OpenCloudOS-Kernel/tools/perf/util/intel-pt.c

2195 lines
54 KiB
C
Raw Normal View History

/*
* intel_pt.c: Intel Processor Trace support
* Copyright (c) 2013-2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include "../perf.h"
#include "session.h"
#include "machine.h"
#include "sort.h"
#include "tool.h"
#include "event.h"
#include "evlist.h"
#include "evsel.h"
#include "map.h"
#include "color.h"
#include "util.h"
#include "thread.h"
#include "thread-stack.h"
#include "symbol.h"
#include "callchain.h"
#include "dso.h"
#include "debug.h"
#include "auxtrace.h"
#include "tsc.h"
#include "intel-pt.h"
#include "intel-pt-decoder/intel-pt-log.h"
#include "intel-pt-decoder/intel-pt-decoder.h"
#include "intel-pt-decoder/intel-pt-insn-decoder.h"
#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
#define MAX_TIMESTAMP (~0ULL)
struct intel_pt {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
u32 auxtrace_type;
struct perf_session *session;
struct machine *machine;
struct perf_evsel *switch_evsel;
struct thread *unknown_thread;
bool timeless_decoding;
bool sampling_mode;
bool snapshot_mode;
bool per_cpu_mmaps;
bool have_tsc;
bool data_queued;
bool est_tsc;
bool sync_switch;
perf intel-pt: Add mispred-all config option to aid use with autofdo autofdo incorrectly expects branch flags to include either mispred or predicted. In fact mispred = predicted = 0 is valid and means the flags are not supported, which they aren't by Intel PT. To make autofdo work, add a config option which will cause Intel PT decoder to set the mispred flag on all branches. Below is an example of using Intel PT with autofdo. The example is also added to the Intel PT documentation. It requires autofdo (https://github.com/google/autofdo) and gcc version 5. The bubble sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) amended to take the number of elements as a parameter. $ gcc-5 -O3 sort.c -o sort_optimized $ ./sort_optimized 30000 Bubble sorting array of 30000 elements 2254 ms $ cat ~/.perfconfig [intel-pt] mispred-all $ perf record -e intel_pt//u ./sort 3000 Bubble sorting array of 3000 elements 58 ms [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 3.939 MB perf.data ] $ perf inject -i perf.data -o inj --itrace=i100usle --strip $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo $ ./sort_autofdo 30000 Bubble sorting array of 30000 elements 2155 ms Note there is currently no advantage to using Intel PT instead of LBR, but that may change in the future if greater use is made of the data. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1443186956-18718-26-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-09-25 21:15:56 +08:00
bool mispred_all;
int have_sched_switch;
u32 pmu_type;
u64 kernel_start;
u64 switch_ip;
u64 ptss_ip;
struct perf_tsc_conversion tc;
bool cap_user_time_zero;
struct itrace_synth_opts synth_opts;
bool sample_instructions;
u64 instructions_sample_type;
u64 instructions_sample_period;
u64 instructions_id;
bool sample_branches;
u32 branches_filter;
u64 branches_sample_type;
u64 branches_id;
bool sample_transactions;
u64 transactions_sample_type;
u64 transactions_id;
bool synth_needs_swap;
u64 tsc_bit;
u64 mtc_bit;
u64 mtc_freq_bits;
u32 tsc_ctc_ratio_n;
u32 tsc_ctc_ratio_d;
u64 cyc_bit;
u64 noretcomp_bit;
unsigned max_non_turbo_ratio;
unsigned long num_events;
};
enum switch_state {
INTEL_PT_SS_NOT_TRACING,
INTEL_PT_SS_UNKNOWN,
INTEL_PT_SS_TRACING,
INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
INTEL_PT_SS_EXPECTING_SWITCH_IP,
};
struct intel_pt_queue {
struct intel_pt *pt;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
void *decoder;
const struct intel_pt_state *state;
struct ip_callchain *chain;
struct branch_stack *last_branch;
struct branch_stack *last_branch_rb;
size_t last_branch_pos;
union perf_event *event_buf;
bool on_heap;
bool stop;
bool step_through_buffers;
bool use_buffer_pid_tid;
pid_t pid, tid;
int cpu;
int switch_state;
pid_t next_tid;
struct thread *thread;
bool exclude_kernel;
bool have_sample;
u64 time;
u64 timestamp;
u32 flags;
u16 insn_len;
u64 last_insn_cnt;
};
static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
unsigned char *buf, size_t len)
{
struct intel_pt_pkt packet;
size_t pos = 0;
int ret, pkt_len, i;
char desc[INTEL_PT_PKT_DESC_MAX];
const char *color = PERF_COLOR_BLUE;
color_fprintf(stdout, color,
". ... Intel Processor Trace data: size %zu bytes\n",
len);
while (len) {
ret = intel_pt_get_packet(buf, len, &packet);
if (ret > 0)
pkt_len = ret;
else
pkt_len = 1;
printf(".");
color_fprintf(stdout, color, " %08x: ", pos);
for (i = 0; i < pkt_len; i++)
color_fprintf(stdout, color, " %02x", buf[i]);
for (; i < 16; i++)
color_fprintf(stdout, color, " ");
if (ret > 0) {
ret = intel_pt_pkt_desc(&packet, desc,
INTEL_PT_PKT_DESC_MAX);
if (ret > 0)
color_fprintf(stdout, color, " %s\n", desc);
} else {
color_fprintf(stdout, color, " Bad packet!\n");
}
pos += pkt_len;
buf += pkt_len;
len -= pkt_len;
}
}
static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
size_t len)
{
printf(".\n");
intel_pt_dump(pt, buf, len);
}
static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
struct auxtrace_buffer *b)
{
void *start;
start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
pt->have_tsc);
if (!start)
return -EINVAL;
b->use_size = b->data + b->size - start;
b->use_data = start;
return 0;
}
static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
struct auxtrace_queue *queue,
struct auxtrace_buffer *buffer)
{
if (queue->cpu == -1 && buffer->cpu != -1)
ptq->cpu = buffer->cpu;
ptq->pid = buffer->pid;
ptq->tid = buffer->tid;
intel_pt_log("queue %u cpu %d pid %d tid %d\n",
ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
thread__zput(ptq->thread);
if (ptq->tid != -1) {
