OpenCloudOS-Kernel/drivers/isdn/hisax/isdnl1.c

931 lines
20 KiB
C
Raw Normal View History

/* $Id: isdnl1.c,v 2.46.2.5 2004/02/11 13:21:34 keil Exp $
*
* common low level stuff for Siemens Chipsetbased isdn cards
*
* Author Karsten Keil
* based on the teles driver from Jan den Ouden
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
* Thanks to Jan den Ouden
* Fritz Elfert
* Beat Doebeli
*
*/
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include "hisax.h"
#include "isdnl1.h"
const char *l1_revision = "$Revision: 2.46.2.5 $";
#define TIMER3_VALUE 7000
static struct Fsm l1fsm_b;
static struct Fsm l1fsm_s;
enum {
ST_L1_F2,
ST_L1_F3,
ST_L1_F4,
ST_L1_F5,
ST_L1_F6,
ST_L1_F7,
ST_L1_F8,
};
#define L1S_STATE_COUNT (ST_L1_F8 + 1)
static char *strL1SState[] =
{
"ST_L1_F2",
"ST_L1_F3",
"ST_L1_F4",
"ST_L1_F5",
"ST_L1_F6",
"ST_L1_F7",
"ST_L1_F8",
};
#ifdef HISAX_UINTERFACE
static
struct Fsm l1fsm_u =
{NULL, 0, 0, NULL, NULL};
enum {
ST_L1_RESET,
ST_L1_DEACT,
ST_L1_SYNC2,
ST_L1_TRANS,
};
#define L1U_STATE_COUNT (ST_L1_TRANS + 1)
static char *strL1UState[] =
{
"ST_L1_RESET",
"ST_L1_DEACT",
"ST_L1_SYNC2",
"ST_L1_TRANS",
};
#endif
enum {
ST_L1_NULL,
ST_L1_WAIT_ACT,
ST_L1_WAIT_DEACT,
ST_L1_ACTIV,
};
#define L1B_STATE_COUNT (ST_L1_ACTIV + 1)
static char *strL1BState[] =
{
"ST_L1_NULL",
"ST_L1_WAIT_ACT",
"ST_L1_WAIT_DEACT",
"ST_L1_ACTIV",
};
enum {
EV_PH_ACTIVATE,
EV_PH_DEACTIVATE,
EV_RESET_IND,
EV_DEACT_CNF,
EV_DEACT_IND,
EV_POWER_UP,
EV_RSYNC_IND,
EV_INFO2_IND,
EV_INFO4_IND,
EV_TIMER_DEACT,
EV_TIMER_ACT,
EV_TIMER3,
};
#define L1_EVENT_COUNT (EV_TIMER3 + 1)
static char *strL1Event[] =
{
"EV_PH_ACTIVATE",
"EV_PH_DEACTIVATE",
"EV_RESET_IND",
"EV_DEACT_CNF",
"EV_DEACT_IND",
"EV_POWER_UP",
"EV_RSYNC_IND",
"EV_INFO2_IND",
"EV_INFO4_IND",
"EV_TIMER_DEACT",
"EV_TIMER_ACT",
"EV_TIMER3",
};
void
debugl1(struct IsdnCardState *cs, char *fmt, ...)
{
va_list args;
char tmp[8];
va_start(args, fmt);
sprintf(tmp, "Card%d ", cs->cardnr + 1);
VHiSax_putstatus(cs, tmp, fmt, args);
va_end(args);
}
static void
l1m_debug(struct FsmInst *fi, char *fmt, ...)
