drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
|
|
/*
|
|
|
|
* Copyright 2020-2021 Advanced Micro Devices, Inc.
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
2021-02-25 07:47:52 +08:00
|
|
|
#include <linux/sched/task.h>
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
#include "amdgpu_sync.h"
|
|
|
|
#include "amdgpu_object.h"
|
|
|
|
#include "amdgpu_vm.h"
|
|
|
|
#include "amdgpu_mn.h"
|
2020-06-24 05:06:53 +08:00
|
|
|
#include "amdgpu.h"
|
|
|
|
#include "amdgpu_xgmi.h"
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
#include "kfd_priv.h"
|
|
|
|
#include "kfd_svm.h"
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
#include "kfd_migrate.h"
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
|
2021-02-25 07:47:52 +08:00
|
|
|
#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
|
|
|
|
|
2021-02-25 12:55:27 +08:00
|
|
|
/* Long enough to ensure no retry fault comes after svm range is restored and
|
|
|
|
* page table is updated.
|
|
|
|
*/
|
|
|
|
#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000
|
|
|
|
|
2021-02-25 12:24:53 +08:00
|
|
|
static void svm_range_evict_svm_bo_worker(struct work_struct *work);
|
2020-02-16 04:02:49 +08:00
|
|
|
static bool
|
|
|
|
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
|
|
|
|
const struct mmu_notifier_range *range,
|
|
|
|
unsigned long cur_seq);
|
|
|
|
|
|
|
|
static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
|
|
|
|
.invalidate = svm_range_cpu_invalidate_pagetables,
|
|
|
|
};
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
/**
|
|
|
|
* svm_range_unlink - unlink svm_range from lists and interval tree
|
|
|
|
* @prange: svm range structure to be removed
|
|
|
|
*
|
2021-02-25 08:56:09 +08:00
|
|
|
* Remove the svm_range from the svms and svm_bo lists and the svms
|
|
|
|
* interval tree.
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
*
|
|
|
|
* Context: The caller must hold svms->lock
|
|
|
|
*/
|
|
|
|
static void svm_range_unlink(struct svm_range *prange)
|
|
|
|
{
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
|
|
prange, prange->start, prange->last);
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
if (prange->svm_bo) {
|
|
|
|
spin_lock(&prange->svm_bo->list_lock);
|
|
|
|
list_del(&prange->svm_bo_list);
|
|
|
|
spin_unlock(&prange->svm_bo->list_lock);
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
list_del(&prange->list);
|
|
|
|
if (prange->it_node.start != 0 && prange->it_node.last != 0)
|
|
|
|
interval_tree_remove(&prange->it_node, &prange->svms->objects);
|
|
|
|
}
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
static void
|
|
|
|
svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
|
|
|
|
{
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
|
|
prange, prange->start, prange->last);
|
|
|
|
|
|
|
|
mmu_interval_notifier_insert_locked(&prange->notifier, mm,
|
|
|
|
prange->start << PAGE_SHIFT,
|
|
|
|
prange->npages << PAGE_SHIFT,
|
|
|
|
&svm_range_mn_ops);
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
/**
|
|
|
|
* svm_range_add_to_svms - add svm range to svms
|
|
|
|
* @prange: svm range structure to be added
|
|
|
|
*
|
|
|
|
* Add the svm range to svms interval tree and link list
|
|
|
|
*
|
|
|
|
* Context: The caller must hold svms->lock
|
|
|
|
*/
|
|
|
|
static void svm_range_add_to_svms(struct svm_range *prange)
|
|
|
|
{
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
|
|
prange, prange->start, prange->last);
|
|
|
|
|
|
|
|
list_add_tail(&prange->list, &prange->svms->list);
|
|
|
|
prange->it_node.start = prange->start;
|
|
|
|
prange->it_node.last = prange->last;
|
|
|
|
interval_tree_insert(&prange->it_node, &prange->svms->objects);
|
|
|
|
}
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
static void svm_range_remove_notifier(struct svm_range *prange)
|
|
|
|
{
|
|
|
|
pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
prange->svms, prange,
|
|
|
|
prange->notifier.interval_tree.start >> PAGE_SHIFT,
|
|
|
|
prange->notifier.interval_tree.last >> PAGE_SHIFT);
|
|
|
|
|
|
|
|
if (prange->notifier.interval_tree.start != 0 &&
|
|
|
|
prange->notifier.interval_tree.last != 0)
|
|
|
|
mmu_interval_notifier_remove(&prange->notifier);
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
static int
|
|
|
|
svm_range_dma_map_dev(struct device *dev, dma_addr_t **dma_addr,
|
|
|
|
unsigned long *hmm_pfns, uint64_t npages)
|
|
|
|
{
|
|
|
|
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
|
|
|
|
dma_addr_t *addr = *dma_addr;
|
|
|
|
struct page *page;
|
|
|
|
int i, r;
|
|
|
|
|
|
|
|
if (!addr) {
|
|
|
|
addr = kvmalloc_array(npages, sizeof(*addr),
|
|
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (!addr)
|
|
|
|
return -ENOMEM;
|
|
|
|
*dma_addr = addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
|
|
if (WARN_ONCE(addr[i] && !dma_mapping_error(dev, addr[i]),
|
|
|
|
"leaking dma mapping\n"))
|
|
|
|
dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
|
|
|
|
|
|
|
|
page = hmm_pfn_to_page(hmm_pfns[i]);
|
|
|
|
addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
|
|
|
|
r = dma_mapping_error(dev, addr[i]);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d dma_map_page\n", r);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
pr_debug("dma mapping 0x%llx for page addr 0x%lx\n",
|
|
|
|
addr[i] >> PAGE_SHIFT, page_to_pfn(page));
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
|
|
|
|
unsigned long *hmm_pfns)
|
|
|
|
{
|
|
|
|
struct kfd_process *p;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
struct amdgpu_device *adev;
|
|
|
|
|
|
|
|
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
|
|
|
|
r = svm_range_dma_map_dev(adev->dev, &prange->dma_addr[gpuidx],
|
|
|
|
hmm_pfns, prange->npages);
|
|
|
|
if (r)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
|
|
|
|
unsigned long offset, unsigned long npages)
|
2021-02-25 07:29:06 +08:00
|
|
|
{
|
|
|
|
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!dma_addr)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = offset; i < offset + npages; i++) {
|
|
|
|
if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i]))
|
|
|
|
continue;
|
|
|
|
pr_debug("dma unmapping 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
|
|
|
|
dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
|
|
|
|
dma_addr[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
void svm_range_free_dma_mappings(struct svm_range *prange)
|
2021-02-25 07:29:06 +08:00
|
|
|
{
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
dma_addr_t *dma_addr;
|
|
|
|
struct device *dev;
|
|
|
|
struct kfd_process *p;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
|
|
|
|
dma_addr = prange->dma_addr[gpuidx];
|
|
|
|
if (!dma_addr)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
dev = &pdd->dev->pdev->dev;
|
|
|
|
svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
|
|
|
|
kvfree(dma_addr);
|
|
|
|
prange->dma_addr[gpuidx] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
static void svm_range_free(struct svm_range *prange)
|
|
|
|
{
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
|
|
|
|
prange->start, prange->last);
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
svm_range_vram_node_free(prange);
|
2021-02-25 07:29:06 +08:00
|
|
|
svm_range_free_dma_mappings(prange);
|
2020-02-16 04:02:49 +08:00
|
|
|
mutex_destroy(&prange->lock);
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
mutex_destroy(&prange->migrate_mutex);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
kfree(prange);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
|
|
|
|
uint8_t *granularity, uint32_t *flags)
|
|
|
|
{
|
|
|
|
*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
*granularity = 9;
|
|
|
|
*flags =
|
|
|
|
KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct
|
|
|
|
svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
|
|
|
|
uint64_t last)
|
|
|
|
{
|
|
|
|
uint64_t size = last - start + 1;
|
|
|
|
struct svm_range *prange;
|
|
|
|
|
|
|
|
prange = kzalloc(sizeof(*prange), GFP_KERNEL);
|
|
|
|
if (!prange)
|
|
|
|
return NULL;
|
|
|
|
prange->npages = size;
|
|
|
|
prange->svms = svms;
|
|
|
|
prange->start = start;
|
|
|
|
prange->last = last;
|
|
|
|
INIT_LIST_HEAD(&prange->list);
|
|
|
|
INIT_LIST_HEAD(&prange->update_list);
|
|
|
|
INIT_LIST_HEAD(&prange->remove_list);
|
|
|
|
INIT_LIST_HEAD(&prange->insert_list);
|
2021-02-25 08:56:09 +08:00
|
|
|
INIT_LIST_HEAD(&prange->svm_bo_list);
|
2020-04-08 23:09:45 +08:00
|
|
|
INIT_LIST_HEAD(&prange->deferred_list);
|
|
|
|
INIT_LIST_HEAD(&prange->child_list);
|
2021-02-25 07:47:52 +08:00
|
|
|
atomic_set(&prange->invalid, 0);
|
2021-04-13 02:35:18 +08:00
|
|
|
prange->validate_timestamp = 0;
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
mutex_init(&prange->migrate_mutex);
|
2020-02-16 04:02:49 +08:00
|
|
|
mutex_init(&prange->lock);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
svm_range_set_default_attributes(&prange->preferred_loc,
|
|
|
|
&prange->prefetch_loc,
|
|
|
|
&prange->granularity, &prange->flags);
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
|
|
|
|
|
|
|
|
return prange;
|
|
|
|
}
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
|
|
|
|
{
|
|
|
|
if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct svm_range_bo *svm_range_bo_ref(struct svm_range_bo *svm_bo)
|
|
|
|
{
|
|
|
|
if (svm_bo)
|
|
|
|
kref_get(&svm_bo->kref);
|
|
|
|
|
|
|
|
return svm_bo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void svm_range_bo_release(struct kref *kref)
|
|
|
|
{
|
|
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
|
|
|
|
svm_bo = container_of(kref, struct svm_range_bo, kref);
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
|
|
while (!list_empty(&svm_bo->range_list)) {
|
|
|
|
struct svm_range *prange =
|
|
|
|
list_first_entry(&svm_bo->range_list,
|
|
|
|
struct svm_range, svm_bo_list);
|
|
|
|
/* list_del_init tells a concurrent svm_range_vram_node_new when
|
|
|
|
* it's safe to reuse the svm_bo pointer and svm_bo_list head.