if (ptq->pid != -1)
ptq->thread = machine__findnew_thread(ptq->pt->machine,
ptq->pid,
ptq->tid);
else
ptq->thread = machine__find_thread(ptq->pt->machine, -1,
ptq->tid);
}
}
/* This function assumes data is processed sequentially only */
static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
{
struct intel_pt_queue *ptq = data;
struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
struct auxtrace_queue *queue;
if (ptq->stop) {
b->len = 0;
return 0;
}
queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
buffer = auxtrace_buffer__next(queue, buffer);
if (!buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
b->len = 0;
return 0;
}
ptq->buffer = buffer;
if (!buffer->data) {
int fd = perf_data_file__fd(ptq->pt->session->file);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data)
return -ENOMEM;
}
if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
return -ENOMEM;
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
if (buffer->use_data) {
b->len = buffer->use_size;
b->buf = buffer->use_data;
} else {
b->len = buffer->size;
b->buf = buffer->data;
}
b->ref_timestamp = buffer->reference;
if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
!buffer->consecutive)) {
b->consecutive = false;
b->trace_nr = buffer->buffer_nr + 1;
} else {
b->consecutive = true;
}
if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
ptq->tid != buffer->tid))
intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
if (ptq->step_through_buffers)
ptq->stop = true;
if (!b->len)
return intel_pt_get_trace(b, data);
return 0;
}
struct intel_pt_cache_entry {
struct auxtrace_cache_entry entry;
u64 insn_cnt;
u64 byte_cnt;
enum intel_pt_insn_op op;
enum intel_pt_insn_branch branch;
int length;
int32_t rel;
};
static int intel_pt_config_div(const char *var, const char *value, void *data)
{
int *d = data;
long val;
if (!strcmp(var, "intel-pt.cache-divisor")) {
val = strtol(value, NULL, 0);
if (val > 0 && val <= INT_MAX)
*d = val;
}
return 0;
}
static int intel_pt_cache_divisor(void)
{
static int d;
if (d)
return d;
perf_config(intel_pt_config_div, &d);
if (!d)
d = 64;
return d;
}
static unsigned int intel_pt_cache_size(struct dso *dso,
struct machine *machine)
{
off_t size;
size = dso__data_size(dso, machine);
size /= intel_pt_cache_divisor();
if (size < 1000)
return 10;
if (size > (1 << 21))
return 21;
return 32 - __builtin_clz(size);
}
static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
struct machine *machine)
{
struct auxtrace_cache *c;
unsigned int bits;
if (dso->auxtrace_cache)
return dso->auxtrace_cache;
bits = intel_pt_cache_size(dso, machine);
/* Ignoring cache creation failure */
c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
dso->auxtrace_cache = c;
return c;
}
static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
u64 offset, u64 insn_cnt, u64 byte_cnt,
struct intel_pt_insn *intel_pt_insn)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
struct intel_pt_cache_entry *e;
int err;
if (!c)
return -ENOMEM;
e = auxtrace_cache__alloc_entry(c);
if (!e)
return -ENOMEM;
e->insn_cnt = insn_cnt;
e->byte_cnt = byte_cnt;
e->op = intel_pt_insn->op;
e->branch = intel_pt_insn->branch;
e->length = intel_pt_insn->length;
e->rel = intel_pt_insn->rel;
err = auxtrace_cache__add(c, offset, &e->entry);
if (err)
auxtrace_cache__free_entry(c, e);
return err;
}
static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
if (!c)
return NULL;
return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
}
static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
uint64_t *insn_cnt_ptr, uint64_t *ip,
uint64_t to_ip, uint64_t max_insn_cnt,
void *data)
{
struct intel_pt_queue *ptq = data;
struct machine *machine = ptq->pt->machine;
struct thread *thread;
struct addr_location al;
unsigned char buf[1024];
size_t bufsz;
ssize_t len;
int x86_64;
u8 cpumode;
u64 offset, start_offset, start_ip;
u64 insn_cnt = 0;
bool one_map = true;
if (to_ip && *ip == to_ip)
goto out_no_cache;
bufsz = intel_pt_insn_max_size();
if (*ip >= ptq->pt->kernel_start)
cpumode = PERF_RECORD_MISC_KERNEL;
else
cpumode = PERF_RECORD_MISC_USER;
thread = ptq->thread;
if (!thread) {
if (cpumode != PERF_RECORD_MISC_KERNEL)
return -EINVAL;
thread = ptq->pt->unknown_thread;
}
while (1) {
thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
if (!al.map || !al.map->dso)
return -EINVAL;
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
dso__data_status_seen(al.map->dso,
DSO_DATA_STATUS_SEEN_ITRACE))
return -ENOENT;
offset = al.map->map_ip(al.map, *ip);
if (!to_ip && one_map) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, offset);
if (e &&
(!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
*insn_cnt_ptr = e->insn_cnt;
*ip += e->byte_cnt;
intel_pt_insn->op = e->op;
intel_pt_insn->branch = e->branch;
intel_pt_insn->length = e->length;
intel_pt_insn->rel = e->rel;
intel_pt_log_insn_no_data(intel_pt_insn, *ip);
return 0;
}
}
start_offset = offset;
start_ip = *ip;
/* Load maps to ensure dso->is_64_bit has been updated */
map__load(al.map, machine->symbol_filter);
x86_64 = al.map->dso->is_64_bit;
while (1) {
len = dso__data_read_offset(al.map->dso, machine,
offset, buf, bufsz);
if (len <= 0)
return -EINVAL;
if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
return -EINVAL;
intel_pt_log_insn(intel_pt_insn, *ip);
insn_cnt += 1;
if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
goto out;
if (max_insn_cnt && insn_cnt >= max_insn_cnt)
goto out_no_cache;
*ip += intel_pt_insn->length;
if (to_ip && *ip == to_ip)
goto out_no_cache;
if (*ip >= al.map->end)
break;
offset += intel_pt_insn->length;
}
one_map = false;
}
out:
*insn_cnt_ptr = insn_cnt;
if (!one_map)
goto out_no_cache;
/*
* Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
* entries.