{
va_list args;
struct PStack *st = fi->userdata;
struct IsdnCardState *cs = st->l1.hardware;
char tmp[8];
va_start(args, fmt);
sprintf(tmp, "Card%d ", cs->cardnr + 1);
VHiSax_putstatus(cs, tmp, fmt, args);
va_end(args);
}
static void
L1activated(struct IsdnCardState *cs)
{
struct PStack *st;
st = cs->stlist;
while (st) {
if (test_and_clear_bit(FLG_L1_ACTIVATING, &st->l1.Flags))
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
else
st->l1.l1l2(st, PH_ACTIVATE | INDICATION, NULL);
st = st->next;
}
}
static void
L1deactivated(struct IsdnCardState *cs)
{
struct PStack *st;
st = cs->stlist;
while (st) {
if (test_bit(FLG_L1_DBUSY, &cs->HW_Flags))
st->l1.l1l2(st, PH_PAUSE | CONFIRM, NULL);
st->l1.l1l2(st, PH_DEACTIVATE | INDICATION, NULL);
st = st->next;
}
test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags);
}
void
DChannel_proc_xmt(struct IsdnCardState *cs)
{
struct PStack *stptr;
if (cs->tx_skb)
return;
stptr = cs->stlist;
while (stptr != NULL) {
if (test_and_clear_bit(FLG_L1_PULL_REQ, &stptr->l1.Flags)) {
stptr->l1.l1l2(stptr, PH_PULL | CONFIRM, NULL);
break;
} else
stptr = stptr->next;
}
}
void
DChannel_proc_rcv(struct IsdnCardState *cs)
{
struct sk_buff *skb, *nskb;
struct PStack *stptr = cs->stlist;
int found, tei, sapi;
if (stptr)
if (test_bit(FLG_L1_ACTTIMER, &stptr->l1.Flags))
FsmEvent(&stptr->l1.l1m, EV_TIMER_ACT, NULL);
while ((skb = skb_dequeue(&cs->rq))) {
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 1);
#endif
stptr = cs->stlist;
if (skb->len < 3) {
debugl1(cs, "D-channel frame too short(%d)", skb->len);
dev_kfree_skb(skb);
return;
}
if ((skb->data[0] & 1) || !(skb->data[1] & 1)) {
debugl1(cs, "D-channel frame wrong EA0/EA1");
dev_kfree_skb(skb);
return;
}
sapi = skb->data[0] >> 2;
tei = skb->data[1] >> 1;
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 1);
if (tei == GROUP_TEI) {
if (sapi == CTRL_SAPI) { /* sapi 0 */
while (stptr != NULL) {
if ((nskb = skb_clone(skb, GFP_ATOMIC)))
stptr->l1.l1l2(stptr, PH_DATA | INDICATION, nskb);
else
printk(KERN_WARNING "HiSax: isdn broadcast buffer shortage\n");
stptr = stptr->next;
}
} else if (sapi == TEI_SAPI) {
while (stptr != NULL) {
if ((nskb = skb_clone(skb, GFP_ATOMIC)))
stptr->l1.l1tei(stptr, PH_DATA | INDICATION, nskb);
else
printk(KERN_WARNING "HiSax: tei broadcast buffer shortage\n");
stptr = stptr->next;
}
}
dev_kfree_skb(skb);
} else if (sapi == CTRL_SAPI) { /* sapi 0 */
found = 0;
while (stptr != NULL)
if (tei == stptr->l2.tei) {
stptr->l1.l1l2(stptr, PH_DATA | INDICATION, skb);
found = !0;
break;
} else
stptr = stptr->next;
if (!found)
dev_kfree_skb(skb);
} else
dev_kfree_skb(skb);
}
}
static void
BChannel_proc_xmt(struct BCState *bcs)
{
struct PStack *st = bcs->st;
if (test_bit(BC_FLG_BUSY, &bcs->Flag)) {
debugl1(bcs->cs, "BC_BUSY Error");
return;
}
if (test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags))
