OpenCloudOS-Kernel/drivers/leds/leds-lp5523.c

997 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* lp5523.c - LP5523, LP55231 LED Driver
*
* Copyright (C) 2010 Nokia Corporation
* Copyright (C) 2012 Texas Instruments
*
* Contact: Samu Onkalo <samu.p.onkalo@nokia.com>
* Milo(Woogyom) Kim <milo.kim@ti.com>
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_data/leds-lp55xx.h>
#include <linux/slab.h>
#include "leds-lp55xx-common.h"
#define LP5523_PROGRAM_LENGTH 32 /* bytes */
/* Memory is used like this:
* 0x00 engine 1 program
* 0x10 engine 2 program
* 0x20 engine 3 program
* 0x30 engine 1 muxing info
* 0x40 engine 2 muxing info
* 0x50 engine 3 muxing info
*/
#define LP5523_MAX_LEDS 9
/* Registers */
#define LP5523_REG_ENABLE 0x00
#define LP5523_REG_OP_MODE 0x01
#define LP5523_REG_ENABLE_LEDS_MSB 0x04
#define LP5523_REG_ENABLE_LEDS_LSB 0x05
#define LP5523_REG_LED_CTRL_BASE 0x06
#define LP5523_REG_LED_PWM_BASE 0x16
#define LP5523_REG_LED_CURRENT_BASE 0x26
#define LP5523_REG_CONFIG 0x36
#define LP5523_REG_STATUS 0x3A
#define LP5523_REG_RESET 0x3D
#define LP5523_REG_LED_TEST_CTRL 0x41
#define LP5523_REG_LED_TEST_ADC 0x42
#define LP5523_REG_MASTER_FADER_BASE 0x48
#define LP5523_REG_CH1_PROG_START 0x4C
#define LP5523_REG_CH2_PROG_START 0x4D
#define LP5523_REG_CH3_PROG_START 0x4E
#define LP5523_REG_PROG_PAGE_SEL 0x4F
#define LP5523_REG_PROG_MEM 0x50
/* Bit description in registers */
#define LP5523_ENABLE 0x40
#define LP5523_AUTO_INC 0x40
#define LP5523_PWR_SAVE 0x20
#define LP5523_PWM_PWR_SAVE 0x04
#define LP5523_CP_AUTO 0x18
#define LP5523_AUTO_CLK 0x02
#define LP5523_EN_LEDTEST 0x80
#define LP5523_LEDTEST_DONE 0x80
#define LP5523_RESET 0xFF
#define LP5523_ADC_SHORTCIRC_LIM 80
#define LP5523_EXT_CLK_USED 0x08
#define LP5523_ENG_STATUS_MASK 0x07
#define LP5523_FADER_MAPPING_MASK 0xC0
#define LP5523_FADER_MAPPING_SHIFT 6
/* Memory Page Selection */
#define LP5523_PAGE_ENG1 0
#define LP5523_PAGE_ENG2 1
#define LP5523_PAGE_ENG3 2
#define LP5523_PAGE_MUX1 3
#define LP5523_PAGE_MUX2 4
#define LP5523_PAGE_MUX3 5
/* Program Memory Operations */
#define LP5523_MODE_ENG1_M 0x30 /* Operation Mode Register */
#define LP5523_MODE_ENG2_M 0x0C
#define LP5523_MODE_ENG3_M 0x03
#define LP5523_LOAD_ENG1 0x10
#define LP5523_LOAD_ENG2 0x04
#define LP5523_LOAD_ENG3 0x01
#define LP5523_ENG1_IS_LOADING(mode) \
((mode & LP5523_MODE_ENG1_M) == LP5523_LOAD_ENG1)
#define LP5523_ENG2_IS_LOADING(mode) \
((mode & LP5523_MODE_ENG2_M) == LP5523_LOAD_ENG2)
#define LP5523_ENG3_IS_LOADING(mode) \
((mode & LP5523_MODE_ENG3_M) == LP5523_LOAD_ENG3)
#define LP5523_EXEC_ENG1_M 0x30 /* Enable Register */
#define LP5523_EXEC_ENG2_M 0x0C
#define LP5523_EXEC_ENG3_M 0x03
#define LP5523_EXEC_M 0x3F
#define LP5523_RUN_ENG1 0x20
#define LP5523_RUN_ENG2 0x08
#define LP5523_RUN_ENG3 0x02
#define LED_ACTIVE(mux, led) (!!(mux & (0x0001 << led)))
enum lp5523_chip_id {
LP5523,
LP55231,
};
static int lp5523_init_program_engine(struct lp55xx_chip *chip);
