHERRYVIEW(dev))
valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
else if (IS_VALLEYVIEW(dev))
vlv_set_rps_idle(dev_priv);
else if (!dev_priv->rps.is_bdw_sw_turbo
|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
}
dev_priv->rps.last_adj = 0;
}
drm/i915: Boost RPS frequency for CPU stalls If we encounter a situation where the CPU blocks waiting for results from the GPU, give the GPU a kick to boost its the frequency. This should work to reduce user interface stalls and to quickly promote mesa to high frequencies - but the cost is that our requested frequency stalls high (as we do not idle for long enough before rc6 to start reducing frequencies, nor are we aggressive at down clocking an underused GPU). However, this should be mitigated by rc6 itself powering off the GPU when idle, and that energy use is dependent upon the workload of the GPU in addition to its frequency (e.g. the math or sampler functions only consume power when used). Still, this is likely to adversely affect light workloads. In particular, this nearly eliminates the highly noticeable wake-up lag in animations from idle. For example, expose or workspace transitions. (However, given the situation where we fail to downclock, our requested frequency is almost always the maximum, except for Baytrail where we manually downclock upon idling. This often masks the latency of upclocking after being idle, so animations are typically smooth - at the cost of increased power consumption.) Stéphane raised the concern that this will punish good applications and reward bad applications - but due to the nature of how mesa performs its client throttling, I believe all mesa applications will be roughly equally affected. To address this concern, and to prevent applications like compositors from permanently boosting the RPS state, we ratelimit the frequency of the wait-boosts each client recieves. Unfortunately, this techinique is ineffective with Ironlake - which also has dynamic render power states and suffers just as dramatically. For Ironlake, the thermal/power headroom is shared with the CPU through Intelligent Power Sharing and the intel-ips module. This leaves us with no GPU boost frequencies available when coming out of idle, and due to hardware limitations we cannot change the arbitration between the CPU and GPU quickly enough to be effective. v2: Limit each client to receiving a single boost for each active period. Tested by QA to only marginally increase power, and to demonstrably increase throughput in games. No latency measurements yet. v3: Cater for front-buffer rendering with manual throttling. v4: Tidy up. v5: Sadly the compositor needs frequent boosts as it may never idle, but due to its picking mechanism (using ReadPixels) may require frequent waits. Those waits, along with the waits for the vrefresh swap, conspire to keep the GPU at low frequencies despite the interactive latency. To overcome this we ditch the one-boost-per-active-period and just ratelimit the number of wait-boosts each client can receive. Reported-and-tested-by: Paul Neumann <paul104x@yahoo.de> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=68716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: No extern for function prototypes in headers.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:56 +08:00
mutex_unlock(&dev_priv->rps.hw_lock);
}
void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
drm/i915: Boost RPS frequency for CPU stalls If we encounter a situation where the CPU blocks waiting for results from the GPU, give the GPU a kick to boost its the frequency. This should work to reduce user interface stalls and to quickly promote mesa to high frequencies - but the cost is that our requested frequency stalls high (as we do not idle for long enough before rc6 to start reducing frequencies, nor are we aggressive at down clocking an underused GPU). However, this should be mitigated by rc6 itself powering off the GPU when idle, and that energy use is dependent upon the workload of the GPU in addition to its frequency (e.g. the math or sampler functions only consume power when used). Still, this is likely to adversely affect light workloads. In particular, this nearly eliminates the highly noticeable wake-up lag in animations from idle. For example, expose or workspace transitions. (However, given the situation where we fail to downclock, our requested frequency is almost always the maximum, except for Baytrail where we manually downclock upon idling. This often masks the latency of upclocking after being idle, so animations are typically smooth - at the cost of increased power consumption.) Stéphane raised the concern that this will punish good applications and reward bad applications - but due to the nature of how mesa performs its client throttling, I believe all mesa applications will be roughly equally affected. To address this concern, and to prevent applications like compositors from permanently boosting the RPS state, we ratelimit the frequency of the wait-boosts each client recieves. Unfortunately, this techinique is ineffective with Ironlake - which also has dynamic render power states and suffers just as dramatically. For Ironlake, the thermal/power headroom is shared with the CPU through Intelligent Power Sharing and the intel-ips module. This leaves us with no GPU boost frequencies available when coming out of idle, and due to hardware limitations we cannot change the arbitration between the CPU and GPU quickly enough to be effective. v2: Limit each client to receiving a single boost for each active period. Tested by QA to only marginally increase power, and to demonstrably increase throughput in games. No latency measurements yet. v3: Cater for front-buffer rendering with manual throttling. v4: Tidy up. v5: Sadly the compositor needs frequent boosts as it may never idle, but due to its picking mechanism (using ReadPixels) may require frequent waits. Those waits, along with the waits for the vrefresh swap, conspire to keep the GPU at low frequencies despite the interactive latency. To overcome this we ditch the one-boost-per-active-period and just ratelimit the number of wait-boosts each client can receive. Reported-and-tested-by: Paul Neumann <paul104x@yahoo.de> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=68716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: No extern for function prototypes in headers.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:56 +08:00
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
else if (!dev_priv->rps.is_bdw_sw_turbo
|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
}
dev_priv->rps.last_adj = 0;
}
drm/i915: Boost RPS frequency for CPU stalls If we encounter a situation where the CPU blocks waiting for results from the GPU, give the GPU a kick to boost its the frequency. This should work to reduce user interface stalls and to quickly promote mesa to high frequencies - but the cost is that our requested frequency stalls high (as we do not idle for long enough before rc6 to start reducing frequencies, nor are we aggressive at down clocking an underused GPU). However, this should be mitigated by rc6 itself powering off the GPU when idle, and that energy use is dependent upon the workload of the GPU in addition to its frequency (e.g. the math or sampler functions only consume power when used). Still, this is likely to adversely affect light workloads. In particular, this nearly eliminates the highly noticeable wake-up lag in animations from idle. For example, expose or workspace transitions. (However, given the situation where we fail to downclock, our requested frequency is almost always the maximum, except for Baytrail where we manually downclock upon idling. This often masks the latency of upclocking after being idle, so animations are typically smooth - at the cost of increased power consumption.) Stéphane raised the concern that this will punish good applications and reward bad applications - but due to the nature of how mesa performs its client throttling, I believe all mesa applications will be roughly equally affected. To address this concern, and to prevent applications like compositors from permanently boosting the RPS state, we ratelimit the frequency of the wait-boosts each client recieves. Unfortunately, this techinique is ineffective with Ironlake - which also has dynamic render power states and suffers just as dramatically. For Ironlake, the thermal/power headroom is shared with the CPU through Intelligent Power Sharing and the intel-ips module. This leaves us with no GPU boost frequencies available when coming out of idle, and due to hardware limitations we cannot change the arbitration between the CPU and GPU quickly enough to be effective. v2: Limit each client to receiving a single boost for each active period. Tested by QA to only marginally increase power, and to demonstrably increase throughput in games. No latency measurements yet. v3: Cater for front-buffer rendering with manual throttling. v4: Tidy up. v5: Sadly the compositor needs frequent boosts as it may never idle, but due to its picking mechanism (using ReadPixels) may require frequent waits. Those waits, along with the waits for the vrefresh swap, conspire to keep the GPU at low frequencies despite the interactive latency. To overcome this we ditch the one-boost-per-active-period and just ratelimit the number of wait-boosts each client can receive. Reported-and-tested-by: Paul Neumann <paul104x@yahoo.de> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=68716 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: No extern for function prototypes in headers.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:56 +08:00
mutex_unlock(&dev_priv->rps.hw_lock);
}
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq_softlimit);
WARN_ON(val < dev_priv->rps.min_freq_softlimit);
DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
dev_priv->rps.cur_freq,
vlv_gpu_freq(dev_priv, val), val);
if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
"Odd GPU freq value\n"))
val &= ~1;
if (val != dev_priv->rps.cur_freq)
vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
}
drm/i915/bdw: Implement a basic PM interrupt handler Almost all of it is reusable from the existing code. The primary difference is we need to do even less in the interrupt handler, since interrupts are not shared in the same way. The patch is mostly a copy-paste of the existing snb+ code, with updates to the relevant parts requiring changes to the interrupt handling. As such it /should/ be relatively trivial. It's highly likely that I missed some places where I need a gen8 version of the PM interrupts, but it has become invisible to me by now. This patch could probably be split into adding the new functions, followed by actually handling the interrupts. Since the code is currently disabled (and broken) I think the patch stands better by itself. v2: Move the commit about not touching the ringbuffer interrupt to the snb_* function where it belongs (Rodrigo) v3: Rebased on Paulo's runtime PM changes v4: Not well validated, but rebase on commit 730488b2eddded4497f63f70867b1256cd9e117c Author: Paulo Zanoni <paulo.r.zanoni@intel.com> Date: Fri Mar 7 20:12:32 2014 -0300 drm/i915: kill dev_priv->pm.regsave v5: Rebased on latest code base. (Deepak) v6: Remove conflict markers, Unnecessary empty line and use right IIR interrupt (Ville) v7: mask modified without rmw (Ville Syrjälä) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 01:58:08 +08:00
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
del_timer(&dev_priv->rps.sw_turbo.flip_timer);
dev_priv-> rps.is_bdw_sw_turbo = false;
} else {
I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
~dev_priv->pm_rps_events);
/* Complete PM interrupt masking here doesn't race with the rps work
* item again unmasking PM interrupts because that is using a different
* register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
* leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
* gen8_enable_rps will clean up. */
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->rps.pm_iir = 0;
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
}
drm/i915/bdw: Implement a basic PM interrupt handler Almost all of it is reusable from the existing code. The primary difference is we need to do even less in the interrupt handler, since interrupts are not shared in the same way. The patch is mostly a copy-paste of the existing snb+ code, with updates to the relevant parts requiring changes to the interrupt handling. As such it /should/ be relatively trivial. It's highly likely that I missed some places where I need a gen8 version of the PM interrupts, but it has become invisible to me by now. This patch could probably be split into adding the new functions, followed by actually handling the interrupts. Since the code is currently disabled (and broken) I think the patch stands better by itself. v2: Move the commit about not touching the ringbuffer interrupt to the snb_* function where it belongs (Rodrigo) v3: Rebased on Paulo's runtime PM changes v4: Not well validated, but rebase on commit 730488b2eddded4497f63f70867b1256cd9e117c Author: Paulo Zanoni <paulo.r.zanoni@intel.com> Date: Fri Mar 7 20:12:32 2014 -0300 drm/i915: kill dev_priv->pm.regsave v5: Rebased on latest code base. (Deepak) v6: Remove conflict markers, Unnecessary empty line and use right IIR interrupt (Ville) v7: mask modified without rmw (Ville Syrjälä) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 01:58:08 +08:00
}
static void gen6_disable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
~dev_priv->pm_rps_events);
/* Complete PM interrupt masking here doesn't race with the rps work
* item again unmasking PM interrupts because that is using a different
* register (PMIMR) to mask PM interrupts. The only risk is in leaving
* stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->rps.pm_iir = 0;
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
}
static void gen6_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
