OpenCloudOS-Kernel/kernel/events/internal.h

247 lines
5.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _KERNEL_EVENTS_INTERNAL_H
#define _KERNEL_EVENTS_INTERNAL_H
#include <linux/hardirq.h>
#include <linux/uaccess.h>
perf/ring_buffer: Convert ring_buffer.refcount to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable ring_buffer.refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst for more information. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the ring_buffer.refcount it might make a difference in following places: - ring_buffer_get(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - ring_buffer_put(): decrement in refcount_dec_and_test() only provides RELEASE ordering and ACQUIRE ordering + control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: namhyung@kernel.org Link: https://lkml.kernel.org/r/1548678448-24458-3-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-28 20:27:27 +08:00
#include <linux/refcount.h>
/* Buffer handling */
#define RING_BUFFER_WRITABLE 0x01
struct perf_buffer {
perf/ring_buffer: Convert ring_buffer.refcount to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable ring_buffer.refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst for more information. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the ring_buffer.refcount it might make a difference in following places: - ring_buffer_get(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - ring_buffer_put(): decrement in refcount_dec_and_test() only provides RELEASE ordering and ACQUIRE ordering + control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: namhyung@kernel.org Link: https://lkml.kernel.org/r/1548678448-24458-3-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-28 20:27:27 +08:00
refcount_t refcount;
struct rcu_head rcu_head;
#ifdef CONFIG_PERF_USE_VMALLOC
struct work_struct work;
int page_order; /* allocation order */
#endif
int nr_pages; /* nr of data pages */
int overwrite; /* can overwrite itself */
perf/ring_buffer: Introduce new ioctl options to pause and resume the ring-buffer Add new ioctl() to pause/resume ring-buffer output. In some situations we want to read from the ring-buffer only when we ensure nothing can write to the ring-buffer during reading. Without this patch we have to turn off all events attached to this ring-buffer to achieve this. This patch is a prerequisite to enable overwrite support for the perf ring-buffer support. Following commits will introduce new methods support reading from overwrite ring buffer. Before reading, caller must ensure the ring buffer is frozen, or the reading is unreliable. Signed-off-by: Wang Nan <wangnan0@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <pi3orama@163.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/r/1459147292-239310-2-git-send-email-wangnan0@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-28 14:41:29 +08:00
int paused; /* can write into ring buffer */
atomic_t poll; /* POLL_ for wakeups */
local_t head; /* write position */
unsigned int nest; /* nested writers */
local_t events; /* event limit */
local_t wakeup; /* wakeup stamp */
local_t lost; /* nr records lost */
long watermark; /* wakeup watermark */
long aux_watermark;
perf: Fix loss of notification with multi-event When you do: $ perf record -e cycles,cycles,cycles noploop 10 You expect about 10,000 samples for each event, i.e., 10s at 1000samples/sec. However, this is not what's happening. You get much fewer samples, maybe 3700 samples/event: $ perf report -D | tail -15 Aggregated stats: TOTAL events: 10998 MMAP events: 66 COMM events: 2 SAMPLE events: 10930 cycles stats: TOTAL events: 3644 SAMPLE events: 3644 cycles stats: TOTAL events: 3642 SAMPLE events: 3642 cycles stats: TOTAL events: 3644 SAMPLE events: 3644 On a Intel Nehalem or even AMD64, there are 4 counters capable of measuring cycles, so there is plenty of space to measure those events without multiplexing (even with the NMI watchdog active). And even with multiplexing, we'd expect roughly the same number of samples per event. The root of the problem was that when the event that caused the buffer to become full was not the first event passed on the cmdline, the user notification would get lost. The notification was sent to the file