static inline void lp5523_wait_opmode_done(void)
{
usleep_range(1000, 2000);
}
static void lp5523_set_led_current(struct lp55xx_led *led, u8 led_current)
{
led->led_current = led_current;
lp55xx_write(led->chip, LP5523_REG_LED_CURRENT_BASE + led->chan_nr,
led_current);
}
static int lp5523_post_init_device(struct lp55xx_chip *chip)
{
int ret;
ret = lp55xx_write(chip, LP5523_REG_ENABLE, LP5523_ENABLE);
if (ret)
return ret;
/* Chip startup time is 500 us, 1 - 2 ms gives some margin */
usleep_range(1000, 2000);
ret = lp55xx_write(chip, LP5523_REG_CONFIG,
LP5523_AUTO_INC | LP5523_PWR_SAVE |
LP5523_CP_AUTO | LP5523_AUTO_CLK |
LP5523_PWM_PWR_SAVE);
if (ret)
return ret;
/* turn on all leds */
ret = lp55xx_write(chip, LP5523_REG_ENABLE_LEDS_MSB, 0x01);
if (ret)
return ret;
ret = lp55xx_write(chip, LP5523_REG_ENABLE_LEDS_LSB, 0xff);
if (ret)
return ret;
return lp5523_init_program_engine(chip);
}
static void lp5523_load_engine(struct lp55xx_chip *chip)
{
enum lp55xx_engine_index idx = chip->engine_idx;
static const u8 mask[] = {
[LP55XX_ENGINE_1] = LP5523_MODE_ENG1_M,
[LP55XX_ENGINE_2] = LP5523_MODE_ENG2_M,
[LP55XX_ENGINE_3] = LP5523_MODE_ENG3_M,
};
static const u8 val[] = {
[LP55XX_ENGINE_1] = LP5523_LOAD_ENG1,
[LP55XX_ENGINE_2] = LP5523_LOAD_ENG2,
[LP55XX_ENGINE_3] = LP5523_LOAD_ENG3,
};
lp55xx_update_bits(chip, LP5523_REG_OP_MODE, mask[idx], val[idx]);
lp5523_wait_opmode_done();
}
static void lp5523_load_engine_and_select_page(struct lp55xx_chip *chip)
{
enum lp55xx_engine_index idx = chip->engine_idx;
static const u8 page_sel[] = {
[LP55XX_ENGINE_1] = LP5523_PAGE_ENG1,
[LP55XX_ENGINE_2] = LP5523_PAGE_ENG2,
[LP55XX_ENGINE_3] = LP5523_PAGE_ENG3,
};
lp5523_load_engine(chip);
lp55xx_write(chip, LP5523_REG_PROG_PAGE_SEL, page_sel[idx]);
}
static void lp5523_stop_all_engines(struct lp55xx_chip *chip)
{
lp55xx_write(chip, LP5523_REG_OP_MODE, 0);
lp5523_wait_opmode_done();
}
static void lp5523_stop_engine(struct lp55xx_chip *chip)
{
enum lp55xx_engine_index idx = chip->engine_idx;
static const u8 mask[] = {
[LP55XX_ENGINE_1] = LP5523_MODE_ENG1_M,
[LP55XX_ENGINE_2] = LP5523_MODE_ENG2_M,
[LP55XX_ENGINE_3] = LP5523_MODE_ENG3_M,
};
lp55xx_update_bits(chip, LP5523_REG_OP_MODE, mask[idx], 0);
lp5523_wait_opmode_done();
}
static void lp5523_turn_off_channels(struct lp55xx_chip *chip)
{
int i;
for (i = 0; i < LP5523_MAX_LEDS; i++)
lp55xx_write(chip, LP5523_REG_LED_PWM_BASE + i, 0);
}
static void lp5523_run_engine(struct lp55xx_chip *chip, bool start)
{
int ret;
u8 mode;
u8 exec;
/* stop engine */
if (!start) {
lp5523_stop_engine(chip);
lp5523_turn_off_channels(chip);
return;
}
/*
* To run the engine,
* operation mode and enable register should updated at the same time
*/
ret = lp55xx_read(chip, LP5523_REG_OP_MODE, &mode);
if (ret)
return;
ret = lp55xx_read(chip, LP5523_REG_ENABLE, &exec);
if (ret)
return;
/* change operation mode to RUN only when each engine is loading */
if (LP5523_ENG1_IS_LOADING(mode)) {
mode = (mode & ~LP5523_MODE_ENG1_M) | LP5523_RUN_ENG1;