*/
if (to_ip) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
if (e)
return 0;
}
/* Ignore cache errors */
intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
*ip - start_ip, intel_pt_insn);
return 0;
out_no_cache:
*insn_cnt_ptr = insn_cnt;
return 0;
}
static bool intel_pt_get_config(struct intel_pt *pt,
struct perf_event_attr *attr, u64 *config)
{
if (attr->type == pt->pmu_type) {
if (config)
*config = attr->config;
return true;
}
return false;
}
static bool intel_pt_exclude_kernel(struct intel_pt *pt)
{
struct perf_evsel *evsel;
evlist__for_each(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
!evsel->attr.exclude_kernel)
return false;
}
return true;
}
static bool intel_pt_return_compression(struct intel_pt *pt)
{
struct perf_evsel *evsel;
u64 config;
if (!pt->noretcomp_bit)
return true;
evlist__for_each(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->attr, &config) &&
(config & pt->noretcomp_bit))
return false;
}
return true;
}
static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
{
struct perf_evsel *evsel;
unsigned int shift;
u64 config;
if (!pt->mtc_freq_bits)
return 0;
for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
config >>= 1;
evlist__for_each(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->attr, &config))
return (config & pt->mtc_freq_bits) >> shift;
}
return 0;
}
static bool intel_pt_timeless_decoding(struct intel_pt *pt)
{
struct perf_evsel *evsel;
bool timeless_decoding = true;
u64 config;
if (!pt->tsc_bit || !pt->cap_user_time_zero)
return true;
evlist__for_each(pt->session->evlist, evsel) {
if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
return true;
if (intel_pt_get_config(pt, &evsel->attr, &config)) {
if (config & pt->tsc_bit)
timeless_decoding = false;
else
return true;
}
}
return timeless_decoding;
}
static bool intel_pt_tracing_kernel(struct intel_pt *pt)
{
struct perf_evsel *evsel;
evlist__for_each(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
!evsel->attr.exclude_kernel)
return true;
}
return false;
}
static bool intel_pt_have_tsc(struct intel_pt *pt)
{
struct perf_evsel *evsel;
bool have_tsc = false;
u64 config;
if (!pt->tsc_bit)
return false;
evlist__for_each(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->attr, &config)) {
if (config & pt->tsc_bit)
have_tsc = true;
else
return false;
}
}
return have_tsc;
}
static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
{
u64 quot, rem;
quot = ns / pt->tc.time_mult;
rem = ns % pt->tc.time_mult;
return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
pt->tc.time_mult;
}
static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
unsigned int queue_nr)
{
struct intel_pt_params params = { .get_trace = 0, };
struct intel_pt_queue *ptq;
ptq = zalloc(sizeof(struct intel_pt_queue));
if (!ptq)
return NULL;
if (pt->synth_opts.callchain) {
size_t sz = sizeof(struct ip_callchain);
sz += pt->synth_opts.callchain_sz * sizeof(u64);
ptq->chain = zalloc(sz);
if (!ptq->chain)
goto out_free;
}
if (pt->synth_opts.last_branch) {
size_t sz = sizeof(struct branch_stack);
sz += pt->synth_opts.last_branch_sz *
sizeof(struct branch_entry);
ptq->last_branch = zalloc(sz);
if (!ptq->last_branch)
goto out_free;
ptq->last_branch_rb = zalloc(sz);
if (!ptq->last_branch_rb)
goto out_free;
}
ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!ptq->event_buf)
goto out_free;
ptq->pt = pt;
ptq->queue_nr = queue_nr;
ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
ptq->pid = -1;
ptq->tid = -1;
ptq->cpu = -1;
ptq->next_tid = -1;
params.get_trace = intel_pt_get_trace;
params.walk_insn = intel_pt_walk_next_insn;
params.data = ptq;
params.return_compression = intel_pt_return_compression(pt);
params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
params.mtc_period = intel_pt_mtc_period(pt);
params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
if (pt->synth_opts.instructions) {
if (pt->synth_opts.period) {
switch (pt->synth_opts.period_type) {
case PERF_ITRACE_PERIOD_INSTRUCTIONS:
params.period_type =
INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_TICKS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_NANOSECS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = intel_pt_ns_to_ticks(pt,
pt->synth_opts.period);
break;
default:
break;
}
}
if (!params.period) {
params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = 1;
}
}
ptq->decoder = intel_pt_decoder_new(&params);
if (!ptq->decoder)
goto out_free;
return ptq;
out_free:
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->last_branch_rb);
zfree(&ptq->chain);
free(ptq);
return NULL;
}
static void intel_pt_free_queue(void *priv)
{
struct intel_pt_queue *ptq = priv;
if (!ptq)
return;
thread__zput(ptq->thread);
intel_pt_decoder_free(ptq->decoder);
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->last_branch_rb);
zfree(&ptq->chain);
free(ptq);
}
static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
struct auxtrace_queue *queue)
{
struct intel_pt_queue *ptq = queue->priv;
if (queue->tid == -1 || pt->have_sched_switch) {
ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
thread__zput(ptq->thread);
}
if (!ptq->thread && ptq->tid != -1)
ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
if (ptq->thread) {
ptq->pid = ptq->thread->pid_;
if (queue->cpu == -1)
ptq->cpu = ptq->thread->cpu;
}
}
static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
{
if (ptq->state->flags & INTEL_PT_ABORT_TX) {
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
} else if (ptq->state->flags & INTEL_PT_ASYNC) {
if (ptq->state->to_ip)
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT;
else
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_END;
ptq->insn_len = 0;
} else {
if (ptq->state->from_ip)
ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
else
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_BEGIN;
if (ptq->state->flags & INTEL_PT_IN_TX)
ptq->flags |= PERF_IP_FLAG_IN_TX;
ptq->insn_len = ptq->state->insn_len;
}
}
static int intel_pt_setup_queue(struct intel_pt *pt,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct intel_pt_queue *ptq = queue->priv;
if (list_empty(&queue->head))
return 0;
if (!ptq) {
ptq = intel_pt_alloc_queue(pt, queue_nr);
if (!ptq)
return -ENOMEM;
queue->priv = ptq;
if (queue->cpu != -1)
ptq->cpu = queue->cpu;
ptq->tid = queue->tid;
if (pt->sampling_mode) {
if (pt->timeless_decoding)
ptq->step_through_buffers = true;
if (pt->timeless_decoding || !pt->have_sched_switch)
ptq->use_buffer_pid_tid = true;
}
}
if (!ptq->on_heap &&
(!pt->sync_switch ||
ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
const struct intel_pt_state *state;
int ret;
if (pt->timeless_decoding)
return 0;
intel_pt_log("queue %u getting timestamp\n", queue_nr);
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
queue_nr, ptq->cpu, ptq->pid, ptq->tid);
while (1) {
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA) {
intel_pt_log("queue %u has no timestamp\n",
queue_nr);
return 0;
}
continue;
}
if (state->timestamp)
break;
}
ptq->timestamp = state->timestamp;
intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
queue_nr, ptq->timestamp);
ptq->state = state;
ptq->have_sample = true;
intel_pt_sample_flags(ptq);
ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
if (ret)
return ret;
ptq->on_heap = true;
}
return 0;
}
static int intel_pt_setup_queues(struct intel_pt *pt)
{
unsigned int i;
int ret;
for (i = 0; i < pt->queues.nr_queues; i++) {
ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
if (ret)
return ret;
}
return 0;
}
static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
{
struct branch_stack *bs_src = ptq->last_branch_rb;
struct branch_stack *bs_dst = ptq->last_branch;
size_t nr = 0;
bs_dst->nr = bs_src->nr;
if (!bs_src->nr)
return;
nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
memcpy(&bs_dst->entries[0],
&bs_src->entries[ptq->last_branch_pos],
sizeof(struct branch_entry) * nr);
if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
memcpy(&bs_dst->entries[nr],
&bs_src->entries[0],
sizeof(struct branch_entry) * ptq->last_branch_pos);
}
}
static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
{
ptq->last_branch_pos = 0;
ptq->last_branch_rb->nr = 0;
}
static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
{
const struct intel_pt_state *state = ptq->state;
struct branch_stack *bs = ptq->last_branch_rb;
struct branch_entry *be;
if (!ptq->last_branch_pos)
ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
ptq->last_branch_pos -= 1;
be = &bs->entries[ptq->last_branch_pos];
be->from = state->from_ip;
be->to = state->to_ip;
be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
/* No support for mispredict */
perf intel-pt: Add mispred-all config option to aid use with autofdo autofdo incorrectly expects branch flags to include either mispred or predicted. In fact mispred = predicted = 0 is valid and means the flags are not supported, which they aren't by Intel PT. To make autofdo work, add a config option which will cause Intel PT decoder to set the mispred flag on all branches. Below is an example of using Intel PT with autofdo. The example is also added to the Intel PT documentation. It requires autofdo (https://github.com/google/autofdo) and gcc version 5. The bubble sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) amended to take the number of elements as a parameter. $ gcc-5 -O3 sort.c -o sort_optimized $ ./sort_optimized 30000 Bubble sorting array of 30000 elements 2254 ms $ cat ~/.perfconfig [intel-pt] mispred-all $ perf record -e intel_pt//u ./sort 3000 Bubble sorting array of 3000 elements 58 ms [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 3.939 MB perf.data ] $ perf inject -i perf.data -o inj --itrace=i100usle --strip $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo $ ./sort_autofdo 30000 Bubble sorting array of 30000 elements 2155 ms Note there is currently no advantage to using Intel PT instead of LBR, but that may change in the future if greater use is made of the data. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1443186956-18718-26-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-09-25 21:15:56 +08:00
be->flags.mispred = ptq->pt->mispred_all;
if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
bs->nr += 1;
}
static int intel_pt_inject_event(union perf_event *event,
struct perf_sample *sample, u64 type,
bool swapped)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample, swapped);
}
static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
{
int ret;
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct dummy_branch_stack {
u64 nr;
struct branch_entry entries;
} dummy_bs;
if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
return 0;
if (pt->synth_opts.initial_skip &&
pt->num_events++ < pt->synth_opts.initial_skip)
return 0;
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = PERF_RECORD_MISC_USER;
event->sample.header.size = sizeof(struct perf_event_header);
if (!pt->timeless_decoding)
sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
sample.cpumode = PERF_RECORD_MISC_USER;
sample.ip = ptq->state->from_ip;
sample.pid = ptq->pid;
sample.tid = ptq->tid;
sample.addr = ptq->state->to_ip;
sample.id = ptq->pt->branches_id;
sample.stream_id = ptq->pt->branches_id;
sample.period = 1;
sample.cpu = ptq->cpu;
sample.flags = ptq->flags;
sample.insn_len = ptq->insn_len;
/*
* perf report cannot handle events without a branch stack when using
* SORT_MODE__BRANCH so make a dummy one.
*/
if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
dummy_bs = (struct dummy_branch_stack){
.nr = 1,
.entries = {
.from = sample.ip,
.to = sample.addr,
},
};
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
if (pt->synth_opts.inject) {
ret = intel_pt_inject_event(event, &sample,
pt->branches_sample_type,
pt->synth_needs_swap);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(pt->session, event, &sample);
if (ret)
pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
ret);
return ret;
}
static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
{
int ret;
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (pt->synth_opts.initial_skip &&
pt->num_events++ < pt->synth_opts.initial_skip)
return 0;
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = PERF_RECORD_MISC_USER;
event->sample.header.size = sizeof(struct perf_event_header);
if (!pt->timeless_decoding)
sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
sample.cpumode = PERF_RECORD_MISC_USER;
sample.ip = ptq->state->from_ip;
sample.pid = ptq->pid;
sample.tid = ptq->tid;
sample.addr = ptq->state->to_ip;
sample.id = ptq->pt->instructions_id;
sample.stream_id = ptq->pt->instructions_id;
sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
sample.cpu = ptq->cpu;
sample.flags = ptq->flags;
sample.insn_len = ptq->insn_len;
ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
if (pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->chain,
pt->synth_opts.callchain_sz, sample.ip);
sample.callchain = ptq->chain;
}
if (pt->synth_opts.last_branch) {
intel_pt_copy_last_branch_rb(ptq);
sample.branch_stack = ptq->last_branch;
}
if (pt->synth_opts.inject) {
ret = intel_pt_inject_event(event, &sample,
pt->instructions_sample_type,
pt->synth_needs_swap);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(pt->session, event, &sample);
if (ret)
pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
ret);
if (pt->synth_opts.last_branch)
intel_pt_reset_last_branch_rb(ptq);
return ret;
}
static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
{
int ret;
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (pt->synth_opts.initial_skip &&
pt->num_events++ < pt->synth_opts.initial_skip)
return 0;
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = PERF_RECORD_MISC_USER;
event->sample.header.size = sizeof(struct perf_event_header);
if (!pt->timeless_decoding)
sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
sample.cpumode = PERF_RECORD_MISC_USER;
sample.ip = ptq->state->from_ip;
sample.pid = ptq->pid;
sample.tid = ptq->tid;
sample.addr = ptq->state->to_ip;
sample.id = ptq->pt->transactions_id;
sample.stream_id = ptq->pt->transactions_id;
sample.period = 1;
sample.cpu = ptq->cpu;
sample.flags = ptq->flags;
sample.insn_len = ptq->insn_len;
if (pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->chain,
pt->synth_opts.callchain_sz, sample.ip);
sample.callchain = ptq->chain;
}
if (pt->synth_opts.last_branch) {