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
if (!test_bit(BC_FLG_ACTIV, &bcs->Flag)) {
if (!test_bit(BC_FLG_BUSY, &bcs->Flag) &&
skb_queue_empty(&bcs->squeue)) {
st->l2.l2l1(st, PH_DEACTIVATE | CONFIRM, NULL);
}
}
}
static void
BChannel_proc_rcv(struct BCState *bcs)
{
struct sk_buff *skb;
if (bcs->st->l1.l1m.state == ST_L1_WAIT_ACT) {
FsmDelTimer(&bcs->st->l1.timer, 4);
FsmEvent(&bcs->st->l1.l1m, EV_TIMER_ACT, NULL);
}
while ((skb = skb_dequeue(&bcs->rqueue))) {
bcs->st->l1.l1l2(bcs->st, PH_DATA | INDICATION, skb);
}
}
static void
BChannel_proc_ack(struct BCState *bcs)
{
u_long flags;
int ack;
spin_lock_irqsave(&bcs->aclock, flags);
ack = bcs->ackcnt;
bcs->ackcnt = 0;
spin_unlock_irqrestore(&bcs->aclock, flags);
if (ack)
lli_writewakeup(bcs->st, ack);
}
void
BChannel_bh(struct work_struct *work)
{
struct BCState *bcs = container_of(work, struct BCState, tqueue);
if (!bcs)
return;
if (test_and_clear_bit(B_RCVBUFREADY, &bcs->event))
BChannel_proc_rcv(bcs);
if (test_and_clear_bit(B_XMTBUFREADY, &bcs->event))
BChannel_proc_xmt(bcs);
if (test_and_clear_bit(B_ACKPENDING, &bcs->event))
BChannel_proc_ack(bcs);
}
void
HiSax_addlist(struct IsdnCardState *cs,
struct PStack *st)
{
st->next = cs->stlist;
cs->stlist = st;
}
void
HiSax_rmlist(struct IsdnCardState *cs,
struct PStack *st)
{
struct PStack *p;
FsmDelTimer(&st->l1.timer, 0);
if (cs->stlist == st)
cs->stlist = st->next;
else {
p = cs->stlist;
while (p)
if (p->next == st) {
p->next = st->next;
return;
} else
p = p->next;
}
}
void
init_bcstate(struct IsdnCardState *cs, int bc)
{
struct BCState *bcs = cs->bcs + bc;
bcs->cs = cs;
bcs->channel = bc;
INIT_WORK(&bcs->tqueue, BChannel_bh);
spin_lock_init(&bcs->aclock);
bcs->BC_SetStack = NULL;
bcs->BC_Close = NULL;
bcs->Flag = 0;
}
#ifdef L2FRAME_DEBUG /* psa */
static char *
l2cmd(u_char cmd)
{
switch (cmd & ~0x10) {
case 1:
return "RR";
case 5:
return "RNR";
case 9:
return "REJ";
case 0x6f:
return "SABME";
case 0x0f:
return "DM";
case 3:
return "UI";
case 0x43:
return "DISC";
case 0x63:
return "UA";
case 0x87:
return "FRMR";
case 0xaf:
return "XID";
default:
if (!(cmd & 1))
return "I";
else
return "invalid command";
}
}
static char tmpdeb[32];
static char *
l2frames(u_char *ptr)
{
switch (ptr[2] & ~0x10) {
case 1:
case 5:
case 9:
sprintf(tmpdeb, "%s[%d](nr %d)", l2cmd(ptr[2]), ptr[3] & 1, ptr[3] >> 1);
break;
case 0x6f:
case 0x0f:
case 3:
case 0x43:
case 0x63:
case 0x87:
case 0xaf:
sprintf(tmpdeb, "%s[%d]", l2cmd(ptr[2]), (ptr[2] & 0x10) >> 4);
break;
default:
if (!(ptr[2] & 1)) {
sprintf(tmpdeb, "I[%d](ns %d, nr %d)", ptr[3] & 1, ptr[2] >> 1, ptr[3] >> 1);
break;
} else
return "invalid command";
}
return tmpdeb;
}
void
Logl2Frame(struct IsdnCardState *cs, struct sk_buff *skb, char *buf, int dir)
{
u_char *ptr;
ptr = skb->data;
if (ptr[0] & 1 || !(ptr[1] & 1))
debugl1(cs, "Address not LAPD");
else
debugl1(cs, "%s %s: %s%c (sapi %d, tei %d)",