|
|
|
|
*/
|
|
|
|
list_del_init(&prange->svm_bo_list);
|
|
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
|
|
prange->start, prange->last);
|
|
|
|
mutex_lock(&prange->lock);
|
|
|
|
prange->svm_bo = NULL;
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
|
|
}
|
|
|
|
spin_unlock(&svm_bo->list_lock);
|
2021-02-25 12:24:53 +08:00
|
|
|
if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
|
|
|
|
/* We're not in the eviction worker.
|
|
|
|
* Signal the fence and synchronize with any
|
|
|
|
* pending eviction work.
|
|
|
|
*/
|
|
|
|
dma_fence_signal(&svm_bo->eviction_fence->base);
|
|
|
|
cancel_work_sync(&svm_bo->eviction_work);
|
|
|
|
}
|
|
|
|
dma_fence_put(&svm_bo->eviction_fence->base);
|
2021-02-25 08:56:09 +08:00
|
|
|
amdgpu_bo_unref(&svm_bo->bo);
|
|
|
|
kfree(svm_bo);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
|
|
|
|
{
|
|
|
|
if (!svm_bo)
|
|
|
|
return;
|
|
|
|
|
|
|
|
kref_put(&svm_bo->kref, svm_range_bo_release);
|
|
|
|
}
|
|
|
|
|
2021-02-25 12:57:33 +08:00
|
|
|
static bool
|
|
|
|
svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange)
|
2021-02-25 12:24:53 +08:00
|
|
|
{
|
2021-02-25 12:57:33 +08:00
|
|
|
struct amdgpu_device *bo_adev;
|
|
|
|
|
2021-02-25 12:24:53 +08:00
|
|
|
mutex_lock(&prange->lock);
|
|
|
|
if (!prange->svm_bo) {
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (prange->ttm_res) {
|
|
|
|
/* We still have a reference, all is well */
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (svm_bo_ref_unless_zero(prange->svm_bo)) {
|
2021-02-25 12:57:33 +08:00
|
|
|
/*
|
|
|
|
* Migrate from GPU to GPU, remove range from source bo_adev
|
|
|
|
* svm_bo range list, and return false to allocate svm_bo from
|
|
|
|
* destination adev.
|
|
|
|
*/
|
|
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
|
|
if (bo_adev != adev) {
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
|
|
|
|
spin_lock(&prange->svm_bo->list_lock);
|
|
|
|
list_del_init(&prange->svm_bo_list);
|
|
|
|
spin_unlock(&prange->svm_bo->list_lock);
|
|
|
|
|
|
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
|
|
return false;
|
|
|
|
}
|
2021-02-25 12:24:53 +08:00
|
|
|
if (READ_ONCE(prange->svm_bo->evicting)) {
|
|
|
|
struct dma_fence *f;
|
|
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
/* The BO is getting evicted,
|
|
|
|
* we need to get a new one
|
|
|
|
*/
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
svm_bo = prange->svm_bo;
|
|
|
|
f = dma_fence_get(&svm_bo->eviction_fence->base);
|
|
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
|
|
/* wait for the fence to avoid long spin-loop
|
|
|
|
* at list_empty_careful
|
|
|
|
*/
|
|
|
|
dma_fence_wait(f, false);
|
|
|
|
dma_fence_put(f);
|
|
|
|
} else {
|
|
|
|
/* The BO was still around and we got
|
|
|
|
* a new reference to it
|
|
|
|
*/
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
prange->svms, prange->start, prange->last);
|
|
|
|
|
|
|
|
prange->ttm_res = &prange->svm_bo->bo->tbo.mem;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We need a new svm_bo. Spin-loop to wait for concurrent
|
|
|
|
* svm_range_bo_release to finish removing this range from
|
|
|
|
* its range list. After this, it is safe to reuse the
|
|
|
|
* svm_bo pointer and svm_bo_list head.
|
|
|
|
*/
|
|
|
|
while (!list_empty_careful(&prange->svm_bo_list))
|
|
|
|
;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
static struct svm_range_bo *svm_range_bo_new(void)
|
|
|
|
{
|
|
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
|
|
|
|
svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
|
|
|
|
if (!svm_bo)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
kref_init(&svm_bo->kref);
|
|
|
|
INIT_LIST_HEAD(&svm_bo->range_list);
|
|
|
|
spin_lock_init(&svm_bo->list_lock);
|
|
|
|
|
|
|
|
return svm_bo;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange,
|
|
|
|
bool clear)
|
|
|
|
{
|
|
|
|
struct amdgpu_bo_param bp;
|
|
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
struct amdgpu_bo_user *ubo;
|
|
|
|
struct amdgpu_bo *bo;
|
|
|
|
struct kfd_process *p;
|
2021-02-25 12:24:53 +08:00
|
|
|
struct mm_struct *mm;
|
2021-02-25 08:56:09 +08:00
|
|
|
int r;
|
|
|
|
|
2021-02-25 12:24:53 +08:00
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
|
|
|
|
prange->start, prange->last);
|
2021-02-25 08:56:09 +08:00
|
|
|
|
2021-02-25 12:57:33 +08:00
|
|
|
if (svm_range_validate_svm_bo(adev, prange))
|
2021-02-25 12:24:53 +08:00
|
|
|
return 0;
|
2021-02-25 08:56:09 +08:00
|
|
|
|
|
|
|
svm_bo = svm_range_bo_new();
|
|
|
|
if (!svm_bo) {
|
|
|
|
pr_debug("failed to alloc svm bo\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
2021-02-25 12:24:53 +08:00
|
|
|
mm = get_task_mm(p->lead_thread);
|
|
|
|
if (!mm) {
|
|
|
|
pr_debug("failed to get mm\n");
|
|
|
|
kfree(svm_bo);
|
|
|
|
return -ESRCH;
|
|
|
|
}
|
|
|
|
svm_bo->svms = prange->svms;
|
|
|
|
svm_bo->eviction_fence =
|
|
|
|
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
|
|
|
|
mm,
|
|
|
|
svm_bo);
|
|
|
|
mmput(mm);
|
|
|
|
INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
|
|
|
|
svm_bo->evicting = 0;
|
2021-02-25 08:56:09 +08:00
|
|
|
memset(&bp, 0, sizeof(bp));
|
|
|
|
bp.size = prange->npages * PAGE_SIZE;
|
|
|
|
bp.byte_align = PAGE_SIZE;
|
|
|
|
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
|
|
|
|
bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
|
|
|
|
bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
|
2021-02-25 12:24:53 +08:00
|
|
|
bp.flags |= AMDGPU_AMDKFD_CREATE_SVM_BO;
|
2021-02-25 08:56:09 +08:00
|
|
|
bp.type = ttm_bo_type_device;
|
|
|
|
bp.resv = NULL;
|
|
|
|
|
|
|
|
r = amdgpu_bo_create_user(adev, &bp, &ubo);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to create bo\n", r);
|
2021-02-25 12:24:53 +08:00
|
|
|
goto create_bo_failed;
|
2021-02-25 08:56:09 +08:00
|
|
|
}
|
|
|
|
bo = &ubo->bo;
|
|
|
|
r = amdgpu_bo_reserve(bo, true);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
|
|
goto reserve_bo_failed;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = dma_resv_reserve_shared(bo->tbo.base.resv, 1);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
|
|
amdgpu_bo_unreserve(bo);
|
|
|
|
goto reserve_bo_failed;
|
|
|
|
}
|
2021-02-25 12:24:53 +08:00
|
|
|
amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
|
2021-02-25 08:56:09 +08:00
|
|
|
|
|
|
|
amdgpu_bo_unreserve(bo);
|
|
|
|
|
|
|
|
svm_bo->bo = bo;
|
|
|
|
prange->svm_bo = svm_bo;
|
|
|
|
prange->ttm_res = &bo->tbo.mem;
|
|
|
|
prange->offset = 0;
|
|
|
|
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
|
|
list_add(&prange->svm_bo_list, &svm_bo->range_list);
|
|
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
reserve_bo_failed:
|
|
|
|
amdgpu_bo_unref(&bo);
|
2021-02-25 12:24:53 +08:00
|
|
|
create_bo_failed:
|
|
|
|
dma_fence_put(&svm_bo->eviction_fence->base);
|
|
|
|
kfree(svm_bo);
|
2021-02-25 08:56:09 +08:00
|
|
|
prange->ttm_res = NULL;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
void svm_range_vram_node_free(struct svm_range *prange)
|
|
|
|
{
|
|
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
|
|
prange->ttm_res = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct amdgpu_device *
|
|
|
|
svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id)
|
|
|
|
{
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
struct kfd_process *p;
|
|
|
|
int32_t gpu_idx;
|
|
|
|
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id);
|
|
|
|
if (gpu_idx < 0) {
|
|
|
|
pr_debug("failed to get device by id 0x%x\n", gpu_id);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpu_idx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to get device by idx 0x%x\n", gpu_idx);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
|
|
|
|
{
|
|
|
|
struct ttm_operation_ctx ctx = { false, false };
|
|
|
|
|
|
|
|
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
|
|
|
|
|
|
|
|
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
static int
|
|
|
|
svm_range_check_attr(struct kfd_process *p,
|
|
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
|
|
|
int gpuidx;
|
|
|
|
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
|
|
switch (attrs[i].type) {
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
|
|
if (attrs[i].value != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
|
|
|
|
attrs[i].value != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
|
|
|
|
kfd_process_gpuidx_from_gpuid(p,
|
|
|
|
attrs[i].value) < 0) {
|
|
|
|
pr_debug("no GPU 0x%x found\n", attrs[i].value);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
|
|
if (attrs[i].value != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
|
|
|
|
kfd_process_gpuidx_from_gpuid(p,
|
|
|
|
attrs[i].value) < 0) {
|
|
|
|
pr_debug("no GPU 0x%x found\n", attrs[i].value);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
|
|
attrs[i].value);
|
|
|
|
if (gpuidx < 0) {
|
|
|
|
pr_debug("no GPU 0x%x found\n", attrs[i].value);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
pr_debug("unknown attr type 0x%x\n", attrs[i].type);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
|
|
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
|
|
|
int gpuidx;
|
|
|
|
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
|
|
switch (attrs[i].type) {
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
|
|
prange->preferred_loc = attrs[i].value;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
|
|
prange->prefetch_loc = attrs[i].value;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
|
|
attrs[i].value);
|
|
|
|
if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