descriptor of the overflowed event but the perf tool was not polling on it. The perf tool aggregates all samples into a single buffer, i.e., the buffer of the first event. Consequently, it assumes notifications for any event will come via that descriptor. The seemingly straight forward solution of moving the waitq into the ringbuffer object doesn't work because of life-time issues. One could perf_event_set_output() on a fd that you're also blocking on and cause the old rb object to be freed while its waitq would still be referenced by the blocked thread -> FAIL. Therefore link all events to the ringbuffer and broadcast the wakeup from the ringbuffer object to all possible events that could be waited upon. This is rather ugly, and we're open to better solutions but it works for now. Reported-by: Stephane Eranian <eranian@google.com> Finished-by: Stephane Eranian <eranian@google.com> Reviewed-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111126014731.GA7030@quad Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-11-26 09:47:31 +08:00
/* poll crap */
spinlock_t event_lock;
struct list_head event_list;
atomic_t mmap_count;
unsigned long mmap_locked;
struct user_struct *mmap_user;
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
/* AUX area */
long aux_head;
unsigned int aux_nest;
perf/aux: Ensure aux_wakeup represents most recent wakeup index The aux_watermark member of struct ring_buffer represents the period (in terms of bytes) at which wakeup events should be generated when data is written to the aux buffer in non-snapshot mode. On hardware that cannot generate an interrupt when the aux_head reaches an arbitrary wakeup index (such as ARM SPE), the aux_head sampled from handle->head in perf_aux_output_{skip,end} may in fact be past the wakeup index. This can lead to wakeup slowly falling behind the head. For example, consider the case where hardware can only generate an interrupt on a page-boundary and the aux buffer is initialised as follows: // Buffer size is 2 * PAGE_SIZE rb->aux_head = rb->aux_wakeup = 0 rb->aux_watermark = PAGE_SIZE / 2 following the first perf_aux_output_begin call, the handle is initialised with: handle->head = 0 handle->size = 2 * PAGE_SIZE handle->wakeup = PAGE_SIZE / 2 and the hardware will be programmed to generate an interrupt at PAGE_SIZE. When the interrupt is raised, the hardware head will be at PAGE_SIZE, so calling perf_aux_output_end(handle, PAGE_SIZE) puts the ring buffer into the following state: rb->aux_head = PAGE_SIZE rb->aux_wakeup = PAGE_SIZE / 2 rb->aux_watermark = PAGE_SIZE / 2 and then the next call to perf_aux_output_begin will result in: handle->head = handle->wakeup = PAGE_SIZE for which the semantics are unclear and, for a smaller aux_watermark (e.g. PAGE_SIZE / 4), then the wakeup would in fact be behind head at this point. This patch fixes the problem by rounding down the aux_head (as sampled from the handle) to the nearest aux_watermark boundary when updating rb->aux_wakeup, therefore taking into account any overruns by the hardware. Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1502900297-21839-2-git-send-email-will.deacon@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-17 00:18:17 +08:00
long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
unsigned long aux_pgoff;
int aux_nr_pages;
perf: Support overwrite mode for the AUX area This adds support for overwrite mode in the AUX area, which means "keep collecting data till you're stopped", turning AUX area into a circular buffer, where new data overwrites old data. It does not depend on data buffer's overwrite mode, so that it doesn't lose sideband data that is instrumental for processing AUX data. Overwrite mode is enabled at mapping AUX area read only. Even though aux_tail in the buffer's user page might be user writable, it will be ignored in this mode. A PERF_RECORD_AUX with PERF_AUX_FLAG_OVERWRITE set is written to the perf data stream every time an event writes new data to the AUX area. The pmu driver might not be able to infer the exact beginning of the new data in each snapshot, some drivers will only provide the tail, which is aux_offset + aux_size in the AUX record. Consumer has to be able to tell the new data from the old one, for example, by means of time stamps if such are provided in the trace. Consumer is also responsible for disabling any events that might write to the AUX area (thus potentially racing with the consumer) before collecting the data. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-9-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:17 +08:00