drm/i915/bdw: Implement a basic PM interrupt handler Almost all of it is reusable from the existing code. The primary difference is we need to do even less in the interrupt handler, since interrupts are not shared in the same way. The patch is mostly a copy-paste of the existing snb+ code, with updates to the relevant parts requiring changes to the interrupt handling. As such it /should/ be relatively trivial. It's highly likely that I missed some places where I need a gen8 version of the PM interrupts, but it has become invisible to me by now. This patch could probably be split into adding the new functions, followed by actually handling the interrupts. Since the code is currently disabled (and broken) I think the patch stands better by itself. v2: Move the commit about not touching the ringbuffer interrupt to the snb_* function where it belongs (Rodrigo) v3: Rebased on Paulo's runtime PM changes v4: Not well validated, but rebase on commit 730488b2eddded4497f63f70867b1256cd9e117c Author: Paulo Zanoni <paulo.r.zanoni@intel.com> Date: Fri Mar 7 20:12:32 2014 -0300 drm/i915: kill dev_priv->pm.regsave v5: Rebased on latest code base. (Deepak) v6: Remove conflict markers, Unnecessary empty line and use right IIR interrupt (Ville) v7: mask modified without rmw (Ville Syrjälä) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 01:58:08 +08:00
if (IS_BROADWELL(dev))
gen8_disable_rps_interrupts(dev);
else
gen6_disable_rps_interrupts(dev);
}
static void cherryview_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RC_CONTROL, 0);
gen8_disable_rps_interrupts(dev);
}
static void valleyview_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* we're doing forcewake before Disabling RC6,
* This what the BIOS expects when going into suspend */
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
I915_WRITE(GEN6_RC_CONTROL, 0);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
gen6_disable_rps_interrupts(dev);
}
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
if (IS_VALLEYVIEW(dev)) {
if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
mode = GEN6_RC_CTL_RC6_ENABLE;
else
mode = 0;
}
DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
}
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
{
/* No RC6 before Ironlake */
if (INTEL_INFO(dev)->gen < 5)
return 0;
/* RC6 is only on Ironlake mobile not on desktop */
if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
return 0;
/* Respect the kernel parameter if it is set */
if (enable_rc6 >= 0) {
int mask;
if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
INTEL_RC6pp_ENABLE;
else
mask = INTEL_RC6_ENABLE;
if ((enable_rc6 & mask) != enable_rc6)
DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
enable_rc6 & mask, enable_rc6, mask);
return enable_rc6 & mask;
}
Revert "drm/i915: enable rc6 on ilk again" Even with the cumulative set of ilk w/a, rc6 is demonstrably still failing and causing GPU hangs as found by Peter Wu. So we need to disable it again until it is stable. This reverts commit 456470eb583f063ee84c6818251e638598be0fb8 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Wed Aug 8 23:35:40 2012 +0200 drm/i915: enable rc6 on ilk again and the follow-on commit cd7988eea561a70a4f98e431c1395f913672d626 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Sun Aug 26 20:33:18 2012 +0200 drm/i915: disable rc6 on ilk when vt-d is enabled Note: The situation around the gen4/5 gpu hangs that cropped up in 3.7 is rather strange. Most useful bisects have lead to commit 6c085a728cf000ac1865d66f8c9b52935558b328 Author: Chris Wilson <chris@chris-wilson.co.uk> Date: Mon Aug 20 11:40:46 2012 +0200 drm/i915: Track unbound pages or even later commits that affect the gem bo recycling, which all is way past the point where we re-enabled rc6. But somehow reverting/disabling those commits doesn't help, but disabling rc6 at least helps for many hangs on ilk. Obviously it doesn't change anything at all on gen4, and there are still strange issues left on gen5 (which we unfortunately can't readily reproduce). Also, the error_state signature of the hangs which can be fixed with this patch look remarkably different to those which seem to be unaffected by the rc6 settings: The rc6 hangs are in the ring, somewhere in the MI_FLUSH/PIPE_CONTROL sequence to make ilk coherent, wheras all the other hangs tend to be at a random point in the middle of the user batch. So it could also be that we have different issues. Until we grow more clue, this at least helps some users. Reported-by: Peter Wu <lekensteyn@gmail.com> References: https://bugs.freedesktop.org/show_bug.cgi?id=55984 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Added note with some more details about the gen4/5 3.7 gpu hang regression.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-11-10 18:00:06 +08:00
/* Disable RC6 on Ironlake */
if (INTEL_INFO(dev)->gen == 5)
return 0;
if (IS_IVYBRIDGE(dev))
return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
return INTEL_RC6_ENABLE;
}
int intel_enable_rc6(const struct drm_device *dev)
{
return i915.enable_rc6;
}
drm/i915/bdw: Implement a basic PM interrupt handler Almost all of it is reusable from the existing code. The primary difference is we need to do even less in the interrupt handler, since interrupts are not shared in the same way. The patch is mostly a copy-paste of the existing snb+ code, with updates to the relevant parts requiring changes to the interrupt handling. As such it /should/ be relatively trivial. It's highly likely that I missed some places where I need a gen8 version of the PM interrupts, but it has become invisible to me by now. This patch could probably be split into adding the new functions, followed by actually handling the interrupts. Since the code is currently disabled (and broken) I think the patch stands better by itself. v2: Move the commit about not touching the ringbuffer interrupt to the snb_* function where it belongs (Rodrigo) v3: Rebased on Paulo's runtime PM changes v4: Not well validated, but rebase on commit 730488b2eddded4497f63f70867b1256cd9e117c Author: Paulo Zanoni <paulo.r.zanoni@intel.com> Date: Fri Mar 7 20:12:32 2014 -0300 drm/i915: kill dev_priv->pm.regsave v5: Rebased on latest code base. (Deepak) v6: Remove conflict markers, Unnecessary empty line and use right IIR interrupt (Ville) v7: mask modified without rmw (Ville Syrjälä) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 01:58:08 +08:00
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
spin_lock_irq(&dev_priv->irq_lock);
WARN_ON(dev_priv->rps.pm_iir);
gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
drm/i915/bdw: Implement a basic PM interrupt handler Almost all of it is reusable from the existing code. The primary difference is we need to do even less in the interrupt handler, since interrupts are not shared in the same way. The patch is mostly a copy-paste of the existing snb+ code, with updates to the relevant parts requiring changes to the interrupt handling. As such it /should/ be relatively trivial. It's highly likely that I missed some places where I need a gen8 version of the PM interrupts, but it has become invisible to me by now. This patch could probably be split into adding the new functions, followed by actually handling the interrupts. Since the code is currently disabled (and broken) I think the patch stands better by itself. v2: Move the commit about not touching the ringbuffer interrupt to the snb_* function where it belongs (Rodrigo) v3: Rebased on Paulo's runtime PM changes v4: Not well validated, but rebase on commit 730488b2eddded4497f63f70867b1256cd9e117c Author: Paulo Zanoni <paulo.r.zanoni@intel.com> Date: Fri Mar 7 20:12:32 2014 -0300 drm/i915: kill dev_priv->pm.regsave v5: Rebased on latest code base. (Deepak) v6: Remove conflict markers, Unnecessary empty line and use right IIR interrupt (Ville) v7: mask modified without rmw (Ville Syrjälä) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 01:58:08 +08:00
I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
spin_lock_irq(&dev_priv->irq_lock);
WARN_ON(dev_priv->rps.pm_iir);
gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
/* All of these values are in units of 50MHz */
dev_priv->rps.cur_freq = 0;
/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
/* XXX: only BYT has a special efficient freq */
dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
/* hw_max = RP0 until we check for overclocking */
dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
/* Preserve min/max settings in case of re-init */
if (dev_priv->rps.max_freq_softlimit == 0)
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
if (dev_priv->rps.min_freq_softlimit == 0)
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}
static void bdw_sw_calculate_freq(struct drm_device *dev,
struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u64 busy = 0;
u32 busyness_pct = 0;
u32 elapsed_time = 0;
u16 new_freq = 0;
if (!c || !cur_time || !c0)
return;
if (0 == c->last_c0)
goto out;
/* Check Evaluation interval */
elapsed_time = *cur_time - c->last_ts;
if (elapsed_time < c->eval_interval)
return;
mutex_lock(&dev_priv->rps.hw_lock);
/*
* c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
* Whole busyness_pct calculation should be
* busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
* busyness_pct = (u32)(busy * 100 / elapsed_time);
* The final formula is to simplify CPU calculation
*/
busy = (u64)(*c0 - c->last_c0) << 12;
do_div(busy, elapsed_time);
busyness_pct = (u32)busy;
if (c->is_up && busyness_pct >= c->it_threshold_pct)
new_freq = (u16)dev_priv->rps.cur_freq + 3;
if (!c->is_up && busyness_pct <= c->it_threshold_pct)
new_freq = (u16)dev_priv->rps.cur_freq - 1;
/* Adjust to new frequency busyness and compare with threshold */
if (0 != new_freq) {
if (new_freq > dev_priv->rps.max_freq_softlimit)
new_freq = dev_priv->rps.max_freq_softlimit;
else if (new_freq < dev_priv->rps.min_freq_softlimit)
new_freq = dev_priv->rps.min_freq_softlimit;
gen6_set_rps(dev, new_freq);
}
mutex_unlock(&dev_priv->rps.hw_lock);
out:
c->last_c0 = *c0;
c->last_ts = *cur_time;
}
static void gen8_set_frequency_RP0(struct work_struct *work)
{
struct intel_rps_bdw_turbo *p_bdw_turbo =
container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
struct intel_gen6_power_mgmt *p_power_mgmt =
container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
struct drm_i915_private *dev_priv =
container_of(p_power_mgmt, struct drm_i915_private, rps);
mutex_lock(&dev_priv->rps.hw_lock);
gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void flip_active_timeout_handler(unsigned long var)
{
struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
del_timer(&dev_priv->rps.sw_turbo.flip_timer);
atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
}
void bdw_software_turbo(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
&current_time, &current_c0);
bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
&current_time, &current_c0);
}
static void gen8_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
uint32_t rc6_mask = 0, rp_state_cap;
uint32_t threshold_up_pct, threshold_down_pct;
uint32_t ei_up, ei_down; /* up and down evaluation interval */
u32 rp_ctl_flag;
int unused;
/* Use software Turbo for BDW */
dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
/* 1c & 1d: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
/* 2a: Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
parse_rp_state_cap(dev_priv, rp_state_cap);
/* 2b: Program RC6 thresholds.*/
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, unused)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
if (IS_BROADWELL(dev))
I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
else
I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
/* 3: Enable RC6 */
if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
intel_print_rc6_info(dev, rc6_mask);
if (IS_BROADWELL(dev))
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN7_RC_CTL_TO_MODE |
rc6_mask);
else
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_EI_MODE(1) |
rc6_mask);
/* 4 Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
I915_WRITE(GEN6_RC_VIDEO_FREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
ei_up = 84480; /* 84.48ms */
ei_down = 448000;
threshold_up_pct = 90; /* x percent busy */
threshold_down_pct = 70;
if (dev_priv->rps.is_bdw_sw_turbo) {
dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
dev_priv->rps.sw_turbo.up.is_up = true;
dev_priv->rps.sw_turbo.up.last_ts = 0;
dev_priv->rps.sw_turbo.up.last_c0 = 0;
dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
dev_priv->rps.sw_turbo.down.is_up = false;
dev_priv->rps.sw_turbo.down.last_ts = 0;
dev_priv->rps.sw_turbo.down.last_c0 = 0;
/* Start the timer to track if flip comes*/
dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
init_timer(&dev_priv->rps.sw_turbo.flip_timer);
dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
dev_priv->rps.sw_turbo.flip_timer.expires =
usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
add_timer(&dev_priv->rps.sw_turbo.flip_timer);
INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
} else {
/* NB: Docs say 1s, and 1000000 - which aren't equivalent
* 1 second timeout*/
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
/* Docs recommend 900MHz, and 300 MHz respectively */
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
dev_priv->rps.max_freq_softlimit << 24 |
dev_priv->rps.min_freq_softlimit << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD,
FREQ_1_28_US(ei_up * threshold_up_pct / 100));
I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
FREQ_1_28_US(ei_down * threshold_down_pct / 100));
I915_WRITE(GEN6_RP_UP_EI,
FREQ_1_28_US(ei_up));
I915_WRITE(GEN6_RP_DOWN_EI,
FREQ_1_28_US(ei_down));
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
}
/* 5: Enable RPS */
rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG;
if (!dev_priv->rps.is_bdw_sw_turbo)
rp_ctl_flag |= GEN6_RP_ENABLE;
I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
/* 6: Ring frequency + overclocking
* (our driver does this later */
gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
if (!dev_priv->rps.is_bdw_sw_turbo)
