2020-02-25 06:40:52 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/*
|
|
|
|
* CPU idle driver for Tegra CPUs
|
|
|
|
*
|
|
|
|
* Copyright (c) 2010-2013, NVIDIA Corporation.
|
|
|
|
* Copyright (c) 2011 Google, Inc.
|
|
|
|
* Author: Colin Cross <ccross@android.com>
|
|
|
|
* Gary King <gking@nvidia.com>
|
|
|
|
*
|
|
|
|
* Rework for 3.3 by Peter De Schrijver <pdeschrijver@nvidia.com>
|
|
|
|
*
|
|
|
|
* Tegra20/124 driver unification by Dmitry Osipenko <digetx@gmail.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define pr_fmt(fmt) "tegra-cpuidle: " fmt
|
|
|
|
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <linux/cpuidle.h>
|
|
|
|
#include <linux/cpumask.h>
|
|
|
|
#include <linux/cpu_pm.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
|
|
|
|
#include <linux/clk/tegra.h>
|
2020-02-25 06:40:54 +08:00
|
|
|
#include <linux/firmware/trusted_foundations.h>
|
2020-02-25 06:40:52 +08:00
|
|
|
|
|
|
|
#include <soc/tegra/cpuidle.h>
|
|
|
|
#include <soc/tegra/flowctrl.h>
|
|
|
|
#include <soc/tegra/fuse.h>
|
|
|
|
#include <soc/tegra/irq.h>
|
|
|
|
#include <soc/tegra/pm.h>
|
2020-02-25 06:40:55 +08:00
|
|
|
#include <soc/tegra/pmc.h>
|
2020-02-25 06:40:52 +08:00
|
|
|
|
|
|
|
#include <asm/cpuidle.h>
|
2020-02-25 06:40:54 +08:00
|
|
|
#include <asm/firmware.h>
|
2020-02-25 06:40:52 +08:00
|
|
|
#include <asm/smp_plat.h>
|
|
|
|
#include <asm/suspend.h>
|
|
|
|
|
|
|
|
enum tegra_state {
|
|
|
|
TEGRA_C1,
|
2020-02-25 06:40:53 +08:00
|
|
|
TEGRA_C7,
|
2020-02-25 06:40:52 +08:00
|
|
|
TEGRA_CC6,
|
|
|
|
TEGRA_STATE_COUNT,
|
|
|
|
};
|
|
|
|
|
|
|
|
static atomic_t tegra_idle_barrier;
|
|
|
|
static atomic_t tegra_abort_flag;
|
|
|
|
|
|
|
|
static void tegra_cpuidle_report_cpus_state(void)
|
|
|
|
{
|
|
|
|
unsigned long cpu, lcpu, csr;
|
|
|
|
|
|
|
|
for_each_cpu(lcpu, cpu_possible_mask) {
|
|
|
|
cpu = cpu_logical_map(lcpu);
|
|
|
|
csr = flowctrl_read_cpu_csr(cpu);
|
|
|
|
|
|
|
|
pr_err("cpu%lu: online=%d flowctrl_csr=0x%08lx\n",
|
|
|
|
cpu, cpu_online(lcpu), csr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tegra_cpuidle_wait_for_secondary_cpus_parking(void)
|
|
|
|
{
|
|
|
|
unsigned int retries = 3;
|
|
|
|
|
|
|
|
while (retries--) {
|
|
|
|
unsigned int delay_us = 10;
|
|
|
|
unsigned int timeout_us = 500 * 1000 / delay_us;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The primary CPU0 core shall wait for the secondaries
|
|
|
|
* shutdown in order to power-off CPU's cluster safely.