int aux_overwrite;
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
atomic_t aux_mmap_count;
unsigned long aux_mmap_locked;
void (*free_aux)(void *);
perf/ring_buffer: Convert ring_buffer.aux_refcount to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable ring_buffer.aux_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst for more information. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the ring_buffer.aux_refcount it might make a difference in following places: - perf_aux_output_begin(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - rb_free_aux(): decrement in refcount_dec_and_test() only provides RELEASE ordering and ACQUIRE ordering + control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: namhyung@kernel.org Link: https://lkml.kernel.org/r/1548678448-24458-4-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-28 20:27:28 +08:00
refcount_t aux_refcount;
2019-10-25 22:08:33 +08:00
int aux_in_sampling;
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
void **aux_pages;
void *aux_priv;
struct perf_event_mmap_page *user_page;
perf/core: Replace zero-length array with flexible-array The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] sizeof(flexible-array-member) triggers a warning because flexible array members have incomplete type[1]. There are some instances of code in which the sizeof operator is being incorrectly/erroneously applied to zero-length arrays and the result is zero. Such instances may be hiding some bugs. So, this work (flexible-array member conversions) will also help to get completely rid of those sorts of issues. This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200511201227.GA14041@embeddedor
2020-05-12 04:12:27 +08:00
void *data_pages[];
};
extern void rb_free(struct perf_buffer *rb);
static inline void rb_free_rcu(struct rcu_head *rcu_head)
{
struct perf_buffer *rb;
rb = container_of(rcu_head, struct perf_buffer, rcu_head);
rb_free(rb);
}
static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause)
perf/ring_buffer: Introduce new ioctl options to pause and resume the ring-buffer Add new ioctl() to pause/resume ring-buffer output. In some situations we want to read from the ring-buffer only when we ensure nothing can write to the ring-buffer during reading. Without this patch we have to turn off all events attached to this ring-buffer to achieve this. This patch is a prerequisite to enable overwrite support for the perf ring-buffer support. Following commits will introduce new methods support reading from overwrite ring buffer. Before reading, caller must ensure the ring buffer is frozen, or the reading is unreliable. Signed-off-by: Wang Nan <wangnan0@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <pi3orama@163.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/r/1459147292-239310-2-git-send-email-wangnan0@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-28 14:41:29 +08:00
{
if (!pause && rb->nr_pages)
rb->paused = 0;
else
rb->paused = 1;
}
extern struct perf_buffer *
rb_alloc(int nr_pages, long watermark, int cpu, int flags);
extern void perf_event_wakeup(struct perf_event *event);
extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
pgoff_t pgoff, int nr_pages, long watermark, int flags);
extern void rb_free_aux(struct perf_buffer *rb);
extern struct perf_buffer *ring_buffer_get(struct perf_event *event);
extern void ring_buffer_put(struct perf_buffer *rb);
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
static inline bool rb_has_aux(struct perf_buffer *rb)
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
{
return !!rb->aux_nr_pages;
}
void perf_event_aux_event(struct perf_event *event, unsigned long head,
unsigned long size, u64 flags);
extern struct page *
perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff);
#ifdef CONFIG_PERF_USE_VMALLOC
/*
* Back perf_mmap() with vmalloc memory.
*
* Required for architectures that have d-cache aliasing issues.