(dir ? "<-" : "->"), buf, l2frames(ptr),
((ptr[0] & 2) >> 1) == dir ? 'C' : 'R', ptr[0] >> 2, ptr[1] >> 1);
}
#endif
static void
l1_reset(struct FsmInst *fi, int event, void *arg)
{
FsmChangeState(fi, ST_L1_F3);
}
static void
l1_deact_cnf(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_F3);
if (test_bit(FLG_L1_ACTIVATING, &st->l1.Flags))
st->l1.l1hw(st, HW_ENABLE | REQUEST, NULL);
}
static void
l1_deact_req_s(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_F3);
FsmRestartTimer(&st->l1.timer, 550, EV_TIMER_DEACT, NULL, 2);
test_and_set_bit(FLG_L1_DEACTTIMER, &st->l1.Flags);
}
static void
l1_power_up_s(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
if (test_bit(FLG_L1_ACTIVATING, &st->l1.Flags)) {
FsmChangeState(fi, ST_L1_F4);
st->l1.l1hw(st, HW_INFO3 | REQUEST, NULL);
FsmRestartTimer(&st->l1.timer, TIMER3_VALUE, EV_TIMER3, NULL, 2);
test_and_set_bit(FLG_L1_T3RUN, &st->l1.Flags);
} else
FsmChangeState(fi, ST_L1_F3);
}
static void
l1_go_F5(struct FsmInst *fi, int event, void *arg)
{
FsmChangeState(fi, ST_L1_F5);
}
static void
l1_go_F8(struct FsmInst *fi, int event, void *arg)
{
FsmChangeState(fi, ST_L1_F8);
}
static void
l1_info2_ind(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
#ifdef HISAX_UINTERFACE
if (test_bit(FLG_L1_UINT, &st->l1.Flags))
FsmChangeState(fi, ST_L1_SYNC2);
else
#endif
FsmChangeState(fi, ST_L1_F6);
st->l1.l1hw(st, HW_INFO3 | REQUEST, NULL);
}
static void
l1_info4_ind(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
#ifdef HISAX_UINTERFACE
if (test_bit(FLG_L1_UINT, &st->l1.Flags))
FsmChangeState(fi, ST_L1_TRANS);
else
#endif
FsmChangeState(fi, ST_L1_F7);
st->l1.l1hw(st, HW_INFO3 | REQUEST, NULL);
if (test_and_clear_bit(FLG_L1_DEACTTIMER, &st->l1.Flags))
FsmDelTimer(&st->l1.timer, 4);
if (!test_bit(FLG_L1_ACTIVATED, &st->l1.Flags)) {
if (test_and_clear_bit(FLG_L1_T3RUN, &st->l1.Flags))
FsmDelTimer(&st->l1.timer, 3);
FsmRestartTimer(&st->l1.timer, 110, EV_TIMER_ACT, NULL, 2);
test_and_set_bit(FLG_L1_ACTTIMER, &st->l1.Flags);
}
}
static void
l1_timer3(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
test_and_clear_bit(FLG_L1_T3RUN, &st->l1.Flags);
if (test_and_clear_bit(FLG_L1_ACTIVATING, &st->l1.Flags))
L1deactivated(st->l1.hardware);
#ifdef HISAX_UINTERFACE
if (!test_bit(FLG_L1_UINT, &st->l1.Flags))
#endif
if (st->l1.l1m.state != ST_L1_F6) {
FsmChangeState(fi, ST_L1_F3);
st->l1.l1hw(st, HW_ENABLE | REQUEST, NULL);
}
}
static void
l1_timer_act(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
test_and_clear_bit(FLG_L1_ACTTIMER, &st->l1.Flags);
test_and_set_bit(FLG_L1_ACTIVATED, &st->l1.Flags);
L1activated(st->l1.hardware);
}
static void
l1_timer_deact(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
test_and_clear_bit(FLG_L1_DEACTTIMER, &st->l1.Flags);
test_and_clear_bit(FLG_L1_ACTIVATED, &st->l1.Flags);
L1deactivated(st->l1.hardware);
st->l1.l1hw(st, HW_DEACTIVATE | RESPONSE, NULL);
}