exec = (exec & ~LP5523_EXEC_ENG1_M) | LP5523_RUN_ENG1;
}
if (LP5523_ENG2_IS_LOADING(mode)) {
mode = (mode & ~LP5523_MODE_ENG2_M) | LP5523_RUN_ENG2;
exec = (exec & ~LP5523_EXEC_ENG2_M) | LP5523_RUN_ENG2;
}
if (LP5523_ENG3_IS_LOADING(mode)) {
mode = (mode & ~LP5523_MODE_ENG3_M) | LP5523_RUN_ENG3;
exec = (exec & ~LP5523_EXEC_ENG3_M) | LP5523_RUN_ENG3;
}
lp55xx_write(chip, LP5523_REG_OP_MODE, mode);
lp5523_wait_opmode_done();
lp55xx_update_bits(chip, LP5523_REG_ENABLE, LP5523_EXEC_M, exec);
}
static int lp5523_init_program_engine(struct lp55xx_chip *chip)
{
int i;
int j;
int ret;
u8 status;
/* one pattern per engine setting LED MUX start and stop addresses */
static const u8 pattern[][LP5523_PROGRAM_LENGTH] = {
{ 0x9c, 0x30, 0x9c, 0xb0, 0x9d, 0x80, 0xd8, 0x00, 0},
{ 0x9c, 0x40, 0x9c, 0xc0, 0x9d, 0x80, 0xd8, 0x00, 0},
{ 0x9c, 0x50, 0x9c, 0xd0, 0x9d, 0x80, 0xd8, 0x00, 0},
};
/* hardcode 32 bytes of memory for each engine from program memory */
ret = lp55xx_write(chip, LP5523_REG_CH1_PROG_START, 0x00);
if (ret)
return ret;
ret = lp55xx_write(chip, LP5523_REG_CH2_PROG_START, 0x10);
if (ret)
return ret;
ret = lp55xx_write(chip, LP5523_REG_CH3_PROG_START, 0x20);
if (ret)
return ret;
/* write LED MUX address space for each engine */
for (i = LP55XX_ENGINE_1; i <= LP55XX_ENGINE_3; i++) {
chip->engine_idx = i;
lp5523_load_engine_and_select_page(chip);
for (j = 0; j < LP5523_PROGRAM_LENGTH; j++) {
ret = lp55xx_write(chip, LP5523_REG_PROG_MEM + j,
pattern[i - 1][j]);
if (ret)
goto out;
}
}
lp5523_run_engine(chip, true);
/* Let the programs run for couple of ms and check the engine status */
usleep_range(3000, 6000);
ret = lp55xx_read(chip, LP5523_REG_STATUS, &status);
if (ret)
goto out;
status &= LP5523_ENG_STATUS_MASK;
if (status != LP5523_ENG_STATUS_MASK) {
dev_err(&chip->cl->dev,
"could not configure LED engine, status = 0x%.2x\n",
status);
ret = -1;
}
out:
lp5523_stop_all_engines(chip);
return ret;
}
static int lp5523_update_program_memory(struct lp55xx_chip *chip,
const u8 *data, size_t size)
{
u8 pattern[LP5523_PROGRAM_LENGTH] = {0};
unsigned int cmd;
char c[3];
int nrchars;
int ret;
int offset = 0;
int i = 0;
while ((offset < size - 1) && (i < LP5523_PROGRAM_LENGTH)) {
/* separate sscanfs because length is working only for %s */
ret = sscanf(data + offset, "%2s%n ", c, &nrchars);
if (ret != 1)
goto err;
ret = sscanf(c, "%2x", &cmd);
if (ret != 1)
goto err;
pattern[i] = (u8)cmd;
offset += nrchars;
i++;
}
/* Each instruction is 16bit long. Check that length is even */
if (i % 2)
goto err;
for (i = 0; i < LP5523_PROGRAM_LENGTH; i++) {
ret = lp55xx_write(chip, LP5523_REG_PROG_MEM + i, pattern[i]);
if (ret)
return -EINVAL;
}
return size;
err:
dev_err(&chip->cl->dev, "wrong pattern format\n");
return -EINVAL;
}
static void lp5523_firmware_loaded(struct lp55xx_chip *chip)
{
const struct firmware *fw = chip->fw;
if (fw->size > LP5523_PROGRAM_LENGTH) {
dev_err(&chip->cl->dev, "firmware data size overflow: %zu\n",