gen8_enable_rps_interrupts(dev);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen6_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
u32 rp_state_cap;
u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
u32 gtfifodbg;
int rc6_mode;
int i, ret;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
/* Clear the DBG now so we don't confuse earlier errors */
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
parse_rp_state_cap(dev_priv, rp_state_cap);
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
if (IS_IVYBRIDGE(dev))
I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
else
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
/* Check if we are enabling RC6 */
rc6_mode = intel_enable_rc6(dev_priv->dev);
if (rc6_mode & INTEL_RC6_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
/* We don't use those on Haswell */
if (!IS_HASWELL(dev)) {
if (rc6_mode & INTEL_RC6p_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
if (rc6_mode & INTEL_RC6pp_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
}
intel_print_rc6_info(dev, rc6_mask);
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
/* Power down if completely idle for over 50ms */
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
if (ret)
DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
(dev_priv->rps.max_freq_softlimit & 0xff) * 50,
(pcu_mbox & 0xff) * 50);
dev_priv->rps.max_freq = pcu_mbox & 0xff;
}
drm/i915: Tweak RPS thresholds to more aggressively downclock After applying wait-boost we often find ourselves stuck at higher clocks than required. The current threshold value requires the GPU to be continuously and completely idle for 313ms before it is dropped by one bin. Conversely, we require the GPU to be busy for an average of 90% over a 84ms period before we upclock. So the current thresholds almost never downclock the GPU, and respond very slowly to sudden demands for more power. It is easy to observe that we currently lock into the wrong bin and both underperform in benchmarks and consume more power than optimal (just by repeating the task and measuring the different results). An alternative approach, as discussed in the bspec, is to use a continuous threshold for upclocking, and an average value for downclocking. This is good for quickly detecting and reacting to state changes within a frame, however it fails with the common throttling method of waiting upon the outstanding frame - at least it is difficult to choose a threshold that works well at 15,000fps and at 60fps. So continue to use average busy/idle loads to determine frequency change. v2: Use 3 power zones to keep frequencies low in steady-state mostly idle (e.g. scrolling, interactive 2D drawing), and frequencies high for demanding games. In between those end-states, we use a fast-reclocking algorithm to converge more quickly on the desired bin. v3: Bug fixes - make sure we reset adj after switching power zones. v4: Tune - drop the continuous busy thresholds as it prevents us from choosing the right frequency for glxgears style swap benchmarks. Instead the goal is to be able to find the right clocks irrespective of the wait-boost. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Stéphane Marchesin <stephane.marchesin@gmail.com> Cc: Owen Taylor <otaylor@redhat.com> Cc: "Meng, Mengmeng" <mengmeng.meng@intel.com> Cc: "Zhuang, Lena" <lena.zhuang@intel.com> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-26 00:34:57 +08:00
dev_priv->rps.power = HIGH_POWER; /* force a reset */
gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
gen6_enable_rps_interrupts(dev);
rc6vids = 0;
ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
if (IS_GEN6(dev) && ret) {
DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
rc6vids &= 0xffff00;
rc6vids |= GEN6_ENCODE_RC6_VID(450);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
if (ret)
DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
}
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
static void __gen6_update_ring_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int min_freq = 15;
unsigned int gpu_freq;
unsigned int max_ia_freq, min_ring_freq;
int scaling_factor = 180;
struct cpufreq_policy *policy;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
policy = cpufreq_cpu_get(0);
if (policy) {
max_ia_freq = policy->cpuinfo.max_freq;
cpufreq_cpu_put(policy);
} else {
/*
* Default to measured freq if none found, PCU will ensure we
* don't go over
*/
max_ia_freq = tsc_khz;
}
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
min_ring_freq = I915_READ(DCLK) & 0xf;
/* convert DDR frequency from units of 266.6MHz to bandwidth */
min_ring_freq = mult_frac(min_ring_freq, 8, 3);
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
gpu_freq--) {
int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
unsigned int ia_freq = 0, ring_freq = 0;
if (INTEL_INFO(dev)->gen >= 8) {
/* max(2 * GT, DDR). NB: GT is 50MHz units */
ring_freq = max(min_ring_freq, gpu_freq);
} else if (IS_HASWELL(dev)) {
ring_freq = mult_frac(gpu_freq, 5, 4);
ring_freq = max(min_ring_freq, ring_freq);
/* leave ia_freq as the default, chosen by cpufreq */
} else {
/* On older processors, there is no separate ring
* clock domain, so in order to boost the bandwidth
* of the ring, we need to upclock the CPU (ia_freq).
*
* For GPU frequencies less than 750MHz,
* just use the lowest ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
}
sandybridge_pcode_write(dev_priv,
GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
gpu_freq);
}
}
void gen6_update_ring_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
return;
mutex_lock(&dev_priv->rps.hw_lock);
__gen6_update_ring_freq(dev);
mutex_unlock(&dev_priv->rps.hw_lock);
}
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp0;
val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
return rp0;
}
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpe;
val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
return rpe;
}
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp1;
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
return rp1;
}
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpn;
val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
return rpn;
}
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp1;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
return rp1;
}
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp0;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
/* Clamp to max */
rp0 = min_t(u32, rp0, 0xea);
return rp0;
}
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpe;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
return rpe;
}
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
}
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
dev_priv->vlv_pctx->stolen->start);
}
/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}
static void cherryview_setup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long pctx_paddr, paddr;
struct i915_gtt *gtt = &dev_priv->gtt;
u32 pcbr;
int pctx_size = 32*1024;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
pcbr = I915_READ(VLV_PCBR);
if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
paddr = (dev_priv->mm.stolen_base +
(gtt->stolen_size - pctx_size));
pctx_paddr = (paddr & (~4095));
I915_WRITE(VLV_PCBR, pctx_paddr);
}
}
static void valleyview_setup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *pctx;
unsigned long pctx_paddr;
u32 pcbr;
int pctx_size = 24*1024;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
pcbr = I915_READ(VLV_PCBR);
if (pcbr) {
/* BIOS set it up already, grab the pre-alloc'd space */
int pcbr_offset;
pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
pcbr_offset,
I915_GTT_OFFSET_NONE,
pctx_size);
goto out;
}
/*
* From the Gunit register HAS:
* The Gfx driver is expected to program this register and ensure
* proper allocation within Gfx stolen memory. For example, this
* register should be programmed such than the PCBR range does not
* overlap with other ranges, such as the frame buffer, protected
* memory, or any other relevant ranges.
*/
pctx = i915_gem_object_create_stolen(dev, pctx_size);
if (!pctx) {
DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
return;
}
pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
I915_WRITE(VLV_PCBR, pctx_paddr);
out:
dev_priv->vlv_pctx = pctx;
}
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (WARN_ON(!dev_priv->vlv_pctx))
return;
drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
dev_priv->vlv_pctx = NULL;
}
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
valleyview_setup_pctx(dev);
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
switch ((val >> 6) & 3) {
case 0:
case 1:
dev_priv->mem_freq = 800;
break;
case 2:
dev_priv->mem_freq = 1066;
break;
case 3:
dev_priv->mem_freq = 1333;
break;
}
DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
dev_priv->rps.max_freq);
dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
dev_priv->rps.rp1_freq);
dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
dev_priv->rps.min_freq);
/* Preserve min/max settings in case of re-init */
if (dev_priv->rps.max_freq_softlimit == 0)
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
if (dev_priv->rps.min_freq_softlimit == 0)
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
cherryview_setup_pctx(dev);
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
switch ((val >> 2) & 0x7) {
case 0:
case 1:
dev_priv->rps.cz_freq = 200;
dev_priv->mem_freq = 1600;
break;
case 2:
dev_priv->rps.cz_freq = 267;
dev_priv->mem_freq = 1600;
break;
case 3:
dev_priv->rps.cz_freq = 333;
dev_priv->mem_freq = 2000;
break;
case 4:
dev_priv->rps.cz_freq = 320;
dev_priv->mem_freq = 1600;
break;
case 5:
dev_priv->rps.cz_freq = 400;
dev_priv->mem_freq = 1600;
break;
}
DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
dev_priv->rps.max_freq);
dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
dev_priv->rps.rp1_freq);
dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
dev_priv->rps.min_freq);
WARN_ONCE((dev_priv->rps.max_freq |
dev_priv->rps.efficient_freq |
dev_priv->rps.rp1_freq |
dev_priv->rps.min_freq) & 1,
"Odd GPU freq values\n");
/* Preserve min/max settings in case of re-init */
if (dev_priv->rps.max_freq_softlimit == 0)
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
if (dev_priv->rps.min_freq_softlimit == 0)
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
valleyview_cleanup_pctx(dev);
}
static void cherryview_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
u32 gtfifodbg, val, rc6_mode = 0, pcbr;
int i;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
gtfifodbg = I915_READ(GTFIFODBG);
if (gtfifodbg) {
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
cherryview_check_pctx(dev_priv);
/* 1a & 1b: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
/* 2a: Program RC6 thresholds.*/
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
/* allows RC6 residency counter to work */
I915_WRITE(VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
/* For now we assume BIOS is allocating and populating the PCBR */
pcbr = I915_READ(VLV_PCBR);
DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
/* 3: Enable RC6 */
if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
(pcbr >> VLV_PCBR_ADDR_SHIFT))
rc6_mode = GEN6_RC_CTL_EI_MODE(1);
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
/* 4 Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
I915_WRITE(GEN6_RP_UP_EI, 66000);
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
/* WaDisablePwrmtrEvent:chv (pre-production hw) */
I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
/* 5: Enable RPS */
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
dev_priv->rps.cur_freq = (val >> 8) & 0xff;
DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
dev_priv->rps.cur_freq);
DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
gen8_enable_rps_interrupts(dev);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
static void valleyview_enable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
u32 gtfifodbg, val, rc6_mode = 0;
int i;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
valleyview_check_pctx(dev_priv);
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
/* If VLV, Forcewake all wells, else re-direct to regular path */
gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
I915_WRITE(GEN6_RP_UP_EI, 66000);
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_ring(ring, dev_priv, i)
I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
/* allows RC6 residency counter to work */
I915_WRITE(VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
VLV_RENDER_RC0_COUNT_EN |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
intel_print_rc6_info(dev, rc6_mode);
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
dev_priv->rps.cur_freq = (val >> 8) & 0xff;
DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
dev_priv->rps.cur_freq);
DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
gen6_enable_rps_interrupts(dev);
gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}
void ironlake_teardown_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->ips.renderctx) {
i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
dev_priv->ips.renderctx = NULL;
}
if (dev_priv->ips.pwrctx) {
i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
dev_priv->ips.pwrctx = NULL;
}
}
static void ironlake_disable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(PWRCTXA)) {
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
50);
I915_WRITE(PWRCTXA, 0);
POSTING_READ(PWRCTXA);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
POSTING_READ(RSTDBYCTL);
}
}
static int ironlake_setup_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->ips.renderctx == NULL)
dev_priv->ips.renderctx = intel_alloc_context_page(dev);
if (!dev_priv->ips.renderctx)
return -ENOMEM;
if (dev_priv->ips.pwrctx == NULL)
dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
if (!dev_priv->ips.pwrctx) {
ironlake_teardown_rc6(dev);
return -ENOMEM;
}
return 0;
}
static void ironlake_enable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
bool was_interruptible;
int ret;
/* rc6 disabled by default due to repeated reports of hanging during
* boot and resume.