|
|
|
|
bitmap_clear(prange->bitmap_access, gpuidx, 1);
|
|
|
|
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
|
|
|
|
} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
|
|
|
|
bitmap_set(prange->bitmap_access, gpuidx, 1);
|
|
|
|
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
|
|
|
|
} else {
|
|
|
|
bitmap_clear(prange->bitmap_access, gpuidx, 1);
|
|
|
|
bitmap_set(prange->bitmap_aip, gpuidx, 1);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
|
|
prange->flags |= attrs[i].value;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
|
|
prange->flags &= ~attrs[i].value;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
|
|
prange->granularity = attrs[i].value;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_debug_dump - print all range information from svms
|
|
|
|
* @svms: svm range list header
|
|
|
|
*
|
|
|
|
* debug output svm range start, end, prefetch location from svms
|
|
|
|
* interval tree and link list
|
|
|
|
*
|
|
|
|
* Context: The caller must hold svms->lock
|
|
|
|
*/
|
|
|
|
static void svm_range_debug_dump(struct svm_range_list *svms)
|
|
|
|
{
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
struct svm_range *prange;
|
|
|
|
|
|
|
|
pr_debug("dump svms 0x%p list\n", svms);
|
|
|
|
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
|
|
|
|
|
|
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
|
|
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
|
|
|
|
prange, prange->start, prange->npages,
|
|
|
|
prange->start + prange->npages - 1,
|
|
|
|
prange->actual_loc);
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("dump svms 0x%p interval tree\n", svms);
|
|
|
|
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
|
|
|
|
node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
|
|
|
|
while (node) {
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
|
|
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
|
|
|
|
prange, prange->start, prange->npages,
|
|
|
|
prange->start + prange->npages - 1,
|
|
|
|
prange->actual_loc);
|
|
|
|
node = interval_tree_iter_next(node, 0, ~0ULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
svm_range_is_same_attrs(struct svm_range *old, struct svm_range *new)
|
|
|
|
{
|
|
|
|
return (old->prefetch_loc == new->prefetch_loc &&
|
|
|
|
old->flags == new->flags &&
|
|
|
|
old->granularity == new->granularity);
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
static int
|
|
|
|
svm_range_split_array(void *ppnew, void *ppold, size_t size,
|
|
|
|
uint64_t old_start, uint64_t old_n,
|
|
|
|
uint64_t new_start, uint64_t new_n)
|
|
|
|
{
|
|
|
|
unsigned char *new, *old, *pold;
|
|
|
|
uint64_t d;
|
|
|
|
|
|
|
|
if (!ppold)
|
|
|
|
return 0;
|
|
|
|
pold = *(unsigned char **)ppold;
|
|
|
|
if (!pold)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
new = kvmalloc_array(new_n, size, GFP_KERNEL);
|
|
|
|
if (!new)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
d = (new_start - old_start) * size;
|
|
|
|
memcpy(new, pold + d, new_n * size);
|
|
|
|
|
|
|
|
old = kvmalloc_array(old_n, size, GFP_KERNEL);
|
|
|
|
if (!old) {
|
|
|
|
kvfree(new);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
d = (new_start == old_start) ? new_n * size : 0;
|
|
|
|
memcpy(old, pold + d, old_n * size);
|
|
|
|
|
|
|
|
kvfree(pold);
|
|
|
|
*(void **)ppold = old;
|
|
|
|
*(void **)ppnew = new;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_split_pages(struct svm_range *new, struct svm_range *old,
|
|
|
|
uint64_t start, uint64_t last)
|
|
|
|
{
|
|
|
|
uint64_t npages = last - start + 1;
|
|
|
|
int i, r;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_GPU_INSTANCE; i++) {
|
|
|
|
r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
|
|
|
|
sizeof(*old->dma_addr[i]), old->start,
|
|
|
|
npages, new->start, new->npages);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
static int
|
|
|
|
svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
|
|
|
|
uint64_t start, uint64_t last)
|
|
|
|
{
|
|
|
|
uint64_t npages = last - start + 1;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
|
|
|
|
new->svms, new, new->start, start, last);
|
|
|
|
|
|
|
|
if (new->start == old->start) {
|
|
|
|
new->offset = old->offset;
|
|
|
|
old->offset += new->npages;
|
|
|
|
} else {
|
|
|
|
new->offset = old->offset + npages;
|
|
|
|
}
|
|
|
|
|
|
|
|
new->svm_bo = svm_range_bo_ref(old->svm_bo);
|
|
|
|
new->ttm_res = old->ttm_res;
|
|
|
|
|
|
|
|
spin_lock(&new->svm_bo->list_lock);
|
|
|
|
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
|
|
|
|
spin_unlock(&new->svm_bo->list_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
/**
|
|
|
|
* svm_range_split_adjust - split range and adjust
|
|
|
|
*
|
|
|
|
* @new: new range
|
|
|
|
* @old: the old range
|
|
|
|
* @start: the old range adjust to start address in pages
|
|
|
|
* @last: the old range adjust to last address in pages
|
|
|
|
*
|
2021-02-25 08:56:09 +08:00
|
|
|
* Copy system memory dma_addr or vram ttm_res in old range to new
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
* range from new_start up to size new->npages, the remaining old range is from
|
|
|
|
* start to last
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 - OK, -ENOMEM - out of memory
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
|
|
|
|
uint64_t start, uint64_t last)
|
|
|
|
{
|
2021-02-25 07:29:06 +08:00
|
|
|
int r;
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
|
|
|
|
new->svms, new->start, old->start, old->last, start, last);
|
|
|
|
|
|
|
|
if (new->start < old->start ||
|
|
|
|
new->last > old->last) {
|
|
|
|
WARN_ONCE(1, "invalid new range start or last\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
r = svm_range_split_pages(new, old, start, last);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
if (old->actual_loc && old->ttm_res) {
|
|
|
|
r = svm_range_split_nodes(new, old, start, last);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
old->npages = last - start + 1;
|
|
|
|
old->start = start;
|
|
|
|
old->last = last;
|
|
|
|
new->flags = old->flags;
|
|
|
|
new->preferred_loc = old->preferred_loc;
|
|
|
|
new->prefetch_loc = old->prefetch_loc;
|
|
|
|
new->actual_loc = old->actual_loc;
|
|
|
|
new->granularity = old->granularity;
|
|
|
|
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_split - split a range in 2 ranges
|
|
|
|
*
|
|
|
|
* @prange: the svm range to split
|
|
|
|
* @start: the remaining range start address in pages
|
|
|
|
* @last: the remaining range last address in pages
|
|
|
|
* @new: the result new range generated
|
|
|
|
*
|
|
|
|
* Two cases only:
|
|
|
|
* case 1: if start == prange->start
|
|
|
|
* prange ==> prange[start, last]
|
|
|
|
* new range [last + 1, prange->last]
|
|
|
|
*
|
|
|
|
* case 2: if last == prange->last
|
|
|
|
* prange ==> prange[start, last]
|
|
|
|
* new range [prange->start, start - 1]
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
|
|
|
|
struct svm_range **new)
|
|
|
|
{
|
|
|
|
uint64_t old_start = prange->start;
|
|
|
|
uint64_t old_last = prange->last;
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
|
|
|
|
old_start, old_last, start, last);
|
|
|
|
|
|
|
|
if (old_start != start && old_last != last)
|
|
|
|
return -EINVAL;
|
|
|
|
if (start < old_start || last > old_last)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
svms = prange->svms;
|
|
|
|
if (old_start == start)
|
|
|
|
*new = svm_range_new(svms, last + 1, old_last);
|
|
|
|
else
|
|
|
|
*new = svm_range_new(svms, old_start, start - 1);
|
|
|
|
if (!*new)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
r = svm_range_split_adjust(*new, prange, start, last);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
|
|
|
|
r, old_start, old_last, start, last);
|
|
|
|
svm_range_free(*new);
|
|
|
|
*new = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_split_tail(struct svm_range *prange, struct svm_range *new,
|
|
|
|
uint64_t new_last, struct list_head *insert_list)
|
|
|
|
{
|
|
|
|
struct svm_range *tail;
|
|
|
|
int r = svm_range_split(prange, prange->start, new_last, &tail);
|
|
|
|
|
|
|
|
if (!r)
|
|
|
|
list_add(&tail->insert_list, insert_list);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_split_head(struct svm_range *prange, struct svm_range *new,
|
|
|
|
uint64_t new_start, struct list_head *insert_list)
|
|
|
|
{
|
|
|
|
struct svm_range *head;
|
|
|
|
int r = svm_range_split(prange, new_start, prange->last, &head);
|
|
|
|
|
|
|
|
if (!r)
|
|
|
|
list_add(&head->insert_list, insert_list);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2020-04-08 23:09:45 +08:00
|
|
|
static void
|
|
|
|
svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
|
|
|
|
struct svm_range *pchild, enum svm_work_list_ops op)
|
|
|
|
{
|
|
|
|
pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
|
|
|
|
pchild, pchild->start, pchild->last, prange, op);
|
|
|
|
|
|
|
|
pchild->work_item.mm = mm;
|
|
|
|
pchild->work_item.op = op;
|
|
|
|
list_add_tail(&pchild->child_list, &prange->child_list);
|
|
|
|
}
|
|
|
|
|
2021-03-17 12:24:12 +08:00
|
|
|
/**
|
|
|
|
* svm_range_split_by_granularity - collect ranges within granularity boundary
|
|
|
|
*
|
|
|
|
* @p: the process with svms list
|
|
|
|
* @mm: mm structure
|
|
|
|
* @addr: the vm fault address in pages, to split the prange
|
|
|
|
* @parent: parent range if prange is from child list
|
|
|
|
* @prange: prange to split
|
|
|
|
*
|
|
|
|
* Trims @prange to be a single aligned block of prange->granularity if
|
|
|
|
* possible. The head and tail are added to the child_list in @parent.