intel_pt_copy_last_branch_rb(ptq);
sample.branch_stack = ptq->last_branch;
}
if (pt->synth_opts.inject) {
ret = intel_pt_inject_event(event, &sample,
pt->transactions_sample_type,
pt->synth_needs_swap);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(pt->session, event, &sample);
if (ret)
pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
ret);
if (pt->synth_opts.last_branch)
intel_pt_reset_last_branch_rb(ptq);
return ret;
}
static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
pid_t pid, pid_t tid, u64 ip)
{
union perf_event event;
char msg[MAX_AUXTRACE_ERROR_MSG];
int err;
intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
code, cpu, pid, tid, ip, msg);
err = perf_session__deliver_synth_event(pt->session, &event, NULL);
if (err)
pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
err);
return err;
}
static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
{
struct auxtrace_queue *queue;
pid_t tid = ptq->next_tid;
int err;
if (tid == -1)
return 0;
intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
queue = &pt->queues.queue_array[ptq->queue_nr];
intel_pt_set_pid_tid_cpu(pt, queue);
ptq->next_tid = -1;
return err;
}
static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
{
struct intel_pt *pt = ptq->pt;
return ip == pt->switch_ip &&
(ptq->flags & PERF_IP_FLAG_BRANCH) &&
!(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
}
static int intel_pt_sample(struct intel_pt_queue *ptq)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
int err;
if (!ptq->have_sample)
return 0;
ptq->have_sample = false;
if (pt->sample_instructions &&
(state->type & INTEL_PT_INSTRUCTION) &&
(!pt->synth_opts.initial_skip ||
pt->num_events++ >= pt->synth_opts.initial_skip)) {
err = intel_pt_synth_instruction_sample(ptq);
if (err)
return err;
}
if (pt->sample_transactions &&
(state->type & INTEL_PT_TRANSACTION) &&
(!pt->synth_opts.initial_skip ||
pt->num_events++ >= pt->synth_opts.initial_skip)) {
err = intel_pt_synth_transaction_sample(ptq);
if (err)
return err;
}
if (!(state->type & INTEL_PT_BRANCH))
return 0;
if (pt->synth_opts.callchain)
thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
state->to_ip, ptq->insn_len,
state->trace_nr);
else
thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
if (pt->sample_branches) {
err = intel_pt_synth_branch_sample(ptq);
if (err)
return err;
}
if (pt->synth_opts.last_branch)
intel_pt_update_last_branch_rb(ptq);
if (!pt->sync_switch)
return 0;
if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
switch (ptq->switch_state) {
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
err = intel_pt_next_tid(pt, ptq);
if (err)
return err;
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
default:
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
return 1;
}
} else if (!state->to_ip) {
ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
ptq->switch_state = INTEL_PT_SS_UNKNOWN;
} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
state->to_ip == pt->ptss_ip &&
(ptq->flags & PERF_IP_FLAG_CALL)) {
ptq->switch_state = INTEL_PT_SS_TRACING;
}
return 0;
}
static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
{
struct machine *machine = pt->machine;
struct map *map;
struct symbol *sym, *start;
u64 ip, switch_ip = 0;
const char *ptss;
if (ptss_ip)
*ptss_ip = 0;
map = machine__kernel_map(machine);
if (!map)
return 0;
if (map__load(map, machine->symbol_filter))
return 0;
start = dso__first_symbol(map->dso, MAP__FUNCTION);
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (sym->binding == STB_GLOBAL &&
!strcmp(sym->name, "__switch_to")) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
switch_ip = ip;
break;
}
}
}
if (!switch_ip || !ptss_ip)
return 0;
if (pt->have_sched_switch == 1)
ptss = "perf_trace_sched_switch";
else
ptss = "__perf_event_task_sched_out";
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (!strcmp(sym->name, ptss)) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
*ptss_ip = ip;
break;
}
}
}
return switch_ip;
}
static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
int err;
if (!pt->kernel_start) {
pt->kernel_start = machine__kernel_start(pt->machine);
if (pt->per_cpu_mmaps &&
(pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
!pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
!pt->sampling_mode) {
pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
if (pt->switch_ip) {
intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
pt->switch_ip, pt->ptss_ip);
pt->sync_switch = true;
}
}
}
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
while (1) {
err = intel_pt_sample(ptq);
if (err)
return err;
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA)
return 1;
if (pt->sync_switch &&
state->from_ip >= pt->kernel_start) {
pt->sync_switch = false;
intel_pt_next_tid(pt, ptq);
}
if (pt->synth_opts.errors) {
err = intel_pt_synth_error(pt, state->err,
ptq->cpu, ptq->pid,
ptq->tid,
state->from_ip);
if (err)
return err;
}
continue;
}
ptq->state = state;
ptq->have_sample = true;
intel_pt_sample_flags(ptq);
/* Use estimated TSC upon return to user space */
if (pt->est_tsc &&
(state->from_ip >= pt->kernel_start || !state->from_ip) &&
state->to_ip && state->to_ip < pt->kernel_start) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
/* Use estimated TSC in unknown switch state */
} else if (pt->sync_switch &&
ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
intel_pt_is_switch_ip(ptq, state->to_ip) &&
ptq->next_tid == -1) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
} else if (state->timestamp > ptq->timestamp) {
ptq->timestamp = state->timestamp;
}
if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
*timestamp = ptq->timestamp;
return 0;
}
}
return 0;
}
static inline int intel_pt_update_queues(struct intel_pt *pt)
{
if (pt->queues.new_data) {
pt->queues.new_data = false;
return intel_pt_setup_queues(pt);
}
return 0;
}
static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
{
unsigned int queue_nr;
u64 ts;
int ret;
while (1) {
struct auxtrace_queue *queue;
struct intel_pt_queue *ptq;
if (!pt->heap.heap_cnt)
return 0;
if (pt->heap.heap_array[0].ordinal >= timestamp)
return 0;
queue_nr = pt->heap.heap_array[0].queue_nr;
queue = &pt->queues.queue_array[queue_nr];
ptq = queue->priv;
intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
queue_nr, pt->heap.heap_array[0].ordinal,
timestamp);
auxtrace_heap__pop(&pt->heap);
if (pt->heap.heap_cnt) {
ts = pt->heap.heap_array[0].ordinal + 1;
if (ts > timestamp)
ts = timestamp;
} else {
ts = timestamp;
}
intel_pt_set_pid_tid_cpu(pt, queue);
ret = intel_pt_run_decoder(ptq, &ts);
if (ret < 0) {
auxtrace_heap__add(&pt->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
if (ret < 0)
return ret;
} else {
ptq->on_heap = false;
}
}
return 0;
}
static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
u64 time_)
{
struct auxtrace_queues *queues = &pt->queues;
unsigned int i;
u64 ts = 0;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq && (tid == -1 || ptq->tid == tid)) {
ptq->time = time_;
intel_pt_set_pid_tid_cpu(pt, queue);
intel_pt_run_decoder(ptq, &ts);
}
}
return 0;
}
static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
{
return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