*/
if (!intel_enable_rc6(dev))
return;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ret = ironlake_setup_rc6(dev);
if (ret)
return;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
ret = intel_ring_begin(ring, 6);
if (ret) {
ironlake_teardown_rc6(dev);
dev_priv->mm.interruptible = was_interruptible;
return;
}
intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
intel_ring_emit(ring, MI_SET_CONTEXT);
intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
MI_RESTORE_INHIBIT);
intel_ring_emit(ring, MI_SUSPEND_FLUSH);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_FLUSH);
intel_ring_advance(ring);
/*
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
* does an implicit flush, combined with MI_FLUSH above, it should be
* safe to assume that renderctx is valid
*/
ret = intel_ring_idle(ring);
dev_priv->mm.interruptible = was_interruptible;
if (ret) {
DRM_ERROR("failed to enable ironlake power savings\n");
ironlake_teardown_rc6(dev);
return;
}
I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
}
static unsigned long intel_pxfreq(u32 vidfreq)
{
unsigned long freq;
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
if (!pre)
return 0;
freq = ((div * 133333) / ((1<<post) * pre));
return freq;
}
static const struct cparams {
u16 i;
u16 t;
u16 m;
u16 c;
} cparams[] = {
{ 1, 1333, 301, 28664 },
{ 1, 1066, 294, 24460 },
{ 1, 800, 294, 25192 },
{ 0, 1333, 276, 27605 },
{ 0, 1066, 276, 27605 },
{ 0, 800, 231, 23784 },
};
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
{
u64 total_count, diff, ret;
u32 count1, count2, count3, m = 0, c = 0;
unsigned long now = jiffies_to_msecs(jiffies), diff1;
int i;
assert_spin_locked(&mchdev_lock);
diff1 = now - dev_priv->ips.last_time1;
/* Prevent division-by-zero if we are asking too fast.
* Also, we don't get interesting results if we are polling
* faster than once in 10ms, so just return the saved value
* in such cases.
*/
if (diff1 <= 10)
return dev_priv->ips.chipset_power;
count1 = I915_READ(DMIEC);
count2 = I915_READ(DDREC);
count3 = I915_READ(CSIEC);
total_count = count1 + count2 + count3;
/* FIXME: handle per-counter overflow */
if (total_count < dev_priv->ips.last_count1) {
diff = ~0UL - dev_priv->ips.last_count1;
diff += total_count;
} else {
diff = total_count - dev_priv->ips.last_count1;
}
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
if (cparams[i].i == dev_priv->ips.c_m &&
cparams[i].t == dev_priv->ips.r_t) {
m = cparams[i].m;
c = cparams[i].c;
break;
}
}
diff = div_u64(diff, diff1);
ret = ((m * diff) + c);
ret = div_u64(ret, 10);
dev_priv->ips.last_count1 = total_count;
dev_priv->ips.last_time1 = now;
dev_priv->ips.chipset_power = ret;
return ret;
}
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
unsigned long val;
if (INTEL_INFO(dev)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_chipset_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
unsigned long m, x, b;
u32 tsfs;
tsfs = I915_READ(TSFS);
m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
x = I915_READ8(TR1);
b = tsfs & TSFS_INTR_MASK;
return ((m * x) / 127) - b;
}
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
struct drm_device *dev = dev_priv->dev;
static const struct v_table {
u16 vd; /* in .1 mil */
u16 vm; /* in .1 mil */
} v_table[] = {
{ 0, 0, },
{ 375, 0, },
{ 500, 0, },
{ 625, 0, },
{ 750, 0, },
{ 875, 0, },
{ 1000, 0, },
{ 1125, 0, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4125, 3000, },
{ 4250, 3125, },
{ 4375, 3250, },
{ 4500, 3375, },
{ 4625, 3500, },
{ 4750, 3625, },
{ 4875, 3750, },
{ 5000, 3875, },
{ 5125, 4000, },
{ 5250, 4125, },
{ 5375, 4250, },
{ 5500, 4375, },
{ 5625, 4500, },
{ 5750, 4625, },
{ 5875, 4750, },
{ 6000, 4875, },
{ 6125, 5000, },
{ 6250, 5125, },
{ 6375, 5250, },
{ 6500, 5375, },
{ 6625, 5500, },
{ 6750, 5625, },
{ 6875, 5750, },
{ 7000, 5875, },
{ 7125, 6000, },
{ 7250, 6125, },
{ 7375, 6250, },
{ 7500, 6375, },
{ 7625, 6500, },
{ 7750, 6625, },
{ 7875, 6750, },
{ 8000, 6875, },
{ 8125, 7000, },
{ 8250, 7125, },
{ 8375, 7250, },
{ 8500, 7375, },
{ 8625, 7500, },
{ 8750, 7625, },
{ 8875, 7750, },
{ 9000, 7875, },
{ 9125, 8000, },
{ 9250, 8125, },
{ 9375, 8250, },
{ 9500, 8375, },
{ 9625, 8500, },
{ 9750, 8625, },
{ 9875, 8750, },
{ 10000, 8875, },
{ 10125, 9000, },
{ 10250, 9125, },
{ 10375, 9250, },
{ 10500, 9375, },
{ 10625, 9500, },
{ 10750, 9625, },
{ 10875, 9750, },
{ 11000, 9875, },
{ 11125, 10000, },
{ 11250, 10125, },
{ 11375, 10250, },
{ 11500, 10375, },
{ 11625, 10500, },
{ 11750, 10625, },
{ 11875, 10750, },
{ 12000, 10875, },
{ 12125, 11000, },
{ 12250, 11125, },
{ 12375, 11250, },
{ 12500, 11375, },
{ 12625, 11500, },
{ 12750, 11625, },
{ 12875, 11750, },
{ 13000, 11875, },
{ 13125, 12000, },
{ 13250, 12125, },
{ 13375, 12250, },
{ 13500, 12375, },
{ 13625, 12500, },
{ 13750, 12625, },
{ 13875, 12750, },
{ 14000, 12875, },
{ 14125, 13000, },
{ 14250, 13125, },
{ 14375, 13250, },
{ 14500, 13375, },
{ 14625, 13500, },
{ 14750, 13625, },
{ 14875, 13750, },
{ 15000, 13875, },
{ 15125, 14000, },
{ 15250, 14125, },
{ 15375, 14250, },
{ 15500, 14375, },
{ 15625, 14500, },
{ 15750, 14625, },
{ 15875, 14750, },
{ 16000, 14875, },
{ 16125, 15000, },
};
if (INTEL_INFO(dev)->is_mobile)
return v_table[pxvid].vm;
else
return v_table[pxvid].vd;
}
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
u64 now, diff, diffms;
u32 count;
assert_spin_locked(&mchdev_lock);
now = ktime_get_raw_ns();
diffms = now - dev_priv->ips.last_time2;
do_div(diffms, NSEC_PER_MSEC);
/* Don't divide by 0 */
if (!diffms)
return;
count = I915_READ(GFXEC);
if (count < dev_priv->ips.last_count2) {
diff = ~0UL - dev_priv->ips.last_count2;
diff += count;
} else {
diff = count - dev_priv->ips.last_count2;
}
dev_priv->ips.last_count2 = count;
dev_priv->ips.last_time2 = now;
/* More magic constants... */
diff = diff * 1181;
diff = div_u64(diff, diffms * 10);
dev_priv->ips.gfx_power = diff;
}
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
if (INTEL_INFO(dev)->gen != 5)
return;
spin_lock_irq(&mchdev_lock);
__i915_update_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
}
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
{
unsigned long t, corr, state1, corr2, state2;
u32 pxvid, ext_v;
assert_spin_locked(&mchdev_lock);
pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
pxvid = (pxvid >> 24) & 0x7f;
ext_v = pvid_to_extvid(dev_priv, pxvid);
state1 = ext_v;
t = i915_mch_val(dev_priv);
/* Revel in the empirically derived constants */
/* Correction factor in 1/100000 units */
if (t > 80)
corr = ((t * 2349) + 135940);
else if (t >= 50)
corr = ((t * 964) + 29317);
else /* < 50 */
corr = ((t * 301) + 1004);
corr = corr * ((150142 * state1) / 10000 - 78642);
corr /= 100000;
corr2 = (corr * dev_priv->ips.corr);
state2 = (corr2 * state1) / 10000;
state2 /= 100; /* convert to mW */
__i915_update_gfx_val(dev_priv);
return dev_priv->ips.gfx_power + state2;
}
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
unsigned long val;
if (INTEL_INFO(dev)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
/**
* i915_read_mch_val - return value for IPS use
*
* Calculate and return a value for the IPS driver to use when deciding whether
* we have thermal and power headroom to increase CPU or GPU power budget.