|
|
|
|
* The timeout value depends on the current CPU frequency,
|
|
|
|
* it takes about 40-150us in average and over 1000us in
|
|
|
|
* a worst case scenario.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
if (tegra_cpu_rail_off_ready())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
udelay(delay_us);
|
|
|
|
|
|
|
|
} while (timeout_us--);
|
|
|
|
|
|
|
|
pr_err("secondary CPU taking too long to park\n");
|
|
|
|
|
|
|
|
tegra_cpuidle_report_cpus_state();
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_err("timed out waiting secondaries to park\n");
|
|
|
|
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tegra_cpuidle_unpark_secondary_cpus(void)
|
|
|
|
{
|
|
|
|
unsigned int cpu, lcpu;
|
|
|
|
|
|
|
|
for_each_cpu(lcpu, cpu_online_mask) {
|
|
|
|
cpu = cpu_logical_map(lcpu);
|
|
|
|
|
|
|
|
if (cpu > 0) {
|
|
|
|
tegra_enable_cpu_clock(cpu);
|
|
|
|
tegra_cpu_out_of_reset(cpu);
|
|
|
|
flowctrl_write_cpu_halt(cpu, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tegra_cpuidle_cc6_enter(unsigned int cpu)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (cpu > 0) {
|
|
|
|
ret = cpu_suspend(cpu, tegra_pm_park_secondary_cpu);
|
|
|
|
} else {
|
|
|
|
ret = tegra_cpuidle_wait_for_secondary_cpus_parking();
|
|
|
|
if (!ret)
|
|
|
|
ret = tegra_pm_enter_lp2();
|
|
|
|
|
|
|
|
tegra_cpuidle_unpark_secondary_cpus();
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:53 +08:00
|
|
|
static int tegra_cpuidle_c7_enter(void)
|
|
|
|
{
|
2020-02-25 06:40:54 +08:00
|
|
|
int err;
|
|
|
|
|
2021-03-02 17:54:04 +08:00
|
|
|
err = call_firmware_op(prepare_idle, TF_PM_MODE_LP2_NOFLUSH_L2);
|
|
|
|
if (err && err != -ENOSYS)
|
|
|
|
return err;
|
2020-02-25 06:40:54 +08:00
|
|
|
|
2020-02-25 06:40:53 +08:00
|
|
|
return cpu_suspend(0, tegra30_pm_secondary_cpu_suspend);
|
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
static int tegra_cpuidle_coupled_barrier(struct cpuidle_device *dev)
|
|
|
|
{
|
|
|
|
if (tegra_pending_sgi()) {
|
|
|
|
/*
|
|
|
|
* CPU got local interrupt that will be lost after GIC's
|
|
|
|
* shutdown because GIC driver doesn't save/restore the
|
|
|
|
* pending SGI state across CPU cluster PM. Abort and retry
|
|
|
|
* next time.
|
|
|
|
*/
|
|
|
|
atomic_set(&tegra_abort_flag, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
cpuidle_coupled_parallel_barrier(dev, &tegra_idle_barrier);
|
|
|
|
|
|
|
|
if (atomic_read(&tegra_abort_flag)) {
|
|
|
|
cpuidle_coupled_parallel_barrier(dev, &tegra_idle_barrier);
|
|
|
|
atomic_set(&tegra_abort_flag, 0);
|
|
|
|
return -EINTR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tegra_cpuidle_state_enter(struct cpuidle_device *dev,
|
|
|
|
int index, unsigned int cpu)
|
|
|
|
{
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
int err;
|
2020-02-25 06:40:52 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* CC6 state is the "CPU cluster power-off" state. In order to
|
|
|
|
* enter this state, at first the secondary CPU cores need to be
|
|
|
|
* parked into offline mode, then the last CPU should clean out
|
|
|
|
* remaining dirty cache lines into DRAM and trigger Flow Controller
|
|
|
|
* logic that turns off the cluster's power domain (which includes
|
|
|
|
* CPU cores, GIC and L2 cache).