|
|
|
|
*
|
|
|
|
* Context: caller must hold mmap_read_lock and prange->lock
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 - OK, otherwise error code
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
|
|
|
|
unsigned long addr, struct svm_range *parent,
|
|
|
|
struct svm_range *prange)
|
|
|
|
{
|
|
|
|
struct svm_range *head, *tail;
|
|
|
|
unsigned long start, last, size;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
/* Align splited range start and size to granularity size, then a single
|
|
|
|
* PTE will be used for whole range, this reduces the number of PTE
|
|
|
|
* updated and the L1 TLB space used for translation.
|
|
|
|
*/
|
|
|
|
size = 1UL << prange->granularity;
|
|
|
|
start = ALIGN_DOWN(addr, size);
|
|
|
|
last = ALIGN(addr + 1, size) - 1;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
|
|
|
|
prange->svms, prange->start, prange->last, start, last, size);
|
|
|
|
|
|
|
|
if (start > prange->start) {
|
|
|
|
r = svm_range_split(prange, start, prange->last, &head);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (last < prange->last) {
|
|
|
|
r = svm_range_split(prange, prange->start, last, &tail);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
|
|
|
|
}
|
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
|
|
|
|
if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
|
|
|
|
prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
|
|
|
|
pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
|
|
|
|
prange, prange->start, prange->last,
|
|
|
|
SVM_OP_ADD_RANGE_AND_MAP);
|
|
|
|
}
|
2021-03-17 12:24:12 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
static uint64_t
|
|
|
|
svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange)
|
|
|
|
{
|
2020-06-24 05:06:53 +08:00
|
|
|
struct amdgpu_device *bo_adev;
|
2021-02-25 07:29:06 +08:00
|
|
|
uint32_t flags = prange->flags;
|
2020-06-24 05:06:53 +08:00
|
|
|
uint32_t mapping_flags = 0;
|
2021-02-25 07:29:06 +08:00
|
|
|
uint64_t pte_flags;
|
2020-06-24 05:06:53 +08:00
|
|
|
bool snoop = !prange->ttm_res;
|
|
|
|
bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
|
|
|
|
|
|
|
|
if (prange->svm_bo && prange->ttm_res)
|
|
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
|
|
|
|
|
|
switch (adev->asic_type) {
|
|
|
|
case CHIP_ARCTURUS:
|
|
|
|
if (prange->svm_bo && prange->ttm_res) {
|
|
|
|
if (bo_adev == adev) {
|
|
|
|
mapping_flags |= coherent ?
|
|
|
|
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
|
|
|
|
} else {
|
|
|
|
mapping_flags |= AMDGPU_VM_MTYPE_UC;
|
|
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
|
|
snoop = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
mapping_flags |= coherent ?
|
|
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CHIP_ALDEBARAN:
|
|
|
|
if (prange->svm_bo && prange->ttm_res) {
|
|
|
|
if (bo_adev == adev) {
|
|
|
|
mapping_flags |= coherent ?
|
|
|
|
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
|
|
|
|
if (adev->gmc.xgmi.connected_to_cpu)
|
|
|
|
snoop = true;
|
|
|
|
} else {
|
|
|
|
mapping_flags |= AMDGPU_VM_MTYPE_UC;
|
|
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
|
|
snoop = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
mapping_flags |= coherent ?
|
|
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
mapping_flags |= coherent ?
|
|
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
|
|
}
|
2021-02-25 07:29:06 +08:00
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
|
2021-02-25 07:29:06 +08:00
|
|
|
|
|
|
|
if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
|
|
|
|
mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
|
|
|
|
if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
|
|
|
|
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
pte_flags = AMDGPU_PTE_VALID;
|
|
|
|
pte_flags |= prange->ttm_res ? 0 : AMDGPU_PTE_SYSTEM;
|
|
|
|
pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
|
2021-02-25 07:29:06 +08:00
|
|
|
|
|
|
|
pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags);
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx] vram %d PTE 0x%llx mapping 0x%x\n",
|
2021-02-25 08:56:09 +08:00
|
|
|
prange->svms, prange->start, prange->last,
|
2020-06-24 05:06:53 +08:00
|
|
|
prange->ttm_res ? 1:0, pte_flags, mapping_flags);
|
2021-02-25 07:29:06 +08:00
|
|
|
|
|
|
|
return pte_flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
|
|
|
|
uint64_t start, uint64_t last,
|
|
|
|
struct dma_fence **fence)
|
|
|
|
{
|
|
|
|
uint64_t init_pte_value = 0;
|
|
|
|
|
|
|
|
pr_debug("[0x%llx 0x%llx]\n", start, last);
|
|
|
|
|
|
|
|
return amdgpu_vm_bo_update_mapping(adev, adev, vm, false, true, NULL,
|
|
|
|
start, last, init_pte_value, 0,
|
|
|
|
NULL, NULL, fence);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
|
|
|
|
unsigned long last)
|
|
|
|
{
|
|
|
|
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
struct dma_fence *fence = NULL;
|
|
|
|
struct amdgpu_device *adev;
|
|
|
|
struct kfd_process *p;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
|
|
|
|
MAX_GPU_INSTANCE);
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
|
|
pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
|
|
|
|
r = svm_range_unmap_from_gpu(adev, drm_priv_to_vm(pdd->drm_priv),
|
|
|
|
start, last, &fence);
|
|
|
|
if (r)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (fence) {
|
|
|
|
r = dma_fence_wait(fence, false);
|
|
|
|
dma_fence_put(fence);
|
|
|
|
fence = NULL;
|
|
|
|
if (r)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
amdgpu_amdkfd_flush_gpu_tlb_pasid((struct kgd_dev *)adev,
|
|
|
|
p->pasid);
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
svm_range_map_to_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
|
|
|
|
struct svm_range *prange, dma_addr_t *dma_addr,
|
2020-06-24 05:06:53 +08:00
|
|
|
struct amdgpu_device *bo_adev, struct dma_fence **fence)
|
2021-02-25 07:29:06 +08:00
|
|
|
{
|
2020-06-24 05:06:53 +08:00
|
|
|
struct amdgpu_bo_va bo_va;
|
2021-02-25 07:29:06 +08:00
|
|
|
uint64_t pte_flags;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
|
|
|
|
prange->last);
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
if (prange->svm_bo && prange->ttm_res) {
|
|
|
|
bo_va.is_xgmi = amdgpu_xgmi_same_hive(adev, bo_adev);
|
|
|
|
prange->mapping.bo_va = &bo_va;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
prange->mapping.start = prange->start;
|
|
|
|
prange->mapping.last = prange->last;
|
2021-02-25 08:56:09 +08:00
|
|
|
prange->mapping.offset = prange->offset;
|
2021-02-25 07:29:06 +08:00
|
|
|
pte_flags = svm_range_get_pte_flags(adev, prange);
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, NULL,
|
2021-02-25 07:29:06 +08:00
|
|
|
prange->mapping.start,
|
|
|
|
prange->mapping.last, pte_flags,
|
2021-02-25 08:56:09 +08:00
|
|
|
prange->mapping.offset,
|
|
|
|
prange->ttm_res ?