sample->pid, sample->tid, 0);
}
static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
{
unsigned i, j;
if (cpu < 0 || !pt->queues.nr_queues)
return NULL;
if ((unsigned)cpu >= pt->queues.nr_queues)
i = pt->queues.nr_queues - 1;
else
i = cpu;
if (pt->queues.queue_array[i].cpu == cpu)
return pt->queues.queue_array[i].priv;
for (j = 0; i > 0; j++) {
if (pt->queues.queue_array[--i].cpu == cpu)
return pt->queues.queue_array[i].priv;
}
for (; j < pt->queues.nr_queues; j++) {
if (pt->queues.queue_array[j].cpu == cpu)
return pt->queues.queue_array[j].priv;
}
return NULL;
}
static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
u64 timestamp)
{
struct intel_pt_queue *ptq;
int err;
if (!pt->sync_switch)
return 1;
ptq = intel_pt_cpu_to_ptq(pt, cpu);
if (!ptq)
return 1;
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
ptq->next_tid = -1;
break;
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_TRACING:
ptq->next_tid = tid;
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
return 0;
case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
if (!ptq->on_heap) {
ptq->timestamp = perf_time_to_tsc(timestamp,
&pt->tc);
err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
ptq->timestamp);
if (err)
return err;
ptq->on_heap = true;
}
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
ptq->next_tid = tid;
intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
break;
default:
break;
}
return 1;
}
static int intel_pt_process_switch(struct intel_pt *pt,
struct perf_sample *sample)
{
struct perf_evsel *evsel;
pid_t tid;
int cpu, ret;
evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
if (evsel != pt->switch_evsel)
return 0;
tid = perf_evsel__intval(evsel, sample, "next_pid");
cpu = sample->cpu;
intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
cpu, tid, sample->time, perf_time_to_tsc(sample->time,
&pt->tc));
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, -1, tid);
}
static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
struct perf_sample *sample)
{
bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
pid_t pid, tid;
int cpu, ret;
cpu = sample->cpu;
if (pt->have_sched_switch == 3) {
if (!out)
return 0;
if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
pr_err("Expecting CPU-wide context switch event\n");
return -EINVAL;
}
pid = event->context_switch.next_prev_pid;
tid = event->context_switch.next_prev_tid;
} else {
if (out)
return 0;
pid = sample->pid;
tid = sample->tid;
}
if (tid == -1) {
pr_err("context_switch event has no tid\n");
return -EINVAL;
}
intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
&pt->tc));
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, pid, tid);
}
static int intel_pt_process_itrace_start(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample)
{
if (!pt->per_cpu_mmaps)
return 0;
intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
sample->cpu, event->itrace_start.pid,
event->itrace_start.tid, sample->time,
perf_time_to_tsc(sample->time, &pt->tc));
return machine__set_current_tid(pt->machine, sample->cpu,
event->itrace_start.pid,
event->itrace_start.tid);
}
static int intel_pt_process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
u64 timestamp;
int err = 0;
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("Intel Processor Trace requires ordered events\n");
return -EINVAL;
}
if (sample->time && sample->time != (u64)-1)
timestamp = perf_time_to_tsc(sample->time, &pt->tc);
else
timestamp = 0;
if (timestamp || pt->timeless_decoding) {
err = intel_pt_update_queues(pt);
if (err)
return err;
}
if (pt->timeless_decoding) {
if (event->header.type == PERF_RECORD_EXIT) {
err = intel_pt_process_timeless_queues(pt,
perf tools: Fix use of wrong event when processing exit events In a couple of cases the 'comm' member of 'union event' has been used instead of the correct member ('fork') when processing exit events. In the cases where it has been used incorrectly, only the 'pid' and 'tid' are affected. The 'pid' value would be correct anyway because it is in the same position in 'comm' and 'fork' events, but the 'tid' would have been incorrectly assigned from 'ppid'. However, for exit events, the kernel puts the current task in the 'ppid' and 'ttid' which is the same as the exiting task. That is 'ppid' == 'pid' and if the task is not multi-threaded, 'pid' == 'tid' i.e. the data goes wrong only when tracing multi-threaded programs. It is hard to find an example of how this would produce an error in practice. There are 3 occurences of the fix: 1. perf script is only affected if !sample_id_all which only happens on old kernels. 2. intel_pt is only affected when decoding without timestamps and would probably still decode correctly - the exit event is only used to flush out data which anyway gets flushed at the end of the session 3. intel_bts also uses the exit event to flush data which would probably not cause errors as it would get flushed at the end of the session instead Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1439888825-27708-1-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-08-18 17:07:05 +08:00
event->fork.tid,
sample->time);
}
} else if (timestamp) {
err = intel_pt_process_queues(pt, timestamp);
}
if (err)
return err;
if (event->header.type == PERF_RECORD_AUX &&
(event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
pt->synth_opts.errors) {
err = intel_pt_lost(pt, sample);
if (err)
return err;
}
if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
err = intel_pt_process_switch(pt, sample);
else if (event->header.type == PERF_RECORD_ITRACE_START)
err = intel_pt_process_itrace_start(pt, event, sample);
else if (event->header.type == PERF_RECORD_SWITCH ||
event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
err = intel_pt_context_switch(pt, event, sample);
intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
perf_event__name(event->header.type), event->header.type,
sample->cpu, sample->time, timestamp);
return err;
}
static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
int ret;
if (dump_trace)
return 0;
if (!tool->ordered_events)
return -EINVAL;
ret = intel_pt_update_queues(pt);
if (ret < 0)
return ret;
if (pt->timeless_decoding)
return intel_pt_process_timeless_queues(pt, -1,
MAX_TIMESTAMP - 1);
return intel_pt_process_queues(pt, MAX_TIMESTAMP);
}
static void intel_pt_free_events(struct perf_session *session)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
struct auxtrace_queues *queues = &pt->queues;
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
intel_pt_free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
intel_pt_log_disable();
auxtrace_queues__free(queues);
}
static void intel_pt_free(struct perf_session *session)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
auxtrace_heap__free(&pt->heap);
intel_pt_free_events(session);
session->auxtrace = NULL;
thread__put(pt->unknown_thread);
free(pt);
}
static int intel_pt_process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
if (pt->sampling_mode)
return 0;
if (!pt->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data_file__fd(session->file);
int err;
if (perf_data_file__is_pipe(session->file)) {
data_offset = 0;