fw->size);
return;
}
/*
* Program memory sequence
* 1) set engine mode to "LOAD"
* 2) write firmware data into program memory
*/
lp5523_load_engine_and_select_page(chip);
lp5523_update_program_memory(chip, fw->data, fw->size);
}
static ssize_t show_engine_mode(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
enum lp55xx_engine_mode mode = chip->engines[nr - 1].mode;
switch (mode) {
case LP55XX_ENGINE_RUN:
return sprintf(buf, "run\n");
case LP55XX_ENGINE_LOAD:
return sprintf(buf, "load\n");
case LP55XX_ENGINE_DISABLED:
default:
return sprintf(buf, "disabled\n");
}
}
show_mode(1)
show_mode(2)
show_mode(3)
static ssize_t store_engine_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
struct lp55xx_engine *engine = &chip->engines[nr - 1];
mutex_lock(&chip->lock);
chip->engine_idx = nr;
if (!strncmp(buf, "run", 3)) {
lp5523_run_engine(chip, true);
engine->mode = LP55XX_ENGINE_RUN;
} else if (!strncmp(buf, "load", 4)) {
lp5523_stop_engine(chip);
lp5523_load_engine(chip);
engine->mode = LP55XX_ENGINE_LOAD;
} else if (!strncmp(buf, "disabled", 8)) {
lp5523_stop_engine(chip);
engine->mode = LP55XX_ENGINE_DISABLED;
}
mutex_unlock(&chip->lock);
return len;
}
store_mode(1)
store_mode(2)
store_mode(3)
static int lp5523_mux_parse(const char *buf, u16 *mux, size_t len)
{
u16 tmp_mux = 0;
int i;
len = min_t(int, len, LP5523_MAX_LEDS);
for (i = 0; i < len; i++) {
switch (buf[i]) {
case '1':
tmp_mux |= (1 << i);
break;
case '0':
break;
case '\n':
i = len;
break;
default:
return -1;
}
}
*mux = tmp_mux;
return 0;
}
static void lp5523_mux_to_array(u16 led_mux, char *array)
{
int i, pos = 0;
for (i = 0; i < LP5523_MAX_LEDS; i++)
pos += sprintf(array + pos, "%x", LED_ACTIVE(led_mux, i));
array[pos] = '\0';
}
static ssize_t show_engine_leds(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
char mux[LP5523_MAX_LEDS + 1];
lp5523_mux_to_array(chip->engines[nr - 1].led_mux, mux);
return sprintf(buf, "%s\n", mux);
}
show_leds(1)
show_leds(2)
show_leds(3)
static int lp5523_load_mux(struct lp55xx_chip *chip, u16 mux, int nr)
{
struct lp55xx_engine *engine = &chip->engines[nr - 1];
int ret;
static const u8 mux_page[] = {
[LP55XX_ENGINE_1] = LP5523_PAGE_MUX1,
[LP55XX_ENGINE_2] = LP5523_PAGE_MUX2,
[LP55XX_ENGINE_3] = LP5523_PAGE_MUX3,
};
lp5523_load_engine(chip);
ret = lp55xx_write(chip, LP5523_REG_PROG_PAGE_SEL, mux_page[nr]);
if (ret)
return ret;
ret = lp55xx_write(chip, LP5523_REG_PROG_MEM, (u8)(mux >> 8));
if (ret)
return ret;
ret = lp55xx_write(chip, LP5523_REG_PROG_MEM + 1, (u8)(mux));
if (ret)
return ret;
engine->led_mux = mux;
return 0;
}
static ssize_t store_engine_leds(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
struct lp55xx_engine *engine = &chip->engines[nr - 1];
u16 mux = 0;
ssize_t ret;
if (lp5523_mux_parse(buf, &mux, len))
return -EINVAL;
mutex_lock(&chip->lock);
chip->engine_idx = nr;
ret = -EINVAL;
if (engine->mode != LP55XX_ENGINE_LOAD)
goto leave;
if (lp5523_load_mux(chip, mux, nr))