*/
unsigned long i915_read_mch_val(void)
{
struct drm_i915_private *dev_priv;
unsigned long chipset_val, graphics_val, ret = 0;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
chipset_val = __i915_chipset_val(dev_priv);
graphics_val = __i915_gfx_val(dev_priv);
ret = chipset_val + graphics_val;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);
/**
* i915_gpu_raise - raise GPU frequency limit
*
* Raise the limit; IPS indicates we have thermal headroom.
*/
bool i915_gpu_raise(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
dev_priv->ips.max_delay--;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);
/**
* i915_gpu_lower - lower GPU frequency limit
*
* IPS indicates we're close to a thermal limit, so throttle back the GPU
* frequency maximum.
*/
bool i915_gpu_lower(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
dev_priv->ips.max_delay++;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);
/**
* i915_gpu_busy - indicate GPU business to IPS
*
* Tell the IPS driver whether or not the GPU is busy.
*/
bool i915_gpu_busy(void)
{
struct drm_i915_private *dev_priv;
struct intel_engine_cs *ring;
bool ret = false;
int i;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
for_each_ring(ring, dev_priv, i)
ret |= !list_empty(&ring->request_list);
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);
/**
* i915_gpu_turbo_disable - disable graphics turbo
*
* Disable graphics turbo by resetting the max frequency and setting the
* current frequency to the default.
*/
bool i915_gpu_turbo_disable(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
dev_priv->ips.max_delay = dev_priv->ips.fstart;
if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
ret = false;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
/**
* Tells the intel_ips driver that the i915 driver is now loaded, if
* IPS got loaded first.
*
* This awkward dance is so that neither module has to depend on the
* other in order for IPS to do the appropriate communication of
* GPU turbo limits to i915.
*/
static void
ips_ping_for_i915_load(void)
{
void (*link)(void);
link = symbol_get(ips_link_to_i915_driver);
if (link) {
link();
symbol_put(ips_link_to_i915_driver);
}
}
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
/* We only register the i915 ips part with intel-ips once everything is
* set up, to avoid intel-ips sneaking in and reading bogus values. */
spin_lock_irq(&mchdev_lock);
i915_mch_dev = dev_priv;
spin_unlock_irq(&mchdev_lock);
ips_ping_for_i915_load();
}
void intel_gpu_ips_teardown(void)
{
spin_lock_irq(&mchdev_lock);
i915_mch_dev = NULL;
spin_unlock_irq(&mchdev_lock);
}
static void intel_init_emon(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 lcfuse;
u8 pxw[16];
int i;
/* Disable to program */
I915_WRITE(ECR, 0);
POSTING_READ(ECR);
/* Program energy weights for various events */
I915_WRITE(SDEW, 0x15040d00);
I915_WRITE(CSIEW0, 0x007f0000);
I915_WRITE(CSIEW1, 0x1e220004);
I915_WRITE(CSIEW2, 0x04000004);
for (i = 0; i < 5; i++)
I915_WRITE(PEW + (i * 4), 0);
for (i = 0; i < 3; i++)
I915_WRITE(DEW + (i * 4), 0);
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
unsigned long freq = intel_pxfreq(pxvidfreq);
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
unsigned long val;
val = vid * vid;
val *= (freq / 1000);
val *= 255;
val /= (127*127*900);
if (val > 0xff)
DRM_ERROR("bad pxval: %ld\n", val);
pxw[i] = val;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
for (i = 0; i < 4; i++) {
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
I915_WRITE(PXW + (i * 4), val);
}
/* Adjust magic regs to magic values (more experimental results) */
I915_WRITE(OGW0, 0);
I915_WRITE(OGW1, 0);
I915_WRITE(EG0, 0x00007f00);
I915_WRITE(EG1, 0x0000000e);
I915_WRITE(EG2, 0x000e0000);
I915_WRITE(EG3, 0x68000300);
I915_WRITE(EG4, 0x42000000);
I915_WRITE(EG5, 0x00140031);
I915_WRITE(EG6, 0);
I915_WRITE(EG7, 0);
for (i = 0; i < 8; i++)
I915_WRITE(PXWL + (i * 4), 0);
/* Enable PMON + select events */
I915_WRITE(ECR, 0x80000019);
lcfuse = I915_READ(LCFUSE02);
dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
}
void intel_init_gt_powersave(struct drm_device *dev)
{
i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
if (IS_CHERRYVIEW(dev))
cherryview_init_gt_powersave(dev);
else if (IS_VALLEYVIEW(dev))
valleyview_init_gt_powersave(dev);
}
void intel_cleanup_gt_powersave(struct drm_device *dev)
{
if (IS_CHERRYVIEW(dev))
return;
else if (IS_VALLEYVIEW(dev))
valleyview_cleanup_gt_powersave(dev);
}
/**
* intel_suspend_gt_powersave - suspend PM work and helper threads
* @dev: drm device
*
* We don't want to disable RC6 or other features here, we just want
* to make sure any work we've queued has finished and won't bother
* us while we're suspended.
*/
void intel_suspend_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Interrupts should be disabled already to avoid re-arming. */
WARN_ON(intel_irqs_enabled(dev_priv));
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
cancel_work_sync(&dev_priv->rps.work);
/* Force GPU to min freq during suspend */
gen6_rps_idle(dev_priv);
}
void intel_disable_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Interrupts should be disabled already to avoid re-arming. */
WARN_ON(intel_irqs_enabled(dev_priv));
if (IS_IRONLAKE_M(dev)) {
ironlake_disable_drps(dev);
ironlake_disable_rc6(dev);
} else if (INTEL_INFO(dev)->gen >= 6) {
intel_suspend_gt_powersave(dev);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_CHERRYVIEW(dev))
cherryview_disable_rps(dev);
else if (IS_VALLEYVIEW(dev))
valleyview_disable_rps(dev);
else
gen6_disable_rps(dev);
dev_priv->rps.enabled = false;
mutex_unlock(&dev_priv->rps.hw_lock);
}
}
static void intel_gen6_powersave_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private,
rps.delayed_resume_work.work);
struct drm_device *dev = dev_priv->dev;
dev_priv->rps.is_bdw_sw_turbo = false;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_CHERRYVIEW(dev)) {
cherryview_enable_rps(dev);
} else if (IS_VALLEYVIEW(dev)) {
valleyview_enable_rps(dev);
} else if (IS_BROADWELL(dev)) {
gen8_enable_rps(dev);
__gen6_update_ring_freq(dev);
} else {
gen6_enable_rps(dev);
__gen6_update_ring_freq(dev);
}
dev_priv->rps.enabled = true;
mutex_unlock(&dev_priv->rps.hw_lock);
intel_runtime_pm_put(dev_priv);
}
void intel_enable_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_IRONLAKE_M(dev)) {
mutex_lock(&dev->struct_mutex);
ironlake_enable_drps(dev);
ironlake_enable_rc6(dev);
intel_init_emon(dev);
mutex_unlock(&dev->struct_mutex);
} else if (INTEL_INFO(dev)->gen >= 6) {
/*
* PCU communication is slow and this doesn't need to be
* done at any specific time, so do this out of our fast path
* to make resume and init faster.
*
* We depend on the HW RC6 power context save/restore
* mechanism when entering D3 through runtime PM suspend. So
* disable RPM until RPS/RC6 is properly setup. We can only
* get here via the driver load/system resume/runtime resume
* paths, so the _noresume version is enough (and in case of
* runtime resume it's necessary).
*/
if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
round_jiffies_up_relative(HZ)))
intel_runtime_pm_get_noresume(dev_priv);
}
}
void intel_reset_gt_powersave(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->rps.enabled = false;
intel_enable_gt_powersave(dev);
}
static void ibx_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
for_each_pipe(dev_priv, pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_primary_plane(dev_priv, pipe);
}
}
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
}
static void ironlake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
drm/i915: Consolidate ILK_DSPCLK_GATE and PCH_DSPCLK_GATE Register 0x42020 was defined twice under the names PCH_DSPCLK_GATE_D and ILK_DSPCLK_GATE. This patch consolidate the 2 sets of defines in one. The transforms done are: PCH_DSPCLK_GATE_D -> ILK_DSPCLK_GATE_D ILK_DSPCLK_GATE -> ILK_DSPCLK_GATE_D DPARBUNIT_CLOCK_GATE_DISABLE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE ILK_DPARB_CLK_GATE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE DPFDUNIT_CLOCK_GATE_DISABLE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_DPFD_CLK_GATE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_CLK_FBC -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE DPFCRUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS1 -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE DPFCUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS2 -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE We have a VHRUNIT_CLOCK_GATE_DISABLE define for the pre-ILK DSPCLK_GATE_D. Even if the same bit is used in ILK_DSPCLK_GATE_D, other bits in the register change, so I went with re-defining it, well more precisely rename IVB_VRHUNIT_CLK_GATE, which is not specific to IVB+. So: IVB_VRHUNIT_CLK_GATE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE VHRUNIT_CLOCK_GATE_DISABLE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE (ILK+ code) This commit is only a renaming commit, further commits will clean up the logic. v2: Rename bit 5 and 7 to _ENABLE as setting them to 1 enables clock gating on their respective units, contrary to all of the other bits (Paulo Zanoni) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-10-20 00:55:41 +08:00
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
/*
* Required for FBC
* WaFbcDisableDpfcClockGating:ilk
*/
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
ilk_init_lp_watermarks(dev);
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev)) {
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
}
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(_3D_CHICKEN2,
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
_3D_CHICKEN2_WM_READ_PIPELINED);
/* WaDisableRenderCachePipelinedFlush:ilk */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:ilk */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
ibx_init_clock_gating(dev);
}
static void cpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t val;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
PCH_CPUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* The below fixes the weird display corruption, a few pixels shifted
* downward, on (only) LVDS of some HP laptops with IVY.