|
|
|
|
*/
|
|
|
|
if (index == TEGRA_CC6) {
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
err = tegra_cpuidle_coupled_barrier(dev);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2020-02-25 06:40:52 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
local_fiq_disable();
|
2020-11-04 21:21:26 +08:00
|
|
|
RCU_NONIDLE(tegra_pm_set_cpu_in_lp2());
|
2020-02-25 06:40:52 +08:00
|
|
|
cpu_pm_enter();
|
|
|
|
|
|
|
|
switch (index) {
|
2020-02-25 06:40:53 +08:00
|
|
|
case TEGRA_C7:
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
err = tegra_cpuidle_c7_enter();
|
2020-02-25 06:40:53 +08:00
|
|
|
break;
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
case TEGRA_CC6:
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
err = tegra_cpuidle_cc6_enter(cpu);
|
2020-02-25 06:40:52 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
err = -EINVAL;
|
2020-02-25 06:40:52 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu_pm_exit();
|
2020-11-04 21:21:26 +08:00
|
|
|
RCU_NONIDLE(tegra_pm_clear_cpu_in_lp2());
|
2020-02-25 06:40:52 +08:00
|
|
|
local_fiq_enable();
|
|
|
|
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
return err ?: index;
|
2020-02-25 06:40:52 +08:00
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:53 +08:00
|
|
|
static int tegra_cpuidle_adjust_state_index(int index, unsigned int cpu)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* On Tegra30 CPU0 can't be power-gated separately from secondary
|
|
|
|
* cores because it gates the whole CPU cluster.
|
|
|
|
*/
|
|
|
|
if (cpu > 0 || index != TEGRA_C7 || tegra_get_chip_id() != TEGRA30)
|
|
|
|
return index;
|
|
|
|
|
|
|
|
/* put CPU0 into C1 if C7 is requested and secondaries are online */
|
|
|
|
if (!IS_ENABLED(CONFIG_PM_SLEEP) || num_online_cpus() > 1)
|
|
|
|
index = TEGRA_C1;
|
|
|
|
else
|
|
|
|
index = TEGRA_CC6;
|
|
|
|
|
|
|
|
return index;
|
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
static int tegra_cpuidle_enter(struct cpuidle_device *dev,
|
|
|
|
struct cpuidle_driver *drv,
|
|
|
|
int index)
|
|
|
|
{
|
|
|
|
unsigned int cpu = cpu_logical_map(dev->cpu);
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
int ret;
|
2020-02-25 06:40:52 +08:00
|
|
|
|
2020-02-25 06:40:53 +08:00
|
|
|
index = tegra_cpuidle_adjust_state_index(index, cpu);
|
|
|
|
if (dev->states_usage[index].disable)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (index == TEGRA_C1)
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
ret = arm_cpuidle_simple_enter(dev, drv, index);
|
2020-02-25 06:40:53 +08:00
|
|
|
else
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
ret = tegra_cpuidle_state_enter(dev, index, cpu);
|
2020-02-25 06:40:53 +08:00
|
|
|
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
if (ret < 0) {
|
|
|
|
if (ret != -EINTR || index != TEGRA_CC6)
|
|
|
|
pr_err_once("failed to enter state %d err: %d\n",
|
|
|
|
index, ret);
|
|
|
|
index = -1;
|
|
|
|
} else {
|
|
|
|
index = ret;
|
|
|
|
}
|
2020-02-25 06:40:52 +08:00
|
|
|
|
cpuidle: tegra: Correctly handle result of arm_cpuidle_simple_enter()
The enter() callback of CPUIDLE drivers returns index of the entered idle
state on success or a negative value on failure. The negative value could
any negative value, i.e. it doesn't necessarily needs to be a error code.
That's because CPUIDLE core only cares about the fact of failure and not
about the reason of the enter() failure.
Like every other enter() callback, the arm_cpuidle_simple_enter() returns
the entered idle-index on success. Unlike some of other drivers, it never
fails. It happened that TEGRA_C1=index=err=0 in the code of cpuidle-tegra
driver, and thus, there is no problem for the cpuidle-tegra driver created
by the typo in the code which assumes that the arm_cpuidle_simple_enter()
returns a error code.