goto leave;
ret = len;
leave:
mutex_unlock(&chip->lock);
return ret;
}
store_leds(1)
store_leds(2)
store_leds(3)
static ssize_t store_engine_load(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int ret;
mutex_lock(&chip->lock);
chip->engine_idx = nr;
lp5523_load_engine_and_select_page(chip);
ret = lp5523_update_program_memory(chip, buf, len);
mutex_unlock(&chip->lock);
return ret;
}
store_load(1)
store_load(2)
store_load(3)
static ssize_t lp5523_selftest(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
struct lp55xx_platform_data *pdata = chip->pdata;
int ret, pos = 0;
u8 status, adc, vdd, i;
mutex_lock(&chip->lock);
ret = lp55xx_read(chip, LP5523_REG_STATUS, &status);
if (ret < 0)
goto fail;
/* Check that ext clock is really in use if requested */
if (pdata->clock_mode == LP55XX_CLOCK_EXT) {
if ((status & LP5523_EXT_CLK_USED) == 0)
goto fail;
}
/* Measure VDD (i.e. VBAT) first (channel 16 corresponds to VDD) */
lp55xx_write(chip, LP5523_REG_LED_TEST_CTRL, LP5523_EN_LEDTEST | 16);
usleep_range(3000, 6000); /* ADC conversion time is typically 2.7 ms */
ret = lp55xx_read(chip, LP5523_REG_STATUS, &status);
if (ret < 0)
goto fail;
if (!(status & LP5523_LEDTEST_DONE))
usleep_range(3000, 6000); /* Was not ready. Wait little bit */
ret = lp55xx_read(chip, LP5523_REG_LED_TEST_ADC, &vdd);
if (ret < 0)
goto fail;
vdd--; /* There may be some fluctuation in measurement */
for (i = 0; i < pdata->num_channels; i++) {
/* Skip disabled channels */
if (pdata->led_config[i].led_current == 0)
continue;
/* Set default current */
lp55xx_write(chip, LP5523_REG_LED_CURRENT_BASE + led->chan_nr,
pdata->led_config[i].led_current);
lp55xx_write(chip, LP5523_REG_LED_PWM_BASE + led->chan_nr,
0xff);
/* let current stabilize 2 - 4ms before measurements start */
usleep_range(2000, 4000);
lp55xx_write(chip, LP5523_REG_LED_TEST_CTRL,
LP5523_EN_LEDTEST | led->chan_nr);
/* ADC conversion time is 2.7 ms typically */
usleep_range(3000, 6000);
ret = lp55xx_read(chip, LP5523_REG_STATUS, &status);
if (ret < 0)
goto fail;
if (!(status & LP5523_LEDTEST_DONE))
usleep_range(3000, 6000); /* Was not ready. Wait. */
ret = lp55xx_read(chip, LP5523_REG_LED_TEST_ADC, &adc);
if (ret < 0)
goto fail;
if (adc >= vdd || adc < LP5523_ADC_SHORTCIRC_LIM)
pos += sprintf(buf + pos, "LED %d FAIL\n",
led->chan_nr);
lp55xx_write(chip, LP5523_REG_LED_PWM_BASE + led->chan_nr,
0x00);
/* Restore current */
lp55xx_write(chip, LP5523_REG_LED_CURRENT_BASE + led->chan_nr,
led->led_current);
led++;
}
if (pos == 0)
pos = sprintf(buf, "OK\n");
goto release_lock;
fail:
pos = sprintf(buf, "FAIL\n");
release_lock:
mutex_unlock(&chip->lock);
return pos;
}
#define show_fader(nr) \
static ssize_t show_master_fader##nr(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_master_fader(dev, attr, buf, nr); \
}
#define store_fader(nr) \
static ssize_t store_master_fader##nr(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t len) \
{ \
return store_master_fader(dev, attr, buf, len, nr); \