*/
for_each_pipe(dev_priv, pipe) {
val = I915_READ(TRANS_CHICKEN2(pipe));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
if (dev_priv->vbt.fdi_rx_polarity_inverted)
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
I915_WRITE(TRANS_CHICKEN2(pipe), val);
}
/* WADP0ClockGatingDisable */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(TRANS_CHICKEN1(pipe),
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
}
static void gen6_check_mch_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
tmp = I915_READ(MCH_SSKPD);
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
tmp);
}
static void gen6_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
drm/i915: Consolidate ILK_DSPCLK_GATE and PCH_DSPCLK_GATE Register 0x42020 was defined twice under the names PCH_DSPCLK_GATE_D and ILK_DSPCLK_GATE. This patch consolidate the 2 sets of defines in one. The transforms done are: PCH_DSPCLK_GATE_D -> ILK_DSPCLK_GATE_D ILK_DSPCLK_GATE -> ILK_DSPCLK_GATE_D DPARBUNIT_CLOCK_GATE_DISABLE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE ILK_DPARB_CLK_GATE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE DPFDUNIT_CLOCK_GATE_DISABLE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_DPFD_CLK_GATE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_CLK_FBC -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE DPFCRUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS1 -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE DPFCUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS2 -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE We have a VHRUNIT_CLOCK_GATE_DISABLE define for the pre-ILK DSPCLK_GATE_D. Even if the same bit is used in ILK_DSPCLK_GATE_D, other bits in the register change, so I went with re-defining it, well more precisely rename IVB_VRHUNIT_CLK_GATE, which is not specific to IVB+. So: IVB_VRHUNIT_CLK_GATE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE VHRUNIT_CLOCK_GATE_DISABLE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE (ILK+ code) This commit is only a renaming commit, further commits will clean up the logic. v2: Rename bit 5 and 7 to _ENABLE as setting them to 1 enables clock gating on their respective units, contrary to all of the other bits (Paulo Zanoni) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-10-20 00:55:41 +08:00
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
drm/i915: Consolidate ILK_DSPCLK_GATE and PCH_DSPCLK_GATE Register 0x42020 was defined twice under the names PCH_DSPCLK_GATE_D and ILK_DSPCLK_GATE. This patch consolidate the 2 sets of defines in one. The transforms done are: PCH_DSPCLK_GATE_D -> ILK_DSPCLK_GATE_D ILK_DSPCLK_GATE -> ILK_DSPCLK_GATE_D DPARBUNIT_CLOCK_GATE_DISABLE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE ILK_DPARB_CLK_GATE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE DPFDUNIT_CLOCK_GATE_DISABLE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_DPFD_CLK_GATE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_CLK_FBC -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE DPFCRUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS1 -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE DPFCUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS2 -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE We have a VHRUNIT_CLOCK_GATE_DISABLE define for the pre-ILK DSPCLK_GATE_D. Even if the same bit is used in ILK_DSPCLK_GATE_D, other bits in the register change, so I went with re-defining it, well more precisely rename IVB_VRHUNIT_CLK_GATE, which is not specific to IVB+. So: IVB_VRHUNIT_CLK_GATE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE VHRUNIT_CLOCK_GATE_DISABLE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE (ILK+ code) This commit is only a renaming commit, further commits will clean up the logic. v2: Rename bit 5 and 7 to _ENABLE as setting them to 1 enables clock gating on their respective units, contrary to all of the other bits (Paulo Zanoni) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-10-20 00:55:41 +08:00
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
I915_WRITE(_3D_CHICKEN,
_MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
/* WaSetupGtModeTdRowDispatch:snb */
if (IS_SNB_GT1(dev))
I915_WRITE(GEN6_GT_MODE,
_MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:snb */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/*
* BSpec recoomends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN6_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
ilk_init_lp_watermarks(dev);
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
I915_WRITE(GEN6_UCGCTL1,
I915_READ(GEN6_UCGCTL1) |
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*
* WaDisableRCCUnitClockGating:snb
* WaDisableRCPBUnitClockGating:snb
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/* WaStripsFansDisableFastClipPerformanceFix:snb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
/*
* Bspec says:
* "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
* 3DSTATE_SF number of SF output attributes is more than 16."
*/
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*
* WaFbcAsynchFlipDisableFbcQueue:snb
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
drm/i915: Consolidate ILK_DSPCLK_GATE and PCH_DSPCLK_GATE Register 0x42020 was defined twice under the names PCH_DSPCLK_GATE_D and ILK_DSPCLK_GATE. This patch consolidate the 2 sets of defines in one. The transforms done are: PCH_DSPCLK_GATE_D -> ILK_DSPCLK_GATE_D ILK_DSPCLK_GATE -> ILK_DSPCLK_GATE_D DPARBUNIT_CLOCK_GATE_DISABLE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE ILK_DPARB_CLK_GATE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE DPFDUNIT_CLOCK_GATE_DISABLE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_DPFD_CLK_GATE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_CLK_FBC -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE DPFCRUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS1 -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE DPFCUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS2 -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE We have a VHRUNIT_CLOCK_GATE_DISABLE define for the pre-ILK DSPCLK_GATE_D. Even if the same bit is used in ILK_DSPCLK_GATE_D, other bits in the register change, so I went with re-defining it, well more precisely rename IVB_VRHUNIT_CLK_GATE, which is not specific to IVB+. So: IVB_VRHUNIT_CLK_GATE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE VHRUNIT_CLOCK_GATE_DISABLE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE (ILK+ code) This commit is only a renaming commit, further commits will clean up the logic. v2: Rename bit 5 and 7 to _ENABLE as setting them to 1 enables clock gating on their respective units, contrary to all of the other bits (Paulo Zanoni) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-10-20 00:55:41 +08:00
I915_WRITE(ILK_DSPCLK_GATE_D,
I915_READ(ILK_DSPCLK_GATE_D) |
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
g4x_disable_trickle_feed(dev);
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
/*
* WaVSThreadDispatchOverride:ivb,vlv
*
* This actually overrides the dispatch
* mode for all thread types.
*/
reg &= ~GEN7_FF_SCHED_MASK;
reg |= GEN7_FF_TS_SCHED_HW;
reg |= GEN7_FF_VS_SCHED_HW;
reg |= GEN7_FF_DS_SCHED_HW;
I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}
static void lpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* TODO: this bit should only be enabled when really needed, then
* disabled when not needed anymore in order to save power.
*/
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
I915_WRITE(SOUTH_DSPCLK_GATE_D,
I915_READ(SOUTH_DSPCLK_GATE_D) |
PCH_LP_PARTITION_LEVEL_DISABLE);
/* WADPOClockGatingDisable:hsw */
I915_WRITE(_TRANSA_CHICKEN1,
I915_READ(_TRANSA_CHICKEN1) |
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
static void lpt_suspend_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
}
static void broadwell_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/* FIXME(BDW): Check all the w/a, some might only apply to
* pre-production hw. */
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
/* WaSwitchSolVfFArbitrationPriority:bdw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaPsrDPAMaskVBlankInSRD:bdw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(CHICKEN_PIPESL_1(pipe),
I915_READ(CHICKEN_PIPESL_1(pipe)) |
BDW_DPRS_MASK_VBLANK_SRD);
}
/* WaVSRefCountFullforceMissDisable:bdw */
/* WaDSRefCountFullforceMissDisable:bdw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableSDEUnitClockGating:bdw */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
lpt_init_clock_gating(dev);
}
static void haswell_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
ilk_init_lp_watermarks(dev);
/* L3 caching of data atomics doesn't work -- disable it. */
I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
I915_WRITE(HSW_ROW_CHICKEN3,
_MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
/* This is required by WaCatErrorRejectionIssue:hsw */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/* WaVSRefCountFullforceMissDisable:hsw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
/* WaDisable_RenderCache_OperationalFlush:hsw */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
/* WaDisable4x2SubspanOptimization:hsw */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
/* WaSwitchSolVfFArbitrationPriority:hsw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaRsPkgCStateDisplayPMReq:hsw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
lpt_init_clock_gating(dev);
}
static void ivybridge_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t snpcr;
ilk_init_lp_watermarks(dev);
drm/i915: Consolidate ILK_DSPCLK_GATE and PCH_DSPCLK_GATE Register 0x42020 was defined twice under the names PCH_DSPCLK_GATE_D and ILK_DSPCLK_GATE. This patch consolidate the 2 sets of defines in one. The transforms done are: PCH_DSPCLK_GATE_D -> ILK_DSPCLK_GATE_D ILK_DSPCLK_GATE -> ILK_DSPCLK_GATE_D DPARBUNIT_CLOCK_GATE_DISABLE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE ILK_DPARB_CLK_GATE -> ILK_DPARBUNIT_CLOCK_GATE_DISABLE DPFDUNIT_CLOCK_GATE_DISABLE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_DPFD_CLK_GATE -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE ILK_CLK_FBC -> ILK_DPFDUNIT_CLOCK_GATE_DISABLE DPFCRUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS1 -> ILK_DPFCRUNIT_CLOCK_GATE_DISABLE DPFCUNIT_CLOCK_GATE_DISABLE -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE ILK_DPFC_DIS2 -> ILK_DPFCUNIT_CLOCK_GATE_DISABLE We have a VHRUNIT_CLOCK_GATE_DISABLE define for the pre-ILK DSPCLK_GATE_D. Even if the same bit is used in ILK_DSPCLK_GATE_D, other bits in the register change, so I went with re-defining it, well more precisely rename IVB_VRHUNIT_CLK_GATE, which is not specific to IVB+. So: IVB_VRHUNIT_CLK_GATE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE VHRUNIT_CLOCK_GATE_DISABLE -> ILK_VHRUNIT_CLOCK_GATE_DISABLE (ILK+ code) This commit is only a renaming commit, further commits will clean up the logic. v2: Rename bit 5 and 7 to _ENABLE as setting them to 1 enables clock gating on their respective units, contrary to all of the other bits (Paulo Zanoni) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-10-20 00:55:41 +08:00
I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableEarlyCull:ivb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:ivb */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaDisablePSDDualDispatchEnable:ivb */
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:ivb */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
/* WaApplyL3ControlAndL3ChickenMode:ivb */
I915_WRITE(GEN7_L3CNTLREG1,
GEN7_WA_FOR_GEN7_L3_CONTROL);
I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
GEN7_WA_L3_CHICKEN_MODE);
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
else {
/* must write both registers */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
}
/* WaForceL3Serialization:ivb */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* This is required by WaCatErrorRejectionIssue:ivb */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
g4x_disable_trickle_feed(dev);
gen7_setup_fixed_func_scheduler(dev_priv);
if (0) { /* causes HiZ corruption on ivb:gt1 */
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
}
/* WaDisable4x2SubspanOptimization:ivb */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= GEN6_MBC_SNPCR_MED;
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
if (!HAS_PCH_NOP(dev))
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void valleyview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableEarlyCull:vlv */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:vlv */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaPsdDispatchEnable:vlv */
/* WaDisablePSDDualDispatchEnable:vlv */
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:vlv */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* WaForceL3Serialization:vlv */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/* WaDisableDopClockGating:vlv */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
/* This is required by WaCatErrorRejectionIssue:vlv */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
gen7_setup_fixed_func_scheduler(dev_priv);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* WaDisableL3Bank2xClockGate:vlv
* Disabling L3 clock gating- MMIO 940c[25] = 1
* Set bit 25, to disable L3_BANK_2x_CLK_GATING */
I915_WRITE(GEN7_UCGCTL4,
I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
/*
* BSpec says this must be set, even though
* WaDisable4x2SubspanOptimization isn't listed for VLV.
*/
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* WaIncreaseL3CreditsForVLVB0:vlv
* This is the hardware default actually.
*/
I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
/*
* WaDisableVLVClockGating_VBIIssue:vlv
* Disable clock gating on th GCFG unit to prevent a delay
* in the reporting of vblank events.