*/
static inline int page_order(struct perf_buffer *rb)
{
return rb->page_order;
}
#else
static inline int page_order(struct perf_buffer *rb)
{
return 0;
}
#endif
static inline unsigned long perf_data_size(struct perf_buffer *rb)
{
return rb->nr_pages << (PAGE_SHIFT + page_order(rb));
}
static inline unsigned long perf_aux_size(struct perf_buffer *rb)
perf: Add AUX area to ring buffer for raw data streams This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 20:18:11 +08:00
{
return rb->aux_nr_pages << PAGE_SHIFT;
}
bpf, events: fix offset in skb copy handler This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: 555c8a8623a3 ("bpf: avoid stack copy and use skb ctx for event output") Fixes: 7e3f977edd0b ("perf, events: add non-linear data support for raw records") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-22 07:19:42 +08:00
#define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \
{ \
unsigned long size, written; \
\
do { \
size = min(handle->size, len); \
bpf, events: fix offset in skb copy handler This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: 555c8a8623a3 ("bpf: avoid stack copy and use skb ctx for event output") Fixes: 7e3f977edd0b ("perf, events: add non-linear data support for raw records") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-22 07:19:42 +08:00
written = memcpy_func(__VA_ARGS__); \
written = size - written; \
\
len -= written; \
handle->addr += written; \
bpf, events: fix offset in skb copy handler This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: 555c8a8623a3 ("bpf: avoid stack copy and use skb ctx for event output") Fixes: 7e3f977edd0b ("perf, events: add non-linear data support for raw records") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-22 07:19:42 +08:00
if (advance_buf) \
buf += written; \
handle->size -= written; \
if (!handle->size) { \
struct perf_buffer *rb = handle->rb; \
\
handle->page++; \
handle->page &= rb->nr_pages - 1; \
handle->addr = rb->data_pages[handle->page]; \
handle->size = PAGE_SIZE << page_order(rb); \
} \
} while (len && written == size); \
\
return len; \
}
perf, events: add non-linear data support for raw records This patch adds support for non-linear data on raw records. It extends raw records to have one or multiple fragments that will be written linearly into the ring slot, where each fragment can optionally have a custom callback handler to walk and extract complex, possibly non-linear data. If a callback handler is provided for a fragment, then the new __output_custom() will be used instead of __output_copy() for the perf_output_sample() part. perf_prepare_sample() does all the size calculation only once, so perf_output_sample() doesn't need to redo the same work anymore, meaning real_size and padding will be cached in the raw record. The raw record becomes 32 bytes in size without holes; to not increase it further and to avoid doing unnecessary recalculations in fast-path, we can reuse next pointer of the last fragment, idea here is borrowed from ZERO_OR_NULL_PTR(), which should keep the perf_output_sample() path for PERF_SAMPLE_RAW minimal. This facility is needed for BPF's event output helper as a first user that will, in a follow-up, add an additional perf_raw_frag to its perf_raw_record in order to be able to more efficiently dump skb context after a linear head meta data related to it. skbs can be non-linear and thus need a custom output function to dump buffers. Currently, the skb data needs to be copied twice; with the help of __output_custom() this work only needs to be done once. Future users could be things like XDP/BPF programs that work on different context though and would thus also have a different callback function. The few users of raw records are adapted to initialize their frag data from the raw record itself, no change in behavior for them. The code is based upon a PoC diff provided by Peter Zijlstra [1]. [1] http://thread.gmane.org/gmane.linux.network/421294 Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-15 00:08:03 +08:00
#define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \
static inline unsigned long \
func_name(struct perf_output_handle *handle, \
const void *buf, unsigned long len) \
bpf, events: fix offset in skb copy handler This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: 555c8a8623a3 ("bpf: avoid stack copy and use skb ctx for event output") Fixes: 7e3f977edd0b ("perf, events: add non-linear data support for raw records") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-22 07:19:42 +08:00
__DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size)
perf, events: add non-linear data support for raw records This patch adds support for non-linear data on raw records. It extends raw records to have one or multiple fragments that will be written linearly into the ring slot, where each fragment can optionally have a custom callback handler to walk and extract complex, possibly non-linear data. If a callback handler is provided for a fragment, then the new __output_custom() will be used instead of __output_copy() for the perf_output_sample() part. perf_prepare_sample() does all the size calculation only once, so perf_output_sample() doesn't need to redo the same work anymore, meaning real_size and padding will be cached in the raw record. The raw record becomes 32 bytes in size without holes; to not increase it further and to avoid doing unnecessary recalculations in fast-path, we can reuse next pointer of the last fragment, idea here is borrowed from ZERO_OR_NULL_PTR(), which should keep the perf_output_sample() path for PERF_SAMPLE_RAW minimal. This facility is needed for BPF's event output helper as a first user that will, in a follow-up, add an additional perf_raw_frag to its perf_raw_record in order to be able to more efficiently dump skb context after a linear head meta data related to it. skbs can be non-linear and thus need a custom output function to dump buffers. Currently, the skb data needs to be copied twice; with the help of __output_custom() this work only needs to be done once. Future users could be things like XDP/BPF programs that work on different context though and would thus also have a different callback function. The few users of raw records are adapted to initialize their frag data from the raw record itself, no change in behavior for them. The code is based upon a PoC diff provided by Peter Zijlstra [1]. [1] http://thread.gmane.org/gmane.linux.network/421294 Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-15 00:08:03 +08:00
static inline unsigned long
__output_custom(struct perf_output_handle *handle, perf_copy_f copy_func,
const void *buf, unsigned long len)
bpf, events: fix offset in skb copy handler This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: 555c8a8623a3 ("bpf: avoid stack copy and use skb ctx for event output") Fixes: 7e3f977edd0b ("perf, events: add non-linear data support for raw records") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-22 07:19:42 +08:00
{
unsigned long orig_len = len;
__DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf,
orig_len - len, size)
}
perf, events: add non-linear data support for raw records This patch adds support for non-linear data on raw records. It extends raw records to have one or multiple fragments that will be written linearly into the ring slot, where each fragment can optionally have a custom callback handler to walk and extract complex, possibly non-linear data. If a callback handler is provided for a fragment, then the new __output_custom() will be used instead of __output_copy() for the perf_output_sample() part. perf_prepare_sample() does all the size calculation only once, so perf_output_sample() doesn't need to redo the same work anymore, meaning real_size and padding will be cached in the raw record. The raw record becomes 32 bytes in size without holes; to not increase it further and to avoid doing unnecessary recalculations in fast-path, we can reuse next pointer of the last fragment, idea here is borrowed from ZERO_OR_NULL_PTR(), which should keep the perf_output_sample() path for PERF_SAMPLE_RAW minimal. This facility is needed for BPF's event output helper as a first user that will, in a follow-up, add an additional perf_raw_frag to its perf_raw_record in order to be able to more efficiently dump skb context after a linear head meta data related to it. skbs can be non-linear and thus need a custom output function to dump buffers. Currently, the skb data needs to be copied twice; with the help of __output_custom() this work only needs to be done once. Future users could be things like XDP/BPF programs that work on different context though and would thus also have a different callback function. The few users of raw records are adapted to initialize their frag data from the raw record itself, no change in behavior for them. The code is based upon a PoC diff provided by Peter Zijlstra [1]. [1] http://thread.gmane.org/gmane.linux.network/421294 Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-15 00:08:03 +08:00
static inline unsigned long
memcpy_common(void *dst, const void *src, unsigned long n)
{
memcpy(dst, src, n);
return 0;
}
DEFINE_OUTPUT_COPY(__output_copy, memcpy_common)
static inline unsigned long
memcpy_skip(void *dst, const void *src, unsigned long n)
{
return 0;
}
DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip)
#ifndef arch_perf_out_copy_user
#define arch_perf_out_copy_user arch_perf_out_copy_user
static inline unsigned long
arch_perf_out_copy_user(void *dst, const void *src, unsigned long n)
{
unsigned long ret;
pagefault_disable();
ret = __copy_from_user_inatomic(dst, src, n);
pagefault_enable();
return ret;
}
#endif
DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user)
static inline int get_recursion_context(int *recursion)
{
unsigned int pc = preempt_count();
unsigned char rctx = 0;
rctx += !!(pc & (NMI_MASK));
rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK));
rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
if (recursion[rctx])
return -1;
recursion[rctx]++;
barrier();
return rctx;
}
static inline void put_recursion_context(int *recursion, int rctx)
{
barrier();
recursion[rctx]--;
}
2012-08-07 21:20:40 +08:00
#ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP
static inline bool arch_perf_have_user_stack_dump(void)
{
return true;
}
#define perf_user_stack_pointer(regs) user_stack_pointer(regs)
#else
static inline bool arch_perf_have_user_stack_dump(void)
{
return false;
}
#define perf_user_stack_pointer(regs) 0
#endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */
#endif /* _KERNEL_EVENTS_INTERNAL_H */