}
static ssize_t show_master_fader(struct device *dev,
struct device_attribute *attr,
char *buf, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int ret;
u8 val;
mutex_lock(&chip->lock);
ret = lp55xx_read(chip, LP5523_REG_MASTER_FADER_BASE + nr - 1, &val);
mutex_unlock(&chip->lock);
if (ret == 0)
ret = sprintf(buf, "%u\n", val);
return ret;
}
show_fader(1)
show_fader(2)
show_fader(3)
static ssize_t store_master_fader(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len, int nr)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int ret;
unsigned long val;
if (kstrtoul(buf, 0, &val))
return -EINVAL;
if (val > 0xff)
return -EINVAL;
mutex_lock(&chip->lock);
ret = lp55xx_write(chip, LP5523_REG_MASTER_FADER_BASE + nr - 1,
(u8)val);
mutex_unlock(&chip->lock);
if (ret == 0)
ret = len;
return ret;
}
store_fader(1)
store_fader(2)
store_fader(3)
static ssize_t show_master_fader_leds(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int i, ret, pos = 0;
u8 val;
mutex_lock(&chip->lock);
for (i = 0; i < LP5523_MAX_LEDS; i++) {
ret = lp55xx_read(chip, LP5523_REG_LED_CTRL_BASE + i, &val);
if (ret)
goto leave;
val = (val & LP5523_FADER_MAPPING_MASK)
>> LP5523_FADER_MAPPING_SHIFT;
if (val > 3) {
ret = -EINVAL;
goto leave;
}
buf[pos++] = val + '0';
}
buf[pos++] = '\n';
ret = pos;
leave:
mutex_unlock(&chip->lock);
return ret;
}
static ssize_t store_master_fader_leds(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct lp55xx_led *led = i2c_get_clientdata(to_i2c_client(dev));
struct lp55xx_chip *chip = led->chip;
int i, n, ret;
u8 val;
n = min_t(int, len, LP5523_MAX_LEDS);
mutex_lock(&chip->lock);
for (i = 0; i < n; i++) {
if (buf[i] >= '0' && buf[i] <= '3') {
val = (buf[i] - '0') << LP5523_FADER_MAPPING_SHIFT;
ret = lp55xx_update_bits(chip,
LP5523_REG_LED_CTRL_BASE + i,
LP5523_FADER_MAPPING_MASK,
val);
if (ret)
goto leave;
} else {
ret = -EINVAL;
goto leave;
}
}
ret = len;
leave:
mutex_unlock(&chip->lock);
return ret;
}
static int lp5523_multicolor_brightness(struct lp55xx_led *led)
{
struct lp55xx_chip *chip = led->chip;
int ret;
int i;
mutex_lock(&chip->lock);
for (i = 0; i < led->mc_cdev.num_colors; i++) {
ret = lp55xx_write(chip,
LP5523_REG_LED_PWM_BASE +
led->mc_cdev.subled_info[i].channel,
led->mc_cdev.subled_info[i].brightness);
if (ret)
break;
}
mutex_unlock(&chip->lock);
return ret;
}
static int lp5523_led_brightness(struct lp55xx_led *led)
{
struct lp55xx_chip *chip = led->chip;
int ret;
mutex_lock(&chip->lock);
ret = lp55xx_write(chip, LP5523_REG_LED_PWM_BASE + led->chan_nr,
led->brightness);
mutex_unlock(&chip->lock);
return ret;
}
static LP55XX_DEV_ATTR_RW(engine1_mode, show_engine1_mode, store_engine1_mode);
static LP55XX_DEV_ATTR_RW(engine2_mode, show_engine2_mode, store_engine2_mode);
static LP55XX_DEV_ATTR_RW(engine3_mode, show_engine3_mode, store_engine3_mode);
static LP55XX_DEV_ATTR_RW(engine1_leds, show_engine1_leds, store_engine1_leds);
static LP55XX_DEV_ATTR_RW(engine2_leds, show_engine2_leds, store_engine2_leds);