|
|
|
|
prange->ttm_res->mm_node : NULL,
|
2021-02-25 07:29:06 +08:00
|
|
|
dma_addr, &vm->last_update);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = amdgpu_vm_update_pdes(adev, vm, false);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to update directories 0x%lx\n", r,
|
|
|
|
prange->start);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fence)
|
|
|
|
*fence = dma_fence_get(vm->last_update);
|
|
|
|
|
|
|
|
out:
|
2020-06-24 05:06:53 +08:00
|
|
|
prange->mapping.bo_va = NULL;
|
2021-02-25 07:29:06 +08:00
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int svm_range_map_to_gpus(struct svm_range *prange,
|
|
|
|
unsigned long *bitmap, bool wait)
|
|
|
|
{
|
|
|
|
struct kfd_process_device *pdd;
|
2020-06-24 05:06:53 +08:00
|
|
|
struct amdgpu_device *bo_adev;
|
2021-02-25 07:29:06 +08:00
|
|
|
struct amdgpu_device *adev;
|
|
|
|
struct kfd_process *p;
|
|
|
|
struct dma_fence *fence = NULL;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
int r = 0;
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
if (prange->svm_bo && prange->ttm_res)
|
|
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
|
|
else
|
|
|
|
bo_adev = NULL;
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
2021-02-25 12:57:33 +08:00
|
|
|
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
|
2021-02-25 07:29:06 +08:00
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
|
|
|
|
pdd = kfd_bind_process_to_device(pdd->dev, p);
|
|
|
|
if (IS_ERR(pdd))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2020-06-24 05:06:53 +08:00
|
|
|
if (bo_adev && adev != bo_adev &&
|
|
|
|
!amdgpu_xgmi_same_hive(adev, bo_adev)) {
|
|
|
|
pr_debug("cannot map to device idx %d\n", gpuidx);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
r = svm_range_map_to_gpu(adev, drm_priv_to_vm(pdd->drm_priv),
|
|
|
|
prange, prange->dma_addr[gpuidx],
|
2020-06-24 05:06:53 +08:00
|
|
|
bo_adev, wait ? &fence : NULL);
|
2021-02-25 07:29:06 +08:00
|
|
|
if (r)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (fence) {
|
|
|
|
r = dma_fence_wait(fence, false);
|
|
|
|
dma_fence_put(fence);
|
|
|
|
fence = NULL;
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to dma fence wait\n", r);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct svm_validate_context {
|
|
|
|
struct kfd_process *process;
|
|
|
|
struct svm_range *prange;
|
|
|
|
bool intr;
|
|
|
|
unsigned long bitmap[MAX_GPU_INSTANCE];
|
|
|
|
struct ttm_validate_buffer tv[MAX_GPU_INSTANCE+1];
|
|
|
|
struct list_head validate_list;
|
|
|
|
struct ww_acquire_ctx ticket;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int svm_range_reserve_bos(struct svm_validate_context *ctx)
|
|
|
|
{
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
struct amdgpu_device *adev;
|
|
|
|
struct amdgpu_vm *vm;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&ctx->validate_list);
|
|
|
|
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
|
|
|
|
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
vm = drm_priv_to_vm(pdd->drm_priv);
|
|
|
|
|
|
|
|
ctx->tv[gpuidx].bo = &vm->root.base.bo->tbo;
|
|
|
|
ctx->tv[gpuidx].num_shared = 4;
|
|
|
|
list_add(&ctx->tv[gpuidx].head, &ctx->validate_list);
|
|
|
|
}
|
2021-02-25 08:56:09 +08:00
|
|
|
if (ctx->prange->svm_bo && ctx->prange->ttm_res) {
|
|
|
|
ctx->tv[MAX_GPU_INSTANCE].bo = &ctx->prange->svm_bo->bo->tbo;
|
|
|
|
ctx->tv[MAX_GPU_INSTANCE].num_shared = 1;
|
|
|
|
list_add(&ctx->tv[MAX_GPU_INSTANCE].head, &ctx->validate_list);
|
|
|
|
}
|
2021-02-25 07:29:06 +08:00
|
|
|
|
|
|
|
r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list,
|
|
|
|
ctx->intr, NULL);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
|
|
|
|
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
|
|
r = -EINVAL;
|
|
|
|
goto unreserve_out;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
|
|
|
|
r = amdgpu_vm_validate_pt_bos(adev, drm_priv_to_vm(pdd->drm_priv),
|
|
|
|
svm_range_bo_validate, NULL);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d validate pt bos\n", r);
|
|
|
|
goto unreserve_out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
unreserve_out:
|
|
|
|
ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
|
|
|
|
{
|
|
|
|
ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
|
|
|
|
}
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
/*
|
|
|
|
* Validation+GPU mapping with concurrent invalidation (MMU notifiers)
|
|
|
|
*
|
|
|
|
* To prevent concurrent destruction or change of range attributes, the
|
|
|
|
* svm_read_lock must be held. The caller must not hold the svm_write_lock
|
|
|
|
* because that would block concurrent evictions and lead to deadlocks. To
|
|
|
|
* serialize concurrent migrations or validations of the same range, the
|
|
|
|
* prange->migrate_mutex must be held.
|
|
|
|
*
|
|
|
|
* For VRAM ranges, the SVM BO must be allocated and valid (protected by its
|
|
|
|
* eviction fence.
|
|
|
|
*
|
|
|
|
* The following sequence ensures race-free validation and GPU mapping:
|
|
|
|
*
|
|
|
|
* 1. Reserve page table (and SVM BO if range is in VRAM)
|
|
|
|
* 2. hmm_range_fault to get page addresses (if system memory)
|
|
|
|
* 3. DMA-map pages (if system memory)
|
|
|
|
* 4-a. Take notifier lock
|
|
|
|
* 4-b. Check that pages still valid (mmu_interval_read_retry)
|
|
|
|
* 4-c. Check that the range was not split or otherwise invalidated
|
|
|
|
* 4-d. Update GPU page table
|
|
|
|
* 4.e. Release notifier lock
|
|
|
|
* 5. Release page table (and SVM BO) reservation
|
|
|
|
*/
|
|
|
|
static int svm_range_validate_and_map(struct mm_struct *mm,
|
|
|
|
struct svm_range *prange,
|
|
|
|
uint32_t gpuidx, bool intr, bool wait)
|
|
|
|
{
|
2021-02-25 07:29:06 +08:00
|
|
|
struct svm_validate_context ctx;
|
2020-02-16 04:02:49 +08:00
|
|
|
struct hmm_range *hmm_range;
|
|
|
|
int r = 0;
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
ctx.process = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
ctx.prange = prange;
|
|
|
|
ctx.intr = intr;
|
|
|
|
|
|
|
|
if (gpuidx < MAX_GPU_INSTANCE) {
|
|
|
|
bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE);
|
|
|
|
bitmap_set(ctx.bitmap, gpuidx, 1);
|
2021-02-25 12:46:28 +08:00
|
|
|
} else if (ctx.process->xnack_enabled) {
|
|
|
|
bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
|
|
|
|
/* If prefetch range to GPU, or GPU retry fault migrate range to
|
|
|
|
* GPU, which has ACCESS attribute to the range, create mapping
|
|
|
|
* on that GPU.
|
|
|
|
*/
|
|
|
|
if (prange->actual_loc) {
|
|
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process,
|
|
|
|
prange->actual_loc);
|
|
|
|
if (gpuidx < 0) {
|
|
|
|
WARN_ONCE(1, "failed get device by id 0x%x\n",
|
|
|
|
prange->actual_loc);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (test_bit(gpuidx, prange->bitmap_access))
|
|
|
|
bitmap_set(ctx.bitmap, gpuidx, 1);
|
|
|
|
}
|
2021-02-25 07:29:06 +08:00
|
|
|
} else {
|
|
|
|
bitmap_or(ctx.bitmap, prange->bitmap_access,
|
|
|
|
prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE))
|
|
|
|
return 0;
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
if (prange->actual_loc && !prange->ttm_res) {
|
|
|
|
/* This should never happen. actual_loc gets set by
|
|
|
|
* svm_migrate_ram_to_vram after allocating a BO.
|
|
|
|
*/
|
|
|
|
WARN(1, "VRAM BO missing during validation\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
svm_range_reserve_bos(&ctx);
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
if (!prange->actual_loc) {
|
|
|
|
r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
|
|
|
|
prange->start << PAGE_SHIFT,
|
|
|
|
prange->npages, &hmm_range,
|
|
|
|
false, true);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to get svm range pages\n", r);
|
|
|
|
goto unreserve_out;
|
|
|
|
}
|
2021-02-25 07:29:06 +08:00
|
|
|
|
|
|
|
r = svm_range_dma_map(prange, ctx.bitmap,
|
|
|
|
hmm_range->hmm_pfns);
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to dma map range\n", r);
|
|
|
|
goto unreserve_out;
|
|
|
|
}
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
|
|
|
|
prange->validated_once = true;
|
2020-02-16 04:02:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
svm_range_lock(prange);
|
|
|
|
if (!prange->actual_loc) {
|
|
|
|
if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
|
|
|
|
r = -EAGAIN;
|
|
|
|
goto unlock_out;
|
|
|
|
}
|
|
|
|
}
|
2021-02-25 07:29:06 +08:00
|
|
|
if (!list_empty(&prange->child_list)) {
|
|
|
|
r = -EAGAIN;
|
|
|
|
goto unlock_out;
|
|
|
|
}
|
2020-02-16 04:02:49 +08:00
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
r = svm_range_map_to_gpus(prange, ctx.bitmap, wait);
|
2020-02-16 04:02:49 +08:00
|
|
|
|
|
|
|
unlock_out:
|
|
|
|
svm_range_unlock(prange);
|
|
|
|
unreserve_out:
|
2021-02-25 07:29:06 +08:00
|
|
|
svm_range_unreserve_bos(&ctx);
|
2020-02-16 04:02:49 +08:00
|
|
|
|
2021-02-25 12:55:27 +08:00
|
|
|
if (!r)
|
|
|
|
prange->validate_timestamp = ktime_to_us(ktime_get());
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2020-04-08 23:09:45 +08:00
|
|
|
/**
|
|
|
|
* svm_range_list_lock_and_flush_work - flush pending deferred work
|
|
|
|
*
|
|
|
|
* @svms: the svm range list
|
|
|
|
* @mm: the mm structure
|
|
|
|
*
|
|
|
|
* Context: Returns with mmap write lock held, pending deferred work flushed
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
|
|
|
|
struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
retry_flush_work:
|
|
|
|
flush_work(&svms->deferred_list_work);
|
|
|
|
mmap_write_lock(mm);
|
|
|
|
|
|
|
|
if (list_empty(&svms->deferred_range_list))
|
|
|
|
return;
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
pr_debug("retry flush\n");
|
|
|
|
goto retry_flush_work;
|
|
|
|
}
|
|
|
|
|
2021-02-25 07:47:52 +08:00
|
|
|
static void svm_range_restore_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
|
|
struct amdkfd_process_info *process_info;
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range *prange;
|
|
|
|
struct kfd_process *p;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
int evicted_ranges;
|
|
|
|
int invalid;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
svms = container_of(dwork, struct svm_range_list, restore_work);
|
|
|
|
evicted_ranges = atomic_read(&svms->evicted_ranges);
|
|
|
|
if (!evicted_ranges)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pr_debug("restore svm ranges\n");
|
|
|
|
|
|
|
|
/* kfd_process_notifier_release destroys this worker thread. So during
|
|
|
|
* the lifetime of this thread, kfd_process and mm will be valid.
|
|
|
|
*/
|
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
|
|
|
process_info = p->kgd_process_info;
|
|
|
|
mm = p->mm;
|
|
|
|
if (!mm)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mutex_lock(&process_info->lock);
|
|
|
|
svm_range_list_lock_and_flush_work(svms, mm);
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
|
|
|
|
evicted_ranges = atomic_read(&svms->evicted_ranges);
|
|
|
|
|
|
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
|
|
invalid = atomic_read(&prange->invalid);
|
|
|
|
if (!invalid)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
|
|
|
|
prange->svms, prange, prange->start, prange->last,
|
|
|
|
invalid);
|
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
/*
|
|
|
|
* If range is migrating, wait for migration is done.