*/
I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
}
static void cherryview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
/* WaVSRefCountFullforceMissDisable:chv */
/* WaDSRefCountFullforceMissDisable:chv */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
/* WaDisableSemaphoreAndSyncFlipWait:chv */
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableCSUnitClockGating:chv */
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* WaDisableSDEUnitClockGating:chv */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaDisableGunitClockGating:chv (pre-production hw) */
I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
GINT_DIS);
/* WaDisableFfDopClockGating:chv (pre-production hw) */
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
/* WaDisableDopClockGating:chv (pre-production hw) */
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
/* WaDisableRenderCachePipelinedFlush */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:g4x */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
}
static void crestline_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void broadwater_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void gen3_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
if (IS_PINEVIEW(dev))
I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
/* IIR "flip pending" means done if this bit is set */
I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
/* interrupts should cause a wake up from C3 */
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i85x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
/* interrupts should cause a wake up from C3 */
I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
_MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i830_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
_MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
}
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->display.init_clock_gating(dev);
}
void intel_suspend_hw(struct drm_device *dev)
{
if (HAS_PCH_LPT(dev))
lpt_suspend_hw(dev);
}
#define for_each_power_well(i, power_well, domain_mask, power_domains) \
for (i = 0; \
i < (power_domains)->power_well_count && \
((power_well) = &(power_domains)->power_wells[i]); \
i++) \
if ((power_well)->domains & (domain_mask))
#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
for (i = (power_domains)->power_well_count - 1; \
i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
i--) \
if ((power_well)->domains & (domain_mask))
/**
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return I915_READ(HSW_PWR_WELL_DRIVER) ==
(HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
2013-11-28 04:02:02 +08:00
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
bool is_enabled;
int i;
if (dev_priv->pm.suspended)
return false;
2013-11-28 04:02:02 +08:00
power_domains = &dev_priv->power_domains;
is_enabled = true;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
if (power_well->always_on)
continue;
2013-11-28 04:02:02 +08:00
if (!power_well->hw_enabled) {
is_enabled = false;
break;
}
}
return is_enabled;
2013-11-28 04:02:02 +08:00
}
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = intel_display_power_enabled_unlocked(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
drm/i915: touch VGA MSR after we enable the power well Fixes regression introduced by: commit bf51d5e2cda5d36d98e4b46ac7fca9461e512c41 Author: Paulo Zanoni <paulo.r.zanoni at intel.com> Date: Wed Jul 3 17:12:13 2013 -0300 drm/i915: switch disable_power_well default value to 1 The bug I'm seeing can be reproduced with: - Have vgacon configured/enabled - Make sure the power well gets disabled, then enabled. You can check this by seeing the messages print by hsw_set_power_well - Stop your display manager - echo 0 > /sys/class/vtconsole/vtcon1/bind I can easily reproduce this by blacklising snd_hda_intel and booting with eDP+HDMI. If you do this and then look at dmesg, you'll see we're printing infinite "Unclaimed register" messages. This is happening because we're stuck on an infinite loop inside console_unlock(), which is calling many functions from vgacon.c. And the code that's triggering the error messages is from vgacon_set_cursor_size(). After we re-enable the power well, every time we read/write the VGA address 0x3d5 we get an "unclaimed register" interrupt (ERR_INT) and print error messages. If we write anything to the VGA MSR register (it doesn't really matter which value you write to bit 0), any reads/writes to 0x3d5 _don't_ trigger the "unclaimed register" errors anymore (even if MSR bit 0 is zero). So what happens with the current code is that when we unbind i915 and bind vgacon, we call console_unlock(). Function console_unlock() is responsible for printing any messages that were supposed to be print when the console was locked, so it calls the TTY layer, which calls the console layer, which calls vgacon to print the messages. At this point, vgacon eventually calls vgacon_set_cursor_size(), which touches 0x3d5, which triggers unclaimed register interrupts. The problem is that when we get these interrupts, we print the error messages, so we add more work to console_unlock(), which will try to print it again, and then call vgacon again, trigger a new interrupt, which will put more stuff to the buffer, and then we'll be stuck at console_unlock() forever. If you patch intel_uncore.c to not print anything when we detect unclaimed registers, we won't get into the console_unlock() infinite loop and the driver unbind will work just fine. We will still be getting interrupts every time vgacon touches those registers, but we will survive. This is a valid experiment, but IMHO it's not the real fix: if we don't print any error messages we will still keep getting the interrupts, and if we disable ERR_INT we won't get the interrupt anymore, but we will also stop getting all the other error interrupts. I talked about this problem with the HW engineer and his recommendation is "So don't do any VGA I/O or memory access while the power well is disabled, and make to re-program MSR after enabling the power well and before using VGA I/O or memory accesses.". Notice that this is just a partial fix to fd.o #67813. This fixes the case where the power well is already enabled when we unbind, not when it's disabled when we unbind. V2: - Rebase (first version was sent in September). V3: - Complete rewrite of the same fix: smaller implementation, improved commit message. Testcase: igt/drv_module_reload Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=67813 Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-12 04:50:10 +08:00
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
if (IS_BROADWELL(dev))
gen8_irq_power_well_post_enable(dev_priv);
}
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
bool is_enabled, enable_requested;
uint32_t tmp;
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
if (enable) {
if (!enable_requested)
I915_WRITE(HSW_PWR_WELL_DRIVER,
HSW_PWR_WELL_ENABLE_REQUEST);
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling power well\n");
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
HSW_PWR_WELL_STATE_ENABLED), 20))
DRM_ERROR("Timeout enabling power well\n");
}
hsw_power_well_post_enable(dev_priv);
} else {
if (enable_requested) {
I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Requesting to disable the power well\n");
}
}
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
/*
* We're taking over the BIOS, so clear any requests made by it since
* the driver is in charge now.
*/
if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, true);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, false);
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
enum punit_power_well power_well_id = power_well->data;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
PUNIT_PWRGT_PWR_GATE(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int power_well_id = power_well->data;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
state != PUNIT_PWRGT_PWR_GATE(power_well_id));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
WARN_ON(ctrl != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_set_power_well(dev_priv, power_well, true);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->power_domains.initializing)
return;
intel_hpd_init(dev_priv->dev);
i915_redisable_vga_power_on(dev_priv->dev);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
vlv_set_power_well(dev_priv, power_well, false);
vlv_power_sequencer_reset(dev_priv);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection.
*/
I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
vlv_set_power_well(dev_priv, power_well, false);
}
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection.
*/
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
phy = DPIO_PHY0;
I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
DPLL_REFA_CLK_ENABLE_VLV);
I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
} else {
phy = DPIO_PHY1;
I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
}
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
DRM_ERROR("Display PHY %d is not power up\n", phy);
I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
PHY_COM_LANE_RESET_DEASSERT(phy));
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
~PHY_COM_LANE_RESET_DEASSERT(phy));
vlv_set_power_well(dev_priv, power_well, false);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = power_well->data;
bool enabled;
u32 state, ctrl;
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
WARN_ON(ctrl << 16 != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = power_well->data;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A &&
power_well->data != PIPE_B &&
power_well->data != PIPE_C);
chv_set_pipe_power_well(dev_priv, power_well, true);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A &&
power_well->data != PIPE_B &&
power_well->data != PIPE_C);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
static void check_power_well_state(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
if (power_well->always_on || !i915.disable_power_well) {
if (!enabled)
goto mismatch;
return;
}
if (enabled != (power_well->count > 0))
goto mismatch;
return;
mismatch:
WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
power_well->name, power_well->always_on, enabled,
power_well->count, i915.disable_power_well);
}
void intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
intel_runtime_pm_get(dev_priv);
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, BIT(domain), power_domains) {
if (!power_well->count++) {
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
check_power_well_state(dev_priv, power_well);
}
2013-11-28 04:02:02 +08:00
power_domains->domain_use_count[domain]++;
mutex_unlock(&power_domains->lock);
}
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
WARN_ON(!power_domains->domain_use_count[domain]);
power_domains->domain_use_count[domain]--;
2013-11-28 04:02:02 +08:00
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
WARN_ON(!power_well->count);
if (!--power_well->count && i915.disable_power_well) {
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->hw_enabled = false;
power_well->ops->disable(dev_priv, power_well);
}
check_power_well_state(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
intel_runtime_pm_put(dev_priv);
}
static struct i915_power_domains *hsw_pwr;
/* Display audio driver power well request */
int i915_request_power_well(void)
{
struct drm_i915_private *dev_priv;
if (!hsw_pwr)
return -ENODEV;
dev_priv = container_of(hsw_pwr, struct drm_i915_private,
power_domains);
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
return 0;
}
EXPORT_SYMBOL_GPL(i915_request_power_well);
/* Display audio driver power well release */
int i915_release_power_well(void)
{
struct drm_i915_private *dev_priv;
if (!hsw_pwr)
return -ENODEV;
dev_priv = container_of(hsw_pwr, struct drm_i915_private,
power_domains);
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
return 0;
}
EXPORT_SYMBOL_GPL(i915_release_power_well);
/*
* Private interface for the audio driver to get CDCLK in kHz.
*
* Caller must request power well using i915_request_power_well() prior to
* making the call.
*/
int i915_get_cdclk_freq(void)
{
struct drm_i915_private *dev_priv;
if (!hsw_pwr)
return -ENODEV;
dev_priv = container_of(hsw_pwr, struct drm_i915_private,
power_domains);
return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
#define HSW_ALWAYS_ON_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define BDW_ALWAYS_ON_POWER_DOMAINS ( \
HSW_ALWAYS_ON_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_PIPE_A_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_PIPE_B_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_B) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_PIPE_C_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_C) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_always_on_power_well_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = chv_pipe_power_well_sync_hw,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = 1,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static struct i915_power_well hsw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static struct i915_power_well bdw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well vlv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DISP2D,
.ops = &vlv_display_power_well_ops,
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &vlv_dpio_cmn_power_well_ops,
},
};
static struct i915_power_well chv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
#if 0
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DISP2D,
.ops = &vlv_display_power_well_ops,
},
{
.name = "pipe-a",
.domains = CHV_PIPE_A_POWER_DOMAINS,
.data = PIPE_A,
.ops = &chv_pipe_power_well_ops,
},
{
.name = "pipe-b",
.domains = CHV_PIPE_B_POWER_DOMAINS,
.data = PIPE_B,
.ops = &chv_pipe_power_well_ops,
},
{
.name = "pipe-c",
.domains = CHV_PIPE_C_POWER_DOMAINS,
.data = PIPE_C,
.ops = &chv_pipe_power_well_ops,
},
#endif
{
.name = "dpio-common-bc",
/*
* XXX: cmnreset for one PHY seems to disturb the other.
* As a workaround keep both powered on at the same
* time for now.
*/
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &chv_dpio_cmn_power_well_ops,
},
{
.name = "dpio-common-d",
/*
* XXX: cmnreset for one PHY seems to disturb the other.
* As a workaround keep both powered on at the same
* time for now.