static LP55XX_DEV_ATTR_RW(engine3_leds, show_engine3_leds, store_engine3_leds);
static LP55XX_DEV_ATTR_WO(engine1_load, store_engine1_load);
static LP55XX_DEV_ATTR_WO(engine2_load, store_engine2_load);
static LP55XX_DEV_ATTR_WO(engine3_load, store_engine3_load);
static LP55XX_DEV_ATTR_RO(selftest, lp5523_selftest);
static LP55XX_DEV_ATTR_RW(master_fader1, show_master_fader1,
store_master_fader1);
static LP55XX_DEV_ATTR_RW(master_fader2, show_master_fader2,
store_master_fader2);
static LP55XX_DEV_ATTR_RW(master_fader3, show_master_fader3,
store_master_fader3);
static LP55XX_DEV_ATTR_RW(master_fader_leds, show_master_fader_leds,
store_master_fader_leds);
static struct attribute *lp5523_attributes[] = {
&dev_attr_engine1_mode.attr,
&dev_attr_engine2_mode.attr,
&dev_attr_engine3_mode.attr,
&dev_attr_engine1_load.attr,
&dev_attr_engine2_load.attr,
&dev_attr_engine3_load.attr,
&dev_attr_engine1_leds.attr,
&dev_attr_engine2_leds.attr,
&dev_attr_engine3_leds.attr,
&dev_attr_selftest.attr,
&dev_attr_master_fader1.attr,
&dev_attr_master_fader2.attr,
&dev_attr_master_fader3.attr,
&dev_attr_master_fader_leds.attr,
NULL,
};
static const struct attribute_group lp5523_group = {
.attrs = lp5523_attributes,
};
/* Chip specific configurations */
static struct lp55xx_device_config lp5523_cfg = {
.reset = {
.addr = LP5523_REG_RESET,
.val = LP5523_RESET,
},
.enable = {
.addr = LP5523_REG_ENABLE,
.val = LP5523_ENABLE,
},
.max_channel = LP5523_MAX_LEDS,
.post_init_device = lp5523_post_init_device,
.brightness_fn = lp5523_led_brightness,
.multicolor_brightness_fn = lp5523_multicolor_brightness,
.set_led_current = lp5523_set_led_current,
.firmware_cb = lp5523_firmware_loaded,
.run_engine = lp5523_run_engine,
.dev_attr_group = &lp5523_group,
};
static int lp5523_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret;
struct lp55xx_chip *chip;
struct lp55xx_led *led;
struct lp55xx_platform_data *pdata = dev_get_platdata(&client->dev);
struct device_node *np = dev_of_node(&client->dev);
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->cfg = &lp5523_cfg;
if (!pdata) {
if (np) {
pdata = lp55xx_of_populate_pdata(&client->dev, np,
chip);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
} else {
dev_err(&client->dev, "no platform data\n");
return -EINVAL;
}
}
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:07:58 +08:00
led = devm_kcalloc(&client->dev,
pdata->num_channels, sizeof(*led), GFP_KERNEL);
if (!led)
return -ENOMEM;
chip->cl = client;
chip->pdata = pdata;
mutex_init(&chip->lock);
i2c_set_clientdata(client, led);
ret = lp55xx_init_device(chip);
if (ret)
goto err_init;
dev_info(&client->dev, "%s Programmable led chip found\n", id->name);
ret = lp55xx_register_leds(led, chip);
if (ret)
goto err_out;
ret = lp55xx_register_sysfs(chip);
if (ret) {
dev_err(&client->dev, "registering sysfs failed\n");
goto err_out;
}
return 0;
err_out:
lp55xx_deinit_device(chip);
err_init:
return ret;
}