The arm_cpuidle_simple_enter() also may return a -ENODEV error if CPU_IDLE
is disabled in a kernel's config, but all CPUIDLE drivers are disabled if
CPU_IDLE is disabled, including the cpuidle-tegra driver. So we can't ever
see the error code from arm_cpuidle_simple_enter() today.
Of course the code may get some changes in the future and then the
typo may transform into a real bug, so let's correct the typo! The
tegra_cpuidle_state_enter() is now changed to make it return the entered
idle-index on success and negative error code on fail, which puts it on
par with the arm_cpuidle_simple_enter(), making code consistent in regards
to the error handling.
This patch fixes a minor typo in the code, it doesn't fix any bugs.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-10 01:35:32 +08:00
|
|
|
return index;
|
2020-02-25 06:40:52 +08:00
|
|
|
}
|
|
|
|
|
2020-07-27 11:25:46 +08:00
|
|
|
static int tegra114_enter_s2idle(struct cpuidle_device *dev,
|
|
|
|
struct cpuidle_driver *drv,
|
|
|
|
int index)
|
2020-02-25 06:40:54 +08:00
|
|
|
{
|
|
|
|
tegra_cpuidle_enter(dev, drv, index);
|
2020-07-27 11:25:46 +08:00
|
|
|
|
|
|
|
return 0;
|
2020-02-25 06:40:54 +08:00
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
/*
|
|
|
|
* The previous versions of Tegra CPUIDLE driver used a different "legacy"
|
|
|
|
* terminology for naming of the idling states, while this driver uses the
|
|
|
|
* new terminology.
|
|
|
|
*
|
|
|
|
* Mapping of the old terms into the new ones:
|
|
|
|
*
|
|
|
|
* Old | New
|
|
|
|
* ---------
|
|
|
|
* LP3 | C1 (CPU core clock gating)
|
|
|
|
* LP2 | C7 (CPU core power gating)
|
|
|
|
* LP2 | CC6 (CPU cluster power gating)
|
|
|
|
*
|
|
|
|
* Note that that the older CPUIDLE driver versions didn't explicitly
|
|
|
|
* differentiate the LP2 states because these states either used the same
|
|
|
|
* code path or because CC6 wasn't supported.
|
|
|
|
*/
|
|
|
|
static struct cpuidle_driver tegra_idle_driver = {
|
|
|
|
.name = "tegra_idle",
|
|
|
|
.states = {
|
|
|
|
[TEGRA_C1] = ARM_CPUIDLE_WFI_STATE_PWR(600),
|
2020-02-25 06:40:53 +08:00
|
|
|
[TEGRA_C7] = {
|
|
|
|
.enter = tegra_cpuidle_enter,
|
|
|
|
.exit_latency = 2000,
|
|
|
|
.target_residency = 2200,
|
|
|
|
.power_usage = 100,
|
|
|
|
.flags = CPUIDLE_FLAG_TIMER_STOP,
|
|
|
|
.name = "C7",
|
|
|
|
.desc = "CPU core powered off",
|
|
|
|
},
|
2020-02-25 06:40:52 +08:00
|
|
|
[TEGRA_CC6] = {
|
|
|
|
.enter = tegra_cpuidle_enter,
|
|
|
|
.exit_latency = 5000,
|
|
|
|
.target_residency = 10000,
|
|
|
|
.power_usage = 0,
|
|
|
|
.flags = CPUIDLE_FLAG_TIMER_STOP |
|
|
|
|
CPUIDLE_FLAG_COUPLED,
|
|
|
|
.name = "CC6",
|
|
|
|
.desc = "CPU cluster powered off",
|
|
|
|
},
|
|
|
|
},
|
|
|
|
.state_count = TEGRA_STATE_COUNT,
|
|
|
|
.safe_state_index = TEGRA_C1,
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline void tegra_cpuidle_disable_state(enum tegra_state state)
|
|
|
|
{
|
|
|
|
cpuidle_driver_state_disabled(&tegra_idle_driver, state, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Tegra20 HW appears to have a bug such that PCIe device interrupts, whether
|
|
|
|
* they are legacy IRQs or MSI, are lost when CC6 is enabled. To work around
|
|
|
|
* this, simply disable CC6 if the PCI driver and DT node are both enabled.