static void
l1_activate_s(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
st->l1.l1hw(st, HW_RESET | REQUEST, NULL);
}
static void
l1_activate_no(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
if ((!test_bit(FLG_L1_DEACTTIMER, &st->l1.Flags)) && (!test_bit(FLG_L1_T3RUN, &st->l1.Flags))) {
test_and_clear_bit(FLG_L1_ACTIVATING, &st->l1.Flags);
L1deactivated(st->l1.hardware);
}
}
static struct FsmNode L1SFnList[] __initdata =
{
{ST_L1_F3, EV_PH_ACTIVATE, l1_activate_s},
{ST_L1_F6, EV_PH_ACTIVATE, l1_activate_no},
{ST_L1_F8, EV_PH_ACTIVATE, l1_activate_no},
{ST_L1_F3, EV_RESET_IND, l1_reset},
{ST_L1_F4, EV_RESET_IND, l1_reset},
{ST_L1_F5, EV_RESET_IND, l1_reset},
{ST_L1_F6, EV_RESET_IND, l1_reset},
{ST_L1_F7, EV_RESET_IND, l1_reset},
{ST_L1_F8, EV_RESET_IND, l1_reset},
{ST_L1_F3, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F4, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F5, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F6, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F7, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F8, EV_DEACT_CNF, l1_deact_cnf},
{ST_L1_F6, EV_DEACT_IND, l1_deact_req_s},
{ST_L1_F7, EV_DEACT_IND, l1_deact_req_s},
{ST_L1_F8, EV_DEACT_IND, l1_deact_req_s},
{ST_L1_F3, EV_POWER_UP, l1_power_up_s},
{ST_L1_F4, EV_RSYNC_IND, l1_go_F5},
{ST_L1_F6, EV_RSYNC_IND, l1_go_F8},
{ST_L1_F7, EV_RSYNC_IND, l1_go_F8},
{ST_L1_F3, EV_INFO2_IND, l1_info2_ind},
{ST_L1_F4, EV_INFO2_IND, l1_info2_ind},
{ST_L1_F5, EV_INFO2_IND, l1_info2_ind},
{ST_L1_F7, EV_INFO2_IND, l1_info2_ind},
{ST_L1_F8, EV_INFO2_IND, l1_info2_ind},
{ST_L1_F3, EV_INFO4_IND, l1_info4_ind},
{ST_L1_F4, EV_INFO4_IND, l1_info4_ind},
{ST_L1_F5, EV_INFO4_IND, l1_info4_ind},
{ST_L1_F6, EV_INFO4_IND, l1_info4_ind},
{ST_L1_F8, EV_INFO4_IND, l1_info4_ind},
{ST_L1_F3, EV_TIMER3, l1_timer3},
{ST_L1_F4, EV_TIMER3, l1_timer3},
{ST_L1_F5, EV_TIMER3, l1_timer3},
{ST_L1_F6, EV_TIMER3, l1_timer3},
{ST_L1_F8, EV_TIMER3, l1_timer3},
{ST_L1_F7, EV_TIMER_ACT, l1_timer_act},
{ST_L1_F3, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_F4, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_F5, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_F6, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_F7, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_F8, EV_TIMER_DEACT, l1_timer_deact},
};
#ifdef HISAX_UINTERFACE
static void
l1_deact_req_u(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_RESET);
FsmRestartTimer(&st->l1.timer, 550, EV_TIMER_DEACT, NULL, 2);
test_and_set_bit(FLG_L1_DEACTTIMER, &st->l1.Flags);
st->l1.l1hw(st, HW_ENABLE | REQUEST, NULL);
}
static void
l1_power_up_u(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmRestartTimer(&st->l1.timer, TIMER3_VALUE, EV_TIMER3, NULL, 2);
test_and_set_bit(FLG_L1_T3RUN, &st->l1.Flags);
}
static void
l1_info0_ind(struct FsmInst *fi, int event, void *arg)
{
FsmChangeState(fi, ST_L1_DEACT);