|
|
|
|
*/
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
|
2021-02-25 07:47:52 +08:00
|
|
|
r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
|
|
|
|
false, true);
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
if (r)
|
2021-02-25 07:47:52 +08:00
|
|
|
pr_debug("failed %d to map 0x%lx to gpus\n", r,
|
|
|
|
prange->start);
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
|
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
if (r)
|
|
|
|
goto out_reschedule;
|
2021-02-25 07:47:52 +08:00
|
|
|
|
|
|
|
if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
goto out_reschedule;
|
2021-02-25 07:47:52 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
|
|
|
|
evicted_ranges)
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
goto out_reschedule;
|
2021-02-25 07:47:52 +08:00
|
|
|
|
|
|
|
evicted_ranges = 0;
|
|
|
|
|
|
|
|
r = kgd2kfd_resume_mm(mm);
|
|
|
|
if (r) {
|
|
|
|
/* No recovery from this failure. Probably the CP is
|
|
|
|
* hanging. No point trying again.
|
|
|
|
*/
|
|
|
|
pr_debug("failed %d to resume KFD\n", r);
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("restore svm ranges successfully\n");
|
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
out_reschedule:
|
2021-02-25 07:47:52 +08:00
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
mutex_unlock(&process_info->lock);
|
|
|
|
|
|
|
|
/* If validation failed, reschedule another attempt */
|
|
|
|
if (evicted_ranges) {
|
|
|
|
pr_debug("reschedule to restore svm range\n");
|
|
|
|
schedule_delayed_work(&svms->restore_work,
|
|
|
|
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_evict - evict svm range
|
|
|
|
*
|
|
|
|
* Stop all queues of the process to ensure GPU doesn't access the memory, then
|
|
|
|
* return to let CPU evict the buffer and proceed CPU pagetable update.
|
|
|
|
*
|
|
|
|
* Don't need use lock to sync cpu pagetable invalidation with GPU execution.
|
|
|
|
* If invalidation happens while restore work is running, restore work will
|
|
|
|
* restart to ensure to get the latest CPU pages mapping to GPU, then start
|
|
|
|
* the queues.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
|
|
|
|
unsigned long start, unsigned long last)
|
|
|
|
{
|
|
|
|
struct svm_range_list *svms = prange->svms;
|
2021-02-25 11:34:11 +08:00
|
|
|
struct kfd_process *p;
|
2021-02-25 07:47:52 +08:00
|
|
|
int r = 0;
|
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
2021-02-25 07:47:52 +08:00
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
|
|
|
|
svms, prange->start, prange->last, start, last);
|
2021-02-25 07:47:52 +08:00
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
if (!p->xnack_enabled) {
|
|
|
|
int evicted_ranges;
|
2021-02-25 07:47:52 +08:00
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
atomic_inc(&prange->invalid);
|
|
|
|
evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
|
|
|
|
if (evicted_ranges != 1)
|
|
|
|
return r;
|
|
|
|
|
|
|
|
pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
|
|
|
|
prange->svms, prange->start, prange->last);
|
|
|
|
|
|
|
|
/* First eviction, stop the queues */
|
|
|
|
r = kgd2kfd_quiesce_mm(mm);
|
|
|
|
if (r)
|
|
|
|
pr_debug("failed to quiesce KFD\n");
|
|
|
|
|
|
|
|
pr_debug("schedule to restore svm %p ranges\n", svms);
|
|
|
|
schedule_delayed_work(&svms->restore_work,
|
|
|
|
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
|
|
|
|
} else {
|
|
|
|
struct svm_range *pchild;
|
|
|
|
unsigned long s, l;
|
|
|
|
|
|
|
|
pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
|
|
|
|
prange->svms, start, last);
|
|
|
|
list_for_each_entry(pchild, &prange->child_list, child_list) {
|
|
|
|
mutex_lock_nested(&pchild->lock, 1);
|
|
|
|
s = max(start, pchild->start);
|
|
|
|
l = min(last, pchild->last);
|
|
|
|
if (l >= s)
|
|
|
|
svm_range_unmap_from_gpus(pchild, s, l);
|
|
|
|
mutex_unlock(&pchild->lock);
|
|
|
|
}
|
|
|
|
s = max(start, prange->start);
|
|
|
|
l = min(last, prange->last);
|
|
|
|
if (l >= s)
|
|
|
|
svm_range_unmap_from_gpus(prange, s, l);
|
|
|
|
}
|
2021-02-25 07:47:52 +08:00
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
static struct svm_range *svm_range_clone(struct svm_range *old)
|
|
|
|
{
|
|
|
|
struct svm_range *new;
|
|
|
|
|
|
|
|
new = svm_range_new(old->svms, old->start, old->last);
|
|
|
|
if (!new)
|
|
|
|
return NULL;
|
|
|
|
|
2021-02-25 08:56:09 +08:00
|
|
|
if (old->svm_bo) {
|
|
|
|
new->ttm_res = old->ttm_res;
|
|
|
|
new->offset = old->offset;
|
|
|
|
new->svm_bo = svm_range_bo_ref(old->svm_bo);
|
|
|
|
spin_lock(&new->svm_bo->list_lock);
|
|
|
|
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
|
|
|
|
spin_unlock(&new->svm_bo->list_lock);
|
|
|
|
}
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
new->flags = old->flags;
|
|
|
|
new->preferred_loc = old->preferred_loc;
|
|
|
|
new->prefetch_loc = old->prefetch_loc;
|
|
|
|
new->actual_loc = old->actual_loc;
|
|
|
|
new->granularity = old->granularity;
|
|
|
|
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_handle_overlap - split overlap ranges
|
|
|
|
* @svms: svm range list header
|
|
|
|
* @new: range added with this attributes
|
|
|
|
* @start: range added start address, in pages
|
|
|
|
* @last: range last address, in pages
|
|
|
|
* @update_list: output, the ranges attributes are updated. For set_attr, this
|
|
|
|
* will do validation and map to GPUs. For unmap, this will be
|
|
|
|
* removed and unmap from GPUs
|
|
|
|
* @insert_list: output, the ranges will be inserted into svms, attributes are
|
|
|
|
* not changes. For set_attr, this will add into svms.
|
|
|
|
* @remove_list:output, the ranges will be removed from svms
|
|
|
|
* @left: the remaining range after overlap, For set_attr, this will be added
|
|
|
|
* as new range.
|
|
|
|
*
|
|
|
|
* Total have 5 overlap cases.
|
|
|
|
*
|
|
|
|
* This function handles overlap of an address interval with existing
|
|
|
|
* struct svm_ranges for applying new attributes. This may require
|
|
|
|
* splitting existing struct svm_ranges. All changes should be applied to
|
|
|
|
* the range_list and interval tree transactionally. If any split operation
|
|
|
|
* fails, the entire update fails. Therefore the existing overlapping
|
|
|
|
* svm_ranges are cloned and the original svm_ranges left unchanged. If the
|
|
|
|
* transaction succeeds, the modified clones are added and the originals
|
|
|
|
* freed. Otherwise the clones are removed and the old svm_ranges remain.
|
|
|
|
*
|
|
|
|
* Context: The caller must hold svms->lock
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_handle_overlap(struct svm_range_list *svms, struct svm_range *new,
|
|
|
|
unsigned long start, unsigned long last,
|
|
|
|
struct list_head *update_list,
|
|
|
|
struct list_head *insert_list,
|
|
|
|
struct list_head *remove_list,
|
|
|
|
unsigned long *left)
|
|
|
|
{
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
struct svm_range *prange;
|
|
|
|
struct svm_range *tmp;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(update_list);
|
|
|
|
INIT_LIST_HEAD(insert_list);
|
|
|
|
INIT_LIST_HEAD(remove_list);
|
|
|
|
|
|
|
|
node = interval_tree_iter_first(&svms->objects, start, last);
|
|
|
|
while (node) {
|
|
|
|
struct interval_tree_node *next;
|
|
|
|
struct svm_range *old;
|
|
|
|
unsigned long next_start;
|
|
|
|
|
|
|
|
pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
|
|
|
|
node->last);
|
|
|
|
|
|
|
|
old = container_of(node, struct svm_range, it_node);
|
|
|
|
next = interval_tree_iter_next(node, start, last);
|
|
|
|
next_start = min(node->last, last) + 1;
|
|
|
|
|
|
|
|
if (node->start < start || node->last > last) {
|
|
|
|
/* node intersects the updated range, clone+split it */
|
|
|
|
prange = svm_range_clone(old);
|
|
|
|
if (!prange) {
|
|
|
|
r = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add(&old->remove_list, remove_list);
|
|
|
|
list_add(&prange->insert_list, insert_list);
|
|
|
|
|
|
|
|
if (node->start < start) {
|
|
|
|
pr_debug("change old range start\n");
|
|
|
|
r = svm_range_split_head(prange, new, start,
|
|
|
|
insert_list);
|
|
|
|
if (r)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (node->last > last) {
|
|
|
|
pr_debug("change old range last\n");
|
|
|
|
r = svm_range_split_tail(prange, new, last,
|
|
|
|
insert_list);
|
|
|
|
if (r)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* The node is contained within start..last,
|
|
|
|
* just update it
|
|
|
|
*/
|
|
|
|
prange = old;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!svm_range_is_same_attrs(prange, new))
|
|
|
|
list_add(&prange->update_list, update_list);
|
|
|
|
|
|
|
|
/* insert a new node if needed */
|
|
|
|
if (node->start > start) {
|
|
|
|
prange = svm_range_new(prange->svms, start,
|
|
|
|
node->start - 1);
|
|
|
|
if (!prange) {
|
|
|
|
r = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add(&prange->insert_list, insert_list);
|
|
|
|
list_add(&prange->update_list, update_list);
|
|
|
|
}
|
|
|
|
|
|
|
|
node = next;
|
|
|
|
start = next_start;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (left && start <= last)
|
|
|
|
*left = last - start + 1;
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (r)
|
|
|
|
list_for_each_entry_safe(prange, tmp, insert_list, insert_list)
|
|
|
|
svm_range_free(prange);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2020-04-08 23:09:45 +08:00
|
|
|
static void
|
|
|
|
svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
|
|
|
|
struct svm_range *prange)
|
|
|
|
{
|
|
|
|
unsigned long start;
|
|
|
|
unsigned long last;
|
|
|
|
|
|
|
|
start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
|
|
|
|
last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (prange->start == start && prange->last == last)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
|
|
|
|
prange->svms, prange, start, last, prange->start,
|
|
|
|
prange->last);
|
|
|
|
|
|
|
|
if (start != 0 && last != 0) {
|
|
|
|
interval_tree_remove(&prange->it_node, &prange->svms->objects);
|
|
|
|
svm_range_remove_notifier(prange);
|
|
|
|
}
|
|
|
|
prange->it_node.start = prange->start;
|
|
|
|
prange->it_node.last = prange->last;
|
|
|
|
|
|
|
|
interval_tree_insert(&prange->it_node, &prange->svms->objects);
|
|
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = prange->work_item.mm;
|
|
|
|
|
|
|
|
switch (prange->work_item.op) {
|
|
|
|
case SVM_OP_NULL:
|
|
|
|
pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
svms, prange, prange->start, prange->last);
|
|
|
|
break;
|
|
|
|
case SVM_OP_UNMAP_RANGE:
|
|
|
|
pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
svms, prange, prange->start, prange->last);
|
|
|
|
svm_range_unlink(prange);
|
|
|
|
svm_range_remove_notifier(prange);
|
|
|
|
svm_range_free(prange);
|
|
|
|
break;
|
|
|
|
case SVM_OP_UPDATE_RANGE_NOTIFIER:
|
|
|
|
pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
svms, prange, prange->start, prange->last);
|
|
|
|
svm_range_update_notifier_and_interval_tree(mm, prange);
|
|
|
|
break;
|
2021-02-25 11:34:11 +08:00
|
|
|
case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
|
|
|
|
pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
svms, prange, prange->start, prange->last);
|
|
|
|
svm_range_update_notifier_and_interval_tree(mm, prange);
|
|
|
|
/* TODO: implement deferred validation and mapping */
|
|
|
|
break;
|
2020-04-08 23:09:45 +08:00
|
|
|
case SVM_OP_ADD_RANGE:
|
|
|
|
pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
|
|
|
|
prange->start, prange->last);
|
|
|
|
svm_range_add_to_svms(prange);
|
|
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
|
|
break;
|
2021-02-25 11:34:11 +08:00
|
|
|
case SVM_OP_ADD_RANGE_AND_MAP:
|
|
|
|
pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
|
|
|
|
prange, prange->start, prange->last);
|
|
|
|
svm_range_add_to_svms(prange);
|
|
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
|
|
/* TODO: implement deferred validation and mapping */
|
|
|
|
break;
|
2020-04-08 23:09:45 +08:00
|
|
|
default:
|
|
|
|
WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
|
|
|
|
prange->work_item.op);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void svm_range_deferred_list_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range *prange;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
|
|
|
|
svms = container_of(work, struct svm_range_list, deferred_list_work);
|
|
|
|
pr_debug("enter svms 0x%p\n", svms);
|
|
|
|
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
|
|
while (!list_empty(&svms->deferred_range_list)) {
|
|
|
|
prange = list_first_entry(&svms->deferred_range_list,
|
|
|
|
struct svm_range, deferred_list);
|
|
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
|
|
|
|
prange->start, prange->last, prange->work_item.op);
|
|
|
|
|
|
|
|
mm = prange->work_item.mm;
|
|
|
|
mmap_write_lock(mm);
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
|
|
|
|
/* Remove from deferred_list must be inside mmap write lock,
|
|
|
|
* otherwise, svm_range_list_lock_and_flush_work may hold mmap
|
|
|
|
* write lock, and continue because deferred_list is empty, then
|
|
|
|
* deferred_list handle is blocked by mmap write lock.
|
|
|
|
*/
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
|
|
list_del_init(&prange->deferred_list);
|
|
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
mutex_lock(&prange->migrate_mutex);
|
2020-04-08 23:09:45 +08:00
|
|
|
while (!list_empty(&prange->child_list)) {
|
|
|
|
struct svm_range *pchild;
|
|
|
|
|
|
|
|
pchild = list_first_entry(&prange->child_list,
|
|
|
|
struct svm_range, child_list);
|
|
|
|
pr_debug("child prange 0x%p op %d\n", pchild,
|
|
|
|
pchild->work_item.op);
|
|
|
|
list_del_init(&pchild->child_list);
|
|
|
|
svm_range_handle_list_op(svms, pchild);
|
|
|
|
}
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
2020-04-08 23:09:45 +08:00
|
|
|
|
|
|
|
svm_range_handle_list_op(svms, prange);
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
|
|
}
|
|
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
|
|
|
|
pr_debug("exit svms 0x%p\n", svms);
|
|
|
|
}
|
|
|
|
|
2021-03-17 12:24:12 +08:00
|
|
|
void
|
2020-04-08 23:09:45 +08:00
|
|
|
svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
|
|
|
|
struct mm_struct *mm, enum svm_work_list_ops op)
|
|
|
|
{
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
|
|
/* if prange is on the deferred list */
|
|
|
|
if (!list_empty(&prange->deferred_list)) {
|
|
|
|
pr_debug("update exist prange 0x%p work op %d\n", prange, op);
|
|
|
|
WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
|
|
|
|
if (op != SVM_OP_NULL &&
|
|
|
|
prange->work_item.op != SVM_OP_UNMAP_RANGE)
|
|
|
|
prange->work_item.op = op;
|
|
|
|
} else {
|
|
|
|
prange->work_item.op = op;
|
|
|
|
prange->work_item.mm = mm;
|
|
|
|
list_add_tail(&prange->deferred_list,
|
|
|
|
&prange->svms->deferred_range_list);
|
|
|
|
pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
|
|
|
|
prange, prange->start, prange->last, op);
|
|
|
|
}
|
|
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
}
|
|
|
|
|
2021-03-17 12:24:12 +08:00
|
|
|
void schedule_deferred_list_work(struct svm_range_list *svms)
|
2020-04-08 23:09:45 +08:00
|
|
|
{
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
|
|
if (!list_empty(&svms->deferred_range_list))
|
|
|
|
schedule_work(&svms->deferred_list_work);
|
|
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
|
|
|
|
struct svm_range *prange, unsigned long start,
|
|
|
|
unsigned long last)
|
|
|
|
{
|
|
|
|
struct svm_range *head;
|
|
|
|
struct svm_range *tail;
|
|
|
|
|
|
|
|
if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
|
|
|
|
pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
|
|
|
|
prange->start, prange->last);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (start > prange->last || last < prange->start)
|
|
|
|
return;
|
|
|
|
|
|
|
|
head = tail = prange;
|
|
|
|
if (start > prange->start)
|
|
|
|
svm_range_split(prange, prange->start, start - 1, &tail);
|
|
|
|
if (last < tail->last)
|
|
|
|
svm_range_split(tail, last + 1, tail->last, &head);
|
|
|
|
|
|
|
|
if (head != prange && tail != prange) {
|
|
|
|
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
|
|
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
|
|
|
|
} else if (tail != prange) {
|
|
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
|
|
|
|
} else if (head != prange) {
|
|
|
|
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
|
|
|
|
} else if (parent != prange) {
|
|
|
|
prange->work_item.op = SVM_OP_UNMAP_RANGE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
|
|
|
|
unsigned long start, unsigned long last)
|
|
|
|
{
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range *pchild;
|
|
|
|
struct kfd_process *p;
|
2021-02-25 07:29:06 +08:00
|
|
|
unsigned long s, l;
|
2020-04-08 23:09:45 +08:00
|
|
|
bool unmap_parent;
|
|
|
|
|
|
|
|
p = kfd_lookup_process_by_mm(mm);
|
|
|
|
if (!p)
|
|
|
|
return;
|
|
|
|
svms = &p->svms;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
|
|
|
|
prange, prange->start, prange->last, start, last);
|
|
|
|
|
|
|
|
unmap_parent = start <= prange->start && last >= prange->last;
|
|
|
|
|
2021-02-25 07:29:06 +08:00
|
|
|
list_for_each_entry(pchild, &prange->child_list, child_list) {
|
|
|
|
mutex_lock_nested(&pchild->lock, 1);
|
|
|
|
s = max(start, pchild->start);
|
|
|
|
l = min(last, pchild->last);
|
|
|
|
if (l >= s)
|
|
|
|
svm_range_unmap_from_gpus(pchild, s, l);
|
2020-04-08 23:09:45 +08:00
|
|
|
svm_range_unmap_split(mm, prange, pchild, start, last);
|
2021-02-25 07:29:06 +08:00
|
|
|
mutex_unlock(&pchild->lock);
|
|
|
|
}
|
|
|
|
s = max(start, prange->start);
|
|
|
|
l = min(last, prange->last);
|
|
|
|
if (l >= s)
|
|
|
|
svm_range_unmap_from_gpus(prange, s, l);
|
2020-04-08 23:09:45 +08:00
|
|
|
svm_range_unmap_split(mm, prange, prange, start, last);
|
|
|
|
|
|
|
|
if (unmap_parent)
|
|
|
|
svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
|
|
|
|
else
|
|
|
|
svm_range_add_list_work(svms, prange, mm,
|
|
|
|
SVM_OP_UPDATE_RANGE_NOTIFIER);
|
|
|
|
schedule_deferred_list_work(svms);
|
|
|
|
|
|
|
|
kfd_unref_process(p);
|
|
|
|
}
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
/**
|
|
|
|
* svm_range_cpu_invalidate_pagetables - interval notifier callback
|
|
|
|
*
|
2021-03-17 12:24:12 +08:00
|
|
|
* If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
|
|
|
|
* is from migration, or CPU page invalidation callback.
|
|
|
|
*
|
|
|
|
* For unmap event, unmap range from GPUs, remove prange from svms in a delayed
|
|
|
|
* work thread, and split prange if only part of prange is unmapped.
|
2021-02-25 07:47:52 +08:00
|
|
|
*
|
2021-03-17 12:24:12 +08:00
|
|
|
* For invalidation event, if GPU retry fault is not enabled, evict the queues,
|
|
|
|
* then schedule svm_range_restore_work to update GPU mapping and resume queues.