*/
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_D,
.ops = &chv_dpio_cmn_power_well_ops,
},
#if 0
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
},
{
.name = "dpio-tx-d-01",
.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
},
{
.name = "dpio-tx-d-23",
.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
},
#endif
};
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
enum punit_power_well power_well_id)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
if (power_well->data == power_well_id)
return power_well;
}
return NULL;
}
#define set_power_wells(power_domains, __power_wells) ({ \
(power_domains)->power_wells = (__power_wells); \
(power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
})
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_init(&power_domains->lock);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (IS_HASWELL(dev_priv->dev)) {
set_power_wells(power_domains, hsw_power_wells);
hsw_pwr = power_domains;
} else if (IS_BROADWELL(dev_priv->dev)) {
set_power_wells(power_domains, bdw_power_wells);
hsw_pwr = power_domains;
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, chv_power_wells);
} else if (IS_VALLEYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, vlv_power_wells);
} else {
set_power_wells(power_domains, i9xx_always_on_power_well);
}
return 0;
}
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
{
hsw_pwr = NULL;
}
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
power_well->ops->sync_hw(dev_priv, power_well);
power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
power_well);
}
mutex_unlock(&power_domains->lock);
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
/* nothing to do if common lane is already off */
if (!cmn->ops->is_enabled(dev_priv, cmn))
return;
/* If the display might be already active skip this */
if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
I915_READ(DPIO_CTL) & DPIO_CMNRST)
return;
DRM_DEBUG_KMS("toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
disp2d->ops->enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
cmn->ops->disable(dev_priv, cmn);
}
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
power_domains->initializing = true;
if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(dev_priv);
mutex_unlock(&power_domains->lock);
}
/* For now, we need the power well to be always enabled. */
intel_display_set_init_power(dev_priv, true);
intel_power_domains_resume(dev_priv);
power_domains->initializing = false;
}
drm/i915: allow package C8+ states on Haswell (disabled) This patch allows PC8+ states on Haswell. These states can only be reached when all the display outputs are disabled, and they allow some more power savings. The fact that the graphics device is allowing PC8+ doesn't mean that the machine will actually enter PC8+: all the other devices also need to allow PC8+. For now this option is disabled by default. You need i915.allow_pc8=1 if you want it. This patch adds a big comment inside i915_drv.h explaining how it works and how it tracks things. Read it. v2: (this is not really v2, many previous versions were already sent, but they had different names) - Use the new functions to enable/disable GTIMR and GEN6_PMIMR - Rename almost all variables and functions to names suggested by Chris - More WARNs on the IRQ handling code - Also disable PC8 when there's GPU work to do (thanks to Ben for the help on this), so apps can run caster - Enable PC8 on a delayed work function that is delayed for 5 seconds. This makes sure we only enable PC8+ if we're really idle - Make sure we're not in PC8+ when suspending v3: - WARN if IRQs are disabled on __wait_seqno - Replace some DRM_ERRORs with WARNs - Fix calls to restore GT and PM interrupts - Use intel_mark_busy instead of intel_ring_advance to disable PC8 v4: - Use the force_wake, Luke! v5: - Remove the "IIR is not zero" WARNs - Move the force_wake chunk to its own patch - Only restore what's missing from RC6, not everything Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-20 00:18:09 +08:00
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_get(dev_priv);
drm/i915: allow package C8+ states on Haswell (disabled) This patch allows PC8+ states on Haswell. These states can only be reached when all the display outputs are disabled, and they allow some more power savings. The fact that the graphics device is allowing PC8+ doesn't mean that the machine will actually enter PC8+: all the other devices also need to allow PC8+. For now this option is disabled by default. You need i915.allow_pc8=1 if you want it. This patch adds a big comment inside i915_drv.h explaining how it works and how it tracks things. Read it. v2: (this is not really v2, many previous versions were already sent, but they had different names) - Use the new functions to enable/disable GTIMR and GEN6_PMIMR - Rename almost all variables and functions to names suggested by Chris - More WARNs on the IRQ handling code - Also disable PC8 when there's GPU work to do (thanks to Ben for the help on this), so apps can run caster - Enable PC8 on a delayed work function that is delayed for 5 seconds. This makes sure we only enable PC8+ if we're really idle - Make sure we're not in PC8+ when suspending v3: - WARN if IRQs are disabled on __wait_seqno - Replace some DRM_ERRORs with WARNs - Fix calls to restore GT and PM interrupts - Use intel_mark_busy instead of intel_ring_advance to disable PC8 v4: - Use the force_wake, Luke! v5: - Remove the "IIR is not zero" WARNs - Move the force_wake chunk to its own patch - Only restore what's missing from RC6, not everything Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-20 00:18:09 +08:00
}
void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_put(dev_priv);
drm/i915: allow package C8+ states on Haswell (disabled) This patch allows PC8+ states on Haswell. These states can only be reached when all the display outputs are disabled, and they allow some more power savings. The fact that the graphics device is allowing PC8+ doesn't mean that the machine will actually enter PC8+: all the other devices also need to allow PC8+. For now this option is disabled by default. You need i915.allow_pc8=1 if you want it. This patch adds a big comment inside i915_drv.h explaining how it works and how it tracks things. Read it. v2: (this is not really v2, many previous versions were already sent, but they had different names) - Use the new functions to enable/disable GTIMR and GEN6_PMIMR - Rename almost all variables and functions to names suggested by Chris - More WARNs on the IRQ handling code - Also disable PC8 when there's GPU work to do (thanks to Ben for the help on this), so apps can run caster - Enable PC8 on a delayed work function that is delayed for 5 seconds. This makes sure we only enable PC8+ if we're really idle - Make sure we're not in PC8+ when suspending v3: - WARN if IRQs are disabled on __wait_seqno - Replace some DRM_ERRORs with WARNs - Fix calls to restore GT and PM interrupts - Use intel_mark_busy instead of intel_ring_advance to disable PC8 v4: - Use the force_wake, Luke! v5: - Remove the "IIR is not zero" WARNs - Move the force_wake chunk to its own patch - Only restore what's missing from RC6, not everything Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-20 00:18:09 +08:00
}
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_get_sync(device);
WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
pm_runtime_get_noresume(device);
}
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_mark_last_busy(device);
pm_runtime_put_autosuspend(device);
}
void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_set_active(device);
/*
* RPM depends on RC6 to save restore the GT HW context, so make RC6 a
* requirement.
*/
if (!intel_enable_rc6(dev)) {
DRM_INFO("RC6 disabled, disabling runtime PM support\n");
return;
}
pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
pm_runtime_mark_last_busy(device);
pm_runtime_use_autosuspend(device);
pm_runtime_put_autosuspend(device);
}
void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
if (!intel_enable_rc6(dev))
return;
/* Make sure we're not suspended first. */
pm_runtime_get_sync(device);
pm_runtime_disable(device);
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_FBC(dev)) {
if (INTEL_INFO(dev)->gen >= 7) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = gen7_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (INTEL_INFO(dev)->gen >= 5) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = ironlake_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (IS_GM45(dev)) {
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
dev_priv->display.enable_fbc = g4x_enable_fbc;
dev_priv->display.disable_fbc = g4x_disable_fbc;
} else {
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
dev_priv->display.enable_fbc = i8xx_enable_fbc;
dev_priv->display.disable_fbc = i8xx_disable_fbc;
/* This value was pulled out of someone's hat */
I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
}
}
/* For cxsr */
if (IS_PINEVIEW(dev))
i915_pineview_get_mem_freq(dev);
else if (IS_GEN5(dev))
i915_ironlake_get_mem_freq(dev);
/* For FIFO watermark updates */
if (HAS_PCH_SPLIT(dev)) {
ilk_setup_wm_latency(dev);
if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.update_wm = ilk_update_wm;
dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
}
if (IS_GEN5(dev))
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
else if (IS_GEN6(dev))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_IVYBRIDGE(dev))
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
else if (IS_HASWELL(dev))
dev_priv->display.init_clock_gating = haswell_init_clock_gating;
else if (INTEL_INFO(dev)->gen == 8)
dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
} else if (IS_CHERRYVIEW(dev)) {
dev_priv->display.update_wm = cherryview_update_wm;
dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
dev_priv->display.init_clock_gating =
cherryview_init_clock_gating;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.update_wm = valleyview_update_wm;
dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
dev_priv->display.init_clock_gating =
valleyview_init_clock_gating;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
DRM_INFO("failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
intel_set_memory_cxsr(dev_priv, false);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_G4X(dev)) {
dev_priv->display.update_wm = g4x_update_wm;
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
if (IS_CRESTLINE(dev))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_GEN2(dev)) {
if (INTEL_INFO(dev)->num_pipes == 1) {
dev_priv->display.update_wm = i845_update_wm;
dev_priv->display.get_fifo_size = i845_get_fifo_size;
} else {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
if (IS_I85X(dev) || IS_I865G(dev))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else
dev_priv->display.init_clock_gating = i830_init_clock_gating;
} else {
DRM_ERROR("unexpected fall-through in intel_init_pm\n");
}
}
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE(GEN6_PCODE_DATA, *val);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500)) {
DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
*val = I915_READ(GEN6_PCODE_DATA);
I915_WRITE(GEN6_PCODE_DATA, 0);
return 0;
}
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE(GEN6_PCODE_DATA, val);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500)) {
DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
I915_WRITE(GEN6_PCODE_DATA, 0);
return 0;
}
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
int div;
/* 4 x czclk */
switch (dev_priv->mem_freq) {
case 800:
div = 10;
break;
case 1066:
div = 12;
break;
case 1333:
div = 16;
break;
default:
return -1;
}
return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
}
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
int mul;
/* 4 x czclk */
switch (dev_priv->mem_freq) {
case 800:
mul = 10;
break;
case 1066:
mul = 12;
break;
case 1333:
mul = 16;
break;
default:
return -1;
}
return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
}
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
int div, freq;
switch (dev_priv->rps.cz_freq) {
case 200:
div = 5;
break;
case 267:
div = 6;
break;
case 320:
case 333:
case 400:
div = 8;
break;
default:
return -1;
}
freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
return freq;
}
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
int mul, opcode;
switch (dev_priv->rps.cz_freq) {
case 200:
mul = 5;
break;
case 267:
mul = 6;
break;
case 320:
case 333:
case 400:
mul = 8;
break;
default:
return -1;
}
/* CHV needs even values */
opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
return opcode;
}
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
int ret = -1;
if (IS_CHERRYVIEW(dev_priv->dev))
ret = chv_gpu_freq(dev_priv, val);
else if (IS_VALLEYVIEW(dev_priv->dev))
ret = byt_gpu_freq(dev_priv, val);
return ret;
}
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
int ret = -1;
if (IS_CHERRYVIEW(dev_priv->dev))
ret = chv_freq_opcode(dev_priv, val);
else if (IS_VALLEYVIEW(dev_priv->dev))
ret = byt_freq_opcode(dev_priv, val);
return ret;
}
void intel_pm_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_init(&dev_priv->rps.hw_lock);
INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
intel_gen6_powersave_work);
dev_priv->pm.suspended = false;
dev_priv->pm._irqs_disabled = false;
}