}
static void
l1_activate_u(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
st->l1.l1hw(st, HW_INFO1 | REQUEST, NULL);
}
static struct FsmNode L1UFnList[] __initdata =
{
{ST_L1_RESET, EV_DEACT_IND, l1_deact_req_u},
{ST_L1_DEACT, EV_DEACT_IND, l1_deact_req_u},
{ST_L1_SYNC2, EV_DEACT_IND, l1_deact_req_u},
{ST_L1_TRANS, EV_DEACT_IND, l1_deact_req_u},
{ST_L1_DEACT, EV_PH_ACTIVATE, l1_activate_u},
{ST_L1_DEACT, EV_POWER_UP, l1_power_up_u},
{ST_L1_DEACT, EV_INFO2_IND, l1_info2_ind},
{ST_L1_TRANS, EV_INFO2_IND, l1_info2_ind},
{ST_L1_RESET, EV_DEACT_CNF, l1_info0_ind},
{ST_L1_DEACT, EV_INFO4_IND, l1_info4_ind},
{ST_L1_SYNC2, EV_INFO4_IND, l1_info4_ind},
{ST_L1_RESET, EV_INFO4_IND, l1_info4_ind},
{ST_L1_DEACT, EV_TIMER3, l1_timer3},
{ST_L1_SYNC2, EV_TIMER3, l1_timer3},
{ST_L1_TRANS, EV_TIMER_ACT, l1_timer_act},
{ST_L1_DEACT, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_SYNC2, EV_TIMER_DEACT, l1_timer_deact},
{ST_L1_RESET, EV_TIMER_DEACT, l1_timer_deact},
};
#endif
static void
l1b_activate(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_WAIT_ACT);
FsmRestartTimer(&st->l1.timer, st->l1.delay, EV_TIMER_ACT, NULL, 2);
}
static void
l1b_deactivate(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_WAIT_DEACT);
FsmRestartTimer(&st->l1.timer, 10, EV_TIMER_DEACT, NULL, 2);
}
static void
l1b_timer_act(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_ACTIV);
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
}
static void
l1b_timer_deact(struct FsmInst *fi, int event, void *arg)
{
struct PStack *st = fi->userdata;
FsmChangeState(fi, ST_L1_NULL);
st->l2.l2l1(st, PH_DEACTIVATE | CONFIRM, NULL);
}
static struct FsmNode L1BFnList[] __initdata =
{
{ST_L1_NULL, EV_PH_ACTIVATE, l1b_activate},
{ST_L1_WAIT_ACT, EV_TIMER_ACT, l1b_timer_act},
{ST_L1_ACTIV, EV_PH_DEACTIVATE, l1b_deactivate},
{ST_L1_WAIT_DEACT, EV_TIMER_DEACT, l1b_timer_deact},
};
int __init
Isdnl1New(void)
{
int retval;
l1fsm_s.state_count = L1S_STATE_COUNT;
l1fsm_s.event_count = L1_EVENT_COUNT;
l1fsm_s.strEvent = strL1Event;
l1fsm_s.strState = strL1SState;
retval = FsmNew(&l1fsm_s, L1SFnList, ARRAY_SIZE(L1SFnList));
if (retval)
return retval;
l1fsm_b.state_count = L1B_STATE_COUNT;
l1fsm_b.event_count = L1_EVENT_COUNT;
l1fsm_b.strEvent = strL1Event;
l1fsm_b.strState = strL1BState;
retval = FsmNew(&l1fsm_b, L1BFnList, ARRAY_SIZE(L1BFnList));
if (retval) {
FsmFree(&l1fsm_s);
return retval;
}
#ifdef HISAX_UINTERFACE
l1fsm_u.state_count = L1U_STATE_COUNT;
l1fsm_u.event_count = L1_EVENT_COUNT;
l1fsm_u.strEvent = strL1Event;
l1fsm_u.strState = strL1UState;
retval = FsmNew(&l1fsm_u, L1UFnList, ARRAY_SIZE(L1UFnList));
if (retval) {
FsmFree(&l1fsm_s);
FsmFree(&l1fsm_b);
return retval;
}
#endif
return 0;
}
void Isdnl1Free(void)
{
#ifdef HISAX_UINTERFACE
FsmFree(&l1fsm_u);
#endif
FsmFree(&l1fsm_s);
FsmFree(&l1fsm_b);
}
static void
dch_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