|
|
|
|
* If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
|
|
|
|
* update GPU mapping to recover.
|
|
|
|
*
|
|
|
|
* Context: mmap lock, notifier_invalidate_start lock are held
|
|
|
|
* for invalidate event, prange lock is held if this is from migration
|
2020-02-16 04:02:49 +08:00
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
|
|
|
|
const struct mmu_notifier_range *range,
|
|
|
|
unsigned long cur_seq)
|
|
|
|
{
|
2020-04-08 23:09:45 +08:00
|
|
|
struct svm_range *prange;
|
|
|
|
unsigned long start;
|
|
|
|
unsigned long last;
|
|
|
|
|
|
|
|
if (range->event == MMU_NOTIFY_RELEASE)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
start = mni->interval_tree.start;
|
|
|
|
last = mni->interval_tree.last;
|
|
|
|
start = (start > range->start ? start : range->start) >> PAGE_SHIFT;
|
|
|
|
last = (last < (range->end - 1) ? last : range->end - 1) >> PAGE_SHIFT;
|
|
|
|
pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
|
|
|
|
start, last, range->start >> PAGE_SHIFT,
|
|
|
|
(range->end - 1) >> PAGE_SHIFT,
|
|
|
|
mni->interval_tree.start >> PAGE_SHIFT,
|
|
|
|
mni->interval_tree.last >> PAGE_SHIFT, range->event);
|
|
|
|
|
|
|
|
prange = container_of(mni, struct svm_range, notifier);
|
|
|
|
|
|
|
|
svm_range_lock(prange);
|
|
|
|
mmu_interval_set_seq(mni, cur_seq);
|
|
|
|
|
|
|
|
switch (range->event) {
|
|
|
|
case MMU_NOTIFY_UNMAP:
|
|
|
|
svm_range_unmap_from_cpu(mni->mm, prange, start, last);
|
|
|
|
break;
|
|
|
|
default:
|
2021-02-25 07:47:52 +08:00
|
|
|
svm_range_evict(prange, mni->mm, start, last);
|
2020-04-08 23:09:45 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
svm_range_unlock(prange);
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-03-17 12:24:12 +08:00
|
|
|
/**
|
|
|
|
* svm_range_from_addr - find svm range from fault address
|
|
|
|
* @svms: svm range list header
|
|
|
|
* @addr: address to search range interval tree, in pages
|
|
|
|
* @parent: parent range if range is on child list
|
|
|
|
*
|
|
|
|
* Context: The caller must hold svms->lock
|
|
|
|
*
|
|
|
|
* Return: the svm_range found or NULL
|
|
|
|
*/
|
|
|
|
struct svm_range *
|
|
|
|
svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
|
|
|
|
struct svm_range **parent)
|
|
|
|
{
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
struct svm_range *prange;
|
|
|
|
struct svm_range *pchild;
|
|
|
|
|
|
|
|
node = interval_tree_iter_first(&svms->objects, addr, addr);
|
|
|
|
if (!node)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
|
|
pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
|
|
|
|
addr, prange->start, prange->last, node->start, node->last);
|
|
|
|
|
|
|
|
if (addr >= prange->start && addr <= prange->last) {
|
|
|
|
if (parent)
|
|
|
|
*parent = prange;
|
|
|
|
return prange;
|
|
|
|
}
|
|
|
|
list_for_each_entry(pchild, &prange->child_list, child_list)
|
|
|
|
if (addr >= pchild->start && addr <= pchild->last) {
|
|
|
|
pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
|
|
|
|
addr, pchild->start, pchild->last);
|
|
|
|
if (parent)
|
|
|
|
*parent = prange;
|
|
|
|
return pchild;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2021-02-25 12:46:28 +08:00
|
|
|
/* svm_range_best_restore_location - decide the best fault restore location
|
|
|
|
* @prange: svm range structure
|
|
|
|
* @adev: the GPU on which vm fault happened
|
|
|
|
*
|
|
|
|
* This is only called when xnack is on, to decide the best location to restore
|
|
|
|
* the range mapping after GPU vm fault. Caller uses the best location to do
|
|
|
|
* migration if actual loc is not best location, then update GPU page table
|
|
|
|
* mapping to the best location.
|
|
|
|
*
|
|
|
|
* If vm fault gpu is range preferred loc, the best_loc is preferred loc.
|
|
|
|
* If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
|
|
|
|
* If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
|
|
|
|
* if range actual loc is cpu, best_loc is cpu
|
|
|
|
* if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
|
|
|
|
* range actual loc.
|
|
|
|
* Otherwise, GPU no access, best_loc is -1.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* -1 means vm fault GPU no access
|
|
|
|
* 0 for CPU or GPU id
|
|
|
|
*/
|
|
|
|
static int32_t
|
|
|
|
svm_range_best_restore_location(struct svm_range *prange,
|
|
|
|
struct amdgpu_device *adev,
|
|
|
|
int32_t *gpuidx)
|
|
|
|
{
|
|
|
|
struct amdgpu_device *bo_adev;
|
|
|
|
struct kfd_process *p;
|
|
|
|
uint32_t gpuid;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, gpuidx);
|
|
|
|
if (r < 0) {
|
|
|
|
pr_debug("failed to get gpuid from kgd\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (prange->preferred_loc == gpuid)
|
|
|
|
return prange->preferred_loc;
|
|
|
|
|
|
|
|
if (test_bit(*gpuidx, prange->bitmap_access))
|
|
|
|
return gpuid;
|
|
|
|
|
|
|
|
if (test_bit(*gpuidx, prange->bitmap_aip)) {
|
|
|
|
if (!prange->actual_loc)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
|
|
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
|
|
return prange->actual_loc;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
2021-04-13 02:35:18 +08:00
|
|
|
static int
|
|
|
|
svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
|
|
|
|
unsigned long *start, unsigned long *last)
|
|
|
|
{
|
|
|
|
struct vm_area_struct *vma;
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
unsigned long start_limit, end_limit;
|
|
|
|
|
|
|
|
vma = find_vma(p->mm, addr << PAGE_SHIFT);
|
|
|
|
if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
|
|
|
|
pr_debug("VMA does not exist in address [0x%llx]\n", addr);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
start_limit = max(vma->vm_start >> PAGE_SHIFT,
|
|
|
|
(unsigned long)ALIGN_DOWN(addr, 2UL << 8));
|
|
|
|
end_limit = min(vma->vm_end >> PAGE_SHIFT,
|
|
|
|
(unsigned long)ALIGN(addr + 1, 2UL << 8));
|
|
|
|
/* First range that starts after the fault address */
|
|
|
|
node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
|
|
|
|
if (node) {
|
|
|
|
end_limit = min(end_limit, node->start);
|
|
|
|
/* Last range that ends before the fault address */
|
|
|
|
node = container_of(rb_prev(&node->rb),
|
|
|
|
struct interval_tree_node, rb);
|
|
|
|
} else {
|
|
|
|
/* Last range must end before addr because
|
|
|
|
* there was no range after addr
|
|
|
|
*/
|
|
|
|
node = container_of(rb_last(&p->svms.objects.rb_root),
|
|
|
|
struct interval_tree_node, rb);
|
|
|
|
}
|
|
|
|
if (node) {
|
|
|
|
if (node->last >= addr) {
|
|
|
|
WARN(1, "Overlap with prev node and page fault addr\n");
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
start_limit = max(start_limit, node->last + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
*start = start_limit;
|
|
|
|
*last = end_limit - 1;
|
|
|
|
|
|
|
|
pr_debug("vma start: 0x%lx start: 0x%lx vma end: 0x%lx last: 0x%lx\n",
|
|
|
|
vma->vm_start >> PAGE_SHIFT, *start,
|
|
|
|
vma->vm_end >> PAGE_SHIFT, *last);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
static struct
|
|
|
|
svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev,
|
|
|
|
struct kfd_process *p,
|
|
|
|
struct mm_struct *mm,
|
|
|
|
int64_t addr)
|
|
|
|
{
|
|
|
|
struct svm_range *prange = NULL;
|
|
|
|
unsigned long start, last;
|
|
|
|
uint32_t gpuid, gpuidx;
|
|
|
|
|
|
|
|
if (svm_range_get_range_boundaries(p, addr, &start, &last))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
prange = svm_range_new(&p->svms, start, last);
|
|
|
|
if (!prange) {
|
|
|
|
pr_debug("Failed to create prange in address [0x%llx]\\n", addr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
if (kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpuidx)) {
|
|
|
|
pr_debug("failed to get gpuid from kgd\n");
|
|
|
|
svm_range_free(prange);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
prange->preferred_loc = gpuid;
|
|
|
|
prange->actual_loc = 0;
|
|
|
|
/* Gurantee prange is migrate it */
|
|
|
|
svm_range_add_to_svms(prange);
|
|
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
|
|
|
|
|
|
return prange;
|
|
|
|
}
|
2021-02-25 12:46:28 +08:00
|
|
|
|
2021-02-25 12:02:21 +08:00
|
|
|
int
|
|
|
|
svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
|
|
|
|
uint64_t addr)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = NULL;
|
|
|
|
struct svm_range_list *svms;
|
2021-02-25 12:46:28 +08:00
|
|
|
struct svm_range *prange;
|
2021-02-25 12:02:21 +08:00
|
|
|
struct kfd_process *p;
|
2021-02-25 12:55:27 +08:00
|
|
|
uint64_t timestamp;
|
2021-02-25 12:46:28 +08:00
|
|
|
int32_t best_loc, gpuidx;
|
2021-04-13 02:35:18 +08:00
|
|
|
bool write_locked = false;
|
2021-02-25 12:46:28 +08:00
|
|
|
int r = 0;
|
2021-02-25 12:02:21 +08:00
|
|
|
|
|
|
|
p = kfd_lookup_process_by_pasid(pasid);
|
|
|
|
if (!p) {
|
|
|
|
pr_debug("kfd process not founded pasid 0x%x\n", pasid);
|
|
|
|
return -ESRCH