} else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&pt->queues, session, event,
data_offset, &buffer);
if (err)
return err;
/* Dump here now we have copied a piped trace out of the pipe */
if (dump_trace) {
if (auxtrace_buffer__get_data(buffer, fd)) {
intel_pt_dump_event(pt, buffer->data,
buffer->size);
auxtrace_buffer__put_data(buffer);
}
}
}
return 0;
}
struct intel_pt_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int intel_pt_event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct intel_pt_synth *intel_pt_synth =
container_of(tool, struct intel_pt_synth, dummy_tool);
return perf_session__deliver_synth_event(intel_pt_synth->session, event,
NULL);
}
static int intel_pt_synth_event(struct perf_session *session,
struct perf_event_attr *attr, u64 id)
{
struct intel_pt_synth intel_pt_synth;
memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
intel_pt_synth.session = session;
return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
&id, intel_pt_event_synth);
}
static int intel_pt_synth_events(struct intel_pt *pt,
struct perf_session *session)
{
struct perf_evlist *evlist = session->evlist;
struct perf_evsel *evsel;
struct perf_event_attr attr;
bool found = false;
u64 id;
int err;
evlist__for_each(evlist, evsel) {
if (evsel->attr.type == pt->pmu_type && evsel->ids) {
found = true;
break;
}
}
if (!found) {
pr_debug("There are no selected events with Intel Processor Trace data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD;
if (pt->timeless_decoding)
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
else
attr.sample_type |= PERF_SAMPLE_TIME;
if (!pt->per_cpu_mmaps)
attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
attr.exclude_user = evsel->attr.exclude_user;
attr.exclude_kernel = evsel->attr.exclude_kernel;
attr.exclude_hv = evsel->attr.exclude_hv;
attr.exclude_host = evsel->attr.exclude_host;
attr.exclude_guest = evsel->attr.exclude_guest;
attr.sample_id_all = evsel->attr.sample_id_all;
attr.read_format = evsel->attr.read_format;
id = evsel->id[0] + 1000000000;
if (!id)
id = 1;
if (pt->synth_opts.instructions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
attr.sample_period =
intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
else
attr.sample_period = pt->synth_opts.period;
pt->instructions_sample_period = attr.sample_period;
if (pt->synth_opts.callchain)
attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
if (pt->synth_opts.last_branch)
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
id, (u64)attr.sample_type);
err = intel_pt_synth_event(session, &attr, id);
if (err) {
pr_err("%s: failed to synthesize 'instructions' event type\n",
__func__);
return err;
}
pt->sample_instructions = true;
pt->instructions_sample_type = attr.sample_type;
pt->instructions_id = id;
id += 1;
}
if (pt->synth_opts.transactions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
attr.sample_period = 1;
if (pt->synth_opts.callchain)
attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
if (pt->synth_opts.last_branch)
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
id, (u64)attr.sample_type);
err = intel_pt_synth_event(session, &attr, id);
if (err) {
pr_err("%s: failed to synthesize 'transactions' event type\n",
__func__);
return err;
}
pt->sample_transactions = true;
pt->transactions_id = id;
id += 1;
evlist__for_each(evlist, evsel) {
if (evsel->id && evsel->id[0] == pt->transactions_id) {
if (evsel->name)
zfree(&evsel->name);
evsel->name = strdup("transactions");
break;
}
}
}
if (pt->synth_opts.branches) {
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
attr.sample_period = 1;
attr.sample_type |= PERF_SAMPLE_ADDR;
attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK;
pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
id, (u64)attr.sample_type);
err = intel_pt_synth_event(session, &attr, id);
if (err) {
pr_err("%s: failed to synthesize 'branches' event type\n",
__func__);
return err;
}
pt->sample_branches = true;
pt->branches_sample_type = attr.sample_type;
pt->branches_id = id;
}
pt->synth_needs_swap = evsel->needs_swap;
return 0;
}
static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
evlist__for_each_reverse(evlist, evsel) {
const char *name = perf_evsel__name(evsel);
if (!strcmp(name, "sched:sched_switch"))
return evsel;
}
return NULL;
}
static bool intel_pt_find_switch(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
evlist__for_each(evlist, evsel) {
if (evsel->attr.context_switch)
return true;
}
return false;
}
perf intel-pt: Add mispred-all config option to aid use with autofdo autofdo incorrectly expects branch flags to include either mispred or predicted. In fact mispred = predicted = 0 is valid and means the flags are not supported, which they aren't by Intel PT. To make autofdo work, add a config option which will cause Intel PT decoder to set the mispred flag on all branches. Below is an example of using Intel PT with autofdo. The example is also added to the Intel PT documentation. It requires autofdo (https://github.com/google/autofdo) and gcc version 5. The bubble sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) amended to take the number of elements as a parameter. $ gcc-5 -O3 sort.c -o sort_optimized $ ./sort_optimized 30000 Bubble sorting array of 30000 elements 2254 ms $ cat ~/.perfconfig [intel-pt] mispred-all $ perf record -e intel_pt//u ./sort 3000 Bubble sorting array of 3000 elements 58 ms [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 3.939 MB perf.data ] $ perf inject -i perf.data -o inj --itrace=i100usle --strip $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo $ ./sort_autofdo 30000 Bubble sorting array of 30000 elements 2155 ms Note there is currently no advantage to using Intel PT instead of LBR, but that may change in the future if greater use is made of the data. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1443186956-18718-26-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-09-25 21:15:56 +08:00
static int intel_pt_perf_config(const char *var, const char *value, void *data)
{
struct intel_pt *pt = data;
if (!strcmp(var, "intel-pt.mispred-all"))
pt->mispred_all = perf_config_bool(var, value);
return 0;
}
static const char * const intel_pt_info_fmts[] = {
[INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
[INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
[INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
[INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
[INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
[INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
[INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
[INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
[INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
[INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
[INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
[INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
[INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
[INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
};
static void intel_pt_print_info(u64 *arr, int start, int finish)
{
int i;
if (!dump_trace)
return;
for (i = start; i <= finish; i++)
fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