|
|
|
|
*/
|
|
|
|
void tegra_cpuidle_pcie_irqs_in_use(void)
|
|
|
|
{
|
|
|
|
struct cpuidle_state *state_cc6 = &tegra_idle_driver.states[TEGRA_CC6];
|
|
|
|
|
|
|
|
if ((state_cc6->flags & CPUIDLE_FLAG_UNUSABLE) ||
|
|
|
|
tegra_get_chip_id() != TEGRA20)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pr_info("disabling CC6 state, since PCIe IRQs are in use\n");
|
|
|
|
tegra_cpuidle_disable_state(TEGRA_CC6);
|
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:54 +08:00
|
|
|
static void tegra_cpuidle_setup_tegra114_c7_state(void)
|
|
|
|
{
|
|
|
|
struct cpuidle_state *s = &tegra_idle_driver.states[TEGRA_C7];
|
|
|
|
|
|
|
|
s->enter_s2idle = tegra114_enter_s2idle;
|
|
|
|
s->target_residency = 1000;
|
|
|
|
s->exit_latency = 500;
|
|
|
|
}
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
static int tegra_cpuidle_probe(struct platform_device *pdev)
|
|
|
|
{
|
2020-02-25 06:40:55 +08:00
|
|
|
/* LP2 could be disabled in device-tree */
|
|
|
|
if (tegra_pmc_get_suspend_mode() < TEGRA_SUSPEND_LP2)
|
|
|
|
tegra_cpuidle_disable_state(TEGRA_CC6);
|
|
|
|
|
2020-02-25 06:40:52 +08:00
|
|
|
/*
|
|
|
|
* Required suspend-resume functionality, which is provided by the
|
|
|
|
* Tegra-arch core and PMC driver, is unavailable if PM-sleep option
|
|
|
|
* is disabled.
|
|
|
|
*/
|
2020-02-25 06:40:53 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_PM_SLEEP)) {
|
2021-03-02 17:54:05 +08:00
|
|
|
tegra_cpuidle_disable_state(TEGRA_C7);
|
2020-02-25 06:40:52 +08:00
|
|
|
tegra_cpuidle_disable_state(TEGRA_CC6);
|
2020-02-25 06:40:53 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generic WFI state (also known as C1 or LP3) and the coupled CPU
|
|
|
|
* cluster power-off (CC6 or LP2) states are common for all Tegra SoCs.
|
|
|
|
*/
|
|
|
|
switch (tegra_get_chip_id()) {
|
|
|
|
case TEGRA20:
|
|
|
|
/* Tegra20 isn't capable to power-off individual CPU cores */
|
|
|
|
tegra_cpuidle_disable_state(TEGRA_C7);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case TEGRA30:
|
|
|
|
break;
|
|
|
|
|
2020-02-25 06:40:54 +08:00
|
|
|
case TEGRA114:
|
|
|
|
case TEGRA124:
|
|
|
|
tegra_cpuidle_setup_tegra114_c7_state();
|
|
|
|
|
|
|
|
/* coupled CC6 (LP2) state isn't implemented yet */
|
|
|
|
tegra_cpuidle_disable_state(TEGRA_CC6);
|
|
|
|
break;
|
|
|
|
|
2020-02-25 06:40:53 +08:00
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2020-02-25 06:40:52 +08:00
|
|
|
|
|
|
|
return cpuidle_register(&tegra_idle_driver, cpu_possible_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct platform_driver tegra_cpuidle_driver = {
|
|
|
|
.probe = tegra_cpuidle_probe,
|
|
|
|
.driver = {
|
|
|
|
.name = "tegra-cpuidle",
|
|
|
|
},
|
|
|
|
};
|
|
|
|
builtin_platform_driver(tegra_cpuidle_driver);
|