switch (pr) {
case (PH_DATA | REQUEST):
case (PH_PULL | REQUEST):
case (PH_PULL | INDICATION):
st->l1.l1hw(st, pr, arg);
break;
case (PH_ACTIVATE | REQUEST):
if (cs->debug)
debugl1(cs, "PH_ACTIVATE_REQ %s",
st->l1.l1m.fsm->strState[st->l1.l1m.state]);
if (test_bit(FLG_L1_ACTIVATED, &st->l1.Flags))
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
else {
test_and_set_bit(FLG_L1_ACTIVATING, &st->l1.Flags);
FsmEvent(&st->l1.l1m, EV_PH_ACTIVATE, arg);
}
break;
case (PH_TESTLOOP | REQUEST):
if (1 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B1");
if (2 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B2");
if (!(3 & (long) arg))
debugl1(cs, "PH_TEST_LOOP DISABLED");
st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
break;
default:
if (cs->debug)
debugl1(cs, "dch_l2l1 msg %04X unhandled", pr);
break;
}
}
void
l1_msg(struct IsdnCardState *cs, int pr, void *arg) {
struct PStack *st;
st = cs->stlist;
while (st) {
switch (pr) {
case (HW_RESET | INDICATION):
FsmEvent(&st->l1.l1m, EV_RESET_IND, arg);
break;
case (HW_DEACTIVATE | CONFIRM):
FsmEvent(&st->l1.l1m, EV_DEACT_CNF, arg);
break;
case (HW_DEACTIVATE | INDICATION):
FsmEvent(&st->l1.l1m, EV_DEACT_IND, arg);
break;
case (HW_POWERUP | CONFIRM):
FsmEvent(&st->l1.l1m, EV_POWER_UP, arg);
break;
case (HW_RSYNC | INDICATION):
FsmEvent(&st->l1.l1m, EV_RSYNC_IND, arg);
break;
case (HW_INFO2 | INDICATION):
FsmEvent(&st->l1.l1m, EV_INFO2_IND, arg);
break;
case (HW_INFO4_P8 | INDICATION):
case (HW_INFO4_P10 | INDICATION):
FsmEvent(&st->l1.l1m, EV_INFO4_IND, arg);
break;
default:
if (cs->debug)
debugl1(cs, "%s %04X unhandled", __func__, pr);
break;
}
st = st->next;
}
}
void
l1_msg_b(struct PStack *st, int pr, void *arg) {
switch (pr) {
case (PH_ACTIVATE | REQUEST):
FsmEvent(&st->l1.l1m, EV_PH_ACTIVATE, NULL);
break;
case (PH_DEACTIVATE | REQUEST):
FsmEvent(&st->l1.l1m, EV_PH_DEACTIVATE, NULL);
break;
}
}
void
setstack_HiSax(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.hardware = cs;
st->protocol = cs->protocol;
st->l1.l1m.fsm = &l1fsm_s;
st->l1.l1m.state = ST_L1_F3;
st->l1.Flags = 0;
#ifdef HISAX_UINTERFACE
if (test_bit(FLG_HW_L1_UINT, &cs->HW_Flags)) {
st->l1.l1m.fsm = &l1fsm_u;
st->l1.l1m.state = ST_L1_RESET;
st->l1.Flags = FLG_L1_UINT;
}
#endif
st->l1.l1m.debug = cs->debug;
st->l1.l1m.userdata = st;
st->l1.l1m.userint = 0;
st->l1.l1m.printdebug = l1m_debug;
FsmInitTimer(&st->l1.l1m, &st->l1.timer);
setstack_tei(st);
setstack_manager(st);
st->l1.stlistp = &(cs->stlist);
st->l2.l2l1 = dch_l2l1;
if (cs->setstack_d)
cs->setstack_d(st, cs);
}
void
setstack_l1_B(struct PStack *st)
{
struct IsdnCardState *cs = st->l1.hardware;
st->l1.l1m.fsm = &l1fsm_b;
st->l1.l1m.state = ST_L1_NULL;
st->l1.l1m.debug = cs->debug;
st->l1.l1m.userdata = st;
st->l1.l1m.userint = 0;
st->l1.l1m.printdebug = l1m_debug;
st->l1.Flags = 0;
FsmInitTimer(&st->l1.l1m, &st->l1.timer);
}