}
int intel_pt_process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
struct intel_pt *pt;
int err;
if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
min_sz)
return -EINVAL;
pt = zalloc(sizeof(struct intel_pt));
if (!pt)
return -ENOMEM;
perf intel-pt: Add mispred-all config option to aid use with autofdo autofdo incorrectly expects branch flags to include either mispred or predicted. In fact mispred = predicted = 0 is valid and means the flags are not supported, which they aren't by Intel PT. To make autofdo work, add a config option which will cause Intel PT decoder to set the mispred flag on all branches. Below is an example of using Intel PT with autofdo. The example is also added to the Intel PT documentation. It requires autofdo (https://github.com/google/autofdo) and gcc version 5. The bubble sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) amended to take the number of elements as a parameter. $ gcc-5 -O3 sort.c -o sort_optimized $ ./sort_optimized 30000 Bubble sorting array of 30000 elements 2254 ms $ cat ~/.perfconfig [intel-pt] mispred-all $ perf record -e intel_pt//u ./sort 3000 Bubble sorting array of 3000 elements 58 ms [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 3.939 MB perf.data ] $ perf inject -i perf.data -o inj --itrace=i100usle --strip $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo $ ./sort_autofdo 30000 Bubble sorting array of 30000 elements 2155 ms Note there is currently no advantage to using Intel PT instead of LBR, but that may change in the future if greater use is made of the data. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1443186956-18718-26-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-09-25 21:15:56 +08:00
perf_config(intel_pt_perf_config, pt);
err = auxtrace_queues__init(&pt->queues);
if (err)
goto err_free;
intel_pt_log_set_name(INTEL_PT_PMU_NAME);
pt->session = session;
pt->machine = &session->machines.host; /* No kvm support */
pt->auxtrace_type = auxtrace_info->type;
pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
INTEL_PT_PER_CPU_MMAPS);
if (auxtrace_info->header.size >= sizeof(struct auxtrace_info_event) +
(sizeof(u64) * INTEL_PT_CYC_BIT)) {
pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
INTEL_PT_CYC_BIT);
}
pt->timeless_decoding = intel_pt_timeless_decoding(pt);
pt->have_tsc = intel_pt_have_tsc(pt);
pt->sampling_mode = false;
pt->est_tsc = !pt->timeless_decoding;
pt->unknown_thread = thread__new(999999999, 999999999);
if (!pt->unknown_thread) {
err = -ENOMEM;
goto err_free_queues;
}
perf tools: Fix thread lifetime related segfaut in intel_pt intel_pt_process_auxtrace_info() creates a pt->unknown_thread thread that eventually needs to be freed by the last thread__put() on it, when its refcount hits zero, which may happen in intel_pt_process_auxtrace_info() error handling path and triggers the following segfault, which would happen as well at intel_pt_free, when tools using this intel_pt codebase frees up resources: # perf record -I -e intel_pt/tsc=1,noretcomp=1/u /bin/ls 0 a anaconda-ks.cfg bin perf.data perf.data.old perf-f23-bringup.todo [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.217 MB perf.data ] # # perf script -F event,comm,pid,tid,time,addr,ip,sym,dso,iregs Samples for 'instructions:u' event do not have IREGS attribute set. Cannot print 'iregs' field. intel_pt_synth_events: failed to synthesize 'instructions' event type Segmentation fault (core dumped) # The problem is: there's a union in 'struct thread' combines a list_head and a rb_node. The standard life cycle of a thread is: init rb_node in the constructor, insert it into machine->threads rbtree using rb_node, move it to machine->dead_threads using list_head, clean in the last thread__put: list_del_init(&thread->node). In the above command, it clean a thread before adding it into list, causes the above segfault. Since pt->unknown_thread will never live in an rbtree, initialize its list node so that when list_del_init() is done on it we don't segfault. After this patch: # perf script -F event,comm,pid,tid,time,addr,ip,sym,dso,iregs Samples for 'instructions:u' event do not have IREGS attribute set. Cannot print 'iregs' field. intel_pt_synth_events: failed to synthesize 'instructions' event type 0x248 [0x88]: failed to process type: 70 # Reported-by: Tong Zhang <ztong@vt.edu> Reported-by: Wang Nan <wangnan0@huawei.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Link: http://lkml.kernel.org/r/1454296865-19749-1-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-02-01 11:21:04 +08:00
/*
* Since this thread will not be kept in any rbtree not in a
* list, initialize its list node so that at thread__put() the
* current thread lifetime assuption is kept and we don't segfault
* at list_del_init().
*/
INIT_LIST_HEAD(&pt->unknown_thread->node);
err = thread__set_comm(pt->unknown_thread, "unknown", 0);
if (err)
goto err_delete_thread;
if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
err = -ENOMEM;
goto err_delete_thread;
}
pt->auxtrace.process_event = intel_pt_process_event;
pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
pt->auxtrace.flush_events = intel_pt_flush;
pt->auxtrace.free_events = intel_pt_free_events;
pt->auxtrace.free = intel_pt_free;
session->auxtrace = &pt->auxtrace;
if (dump_trace)
return 0;
if (pt->have_sched_switch == 1) {
pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
if (!pt->switch_evsel) {
pr_err("%s: missing sched_switch event\n", __func__);
goto err_delete_thread;
}
} else if (pt->have_sched_switch == 2 &&
!intel_pt_find_switch(session->evlist)) {
pr_err("%s: missing context_switch attribute flag\n", __func__);
goto err_delete_thread;
}
if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
pt->synth_opts = *session->itrace_synth_opts;
} else {
itrace_synth_opts__set_default(&pt->synth_opts);
if (use_browser != -1) {
pt->synth_opts.branches = false;
pt->synth_opts.callchain = true;
}
}
if (pt->synth_opts.log)
intel_pt_log_enable();
/* Maximum non-turbo ratio is TSC freq / 100 MHz */
if (pt->tc.time_mult) {
u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000;
intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
intel_pt_log("Maximum non-turbo ratio %u\n",
pt->max_non_turbo_ratio);
}
if (pt->synth_opts.calls)
pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_TRACE_END;
if (pt->synth_opts.returns)
pt->branches_filter |= PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_TRACE_BEGIN;
if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
symbol_conf.use_callchain = true;
if (callchain_register_param(&callchain_param) < 0) {
symbol_conf.use_callchain = false;
pt->synth_opts.callchain = false;
}
}
err = intel_pt_synth_events(pt, session);
if (err)
goto err_delete_thread;
err = auxtrace_queues__process_index(&pt->queues, session);
if (err)
goto err_delete_thread;
if (pt->queues.populated)
pt->data_queued = true;
if (pt->timeless_decoding)
pr_debug2("Intel PT decoding without timestamps\n");
return 0;
err_delete_thread:
thread__zput(pt->unknown_thread);
err_free_queues:
intel_pt_log_disable();
auxtrace_queues__free(&pt->queues);
session->auxtrace = NULL;
err_free:
free(pt);
return err;
}