i2c: Make remove callback return void The value returned by an i2c driver's remove function is mostly ignored. (Only an error message is printed if the value is non-zero that the error is ignored.) So change the prototype of the remove function to return no value. This way driver authors are not tempted to assume that passing an error to the upper layer is a good idea. All drivers are adapted accordingly. There is no intended change of behaviour, all callbacks were prepared to return 0 before. Reviewed-by: Peter Senna Tschudin <peter.senna@gmail.com> Reviewed-by: Jeremy Kerr <jk@codeconstruct.com.au> Reviewed-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: Crt Mori <cmo@melexis.com> Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Marek Behún <kabel@kernel.org> # for leds-turris-omnia Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Petr Machata <petrm@nvidia.com> # for mlxsw Reviewed-by: Maximilian Luz <luzmaximilian@gmail.com> # for surface3_power Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> # for bmc150-accel-i2c + kxcjk-1013 Reviewed-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> # for media/* + staging/media/* Acked-by: Miguel Ojeda <ojeda@kernel.org> # for auxdisplay/ht16k33 + auxdisplay/lcd2s Reviewed-by: Luca Ceresoli <luca.ceresoli@bootlin.com> # for versaclock5 Reviewed-by: Ajay Gupta <ajayg@nvidia.com> # for ucsi_ccg Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> # for iio Acked-by: Peter Rosin <peda@axentia.se> # for i2c-mux-*, max9860 Acked-by: Adrien Grassein <adrien.grassein@gmail.com> # for lontium-lt8912b Reviewed-by: Jean Delvare <jdelvare@suse.de> # for hwmon, i2c-core and i2c/muxes Acked-by: Corey Minyard <cminyard@mvista.com> # for IPMI Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> # for drivers/power Acked-by: Krzysztof Hałasa <khalasa@piap.pl> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Wolfram Sang <wsa@kernel.org>
2022-08-15 16:02:30 +08:00
static void lp5523_remove(struct i2c_client *client)
{
struct lp55xx_led *led = i2c_get_clientdata(client);
struct lp55xx_chip *chip = led->chip;
lp5523_stop_all_engines(chip);
lp55xx_unregister_sysfs(chip);
lp55xx_deinit_device(chip);
}
static const struct i2c_device_id lp5523_id[] = {
{ "lp5523", LP5523 },
{ "lp55231", LP55231 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lp5523_id);
#ifdef CONFIG_OF
static const struct of_device_id of_lp5523_leds_match[] = {
{ .compatible = "national,lp5523", },
{ .compatible = "ti,lp55231", },
{},
};
MODULE_DEVICE_TABLE(of, of_lp5523_leds_match);
#endif
static struct i2c_driver lp5523_driver = {
.driver = {
.name = "lp5523x",
.of_match_table = of_match_ptr(of_lp5523_leds_match),
},
.probe = lp5523_probe,
.remove = lp5523_remove,
.id_table = lp5523_id,
};
module_i2c_driver(lp5523_driver);
MODULE_AUTHOR("Mathias Nyman <mathias.nyman@nokia.com>");
MODULE_AUTHOR("Milo Kim <milo.kim@ti.com>");
MODULE_DESCRIPTION("LP5523 LED engine");
MODULE_LICENSE("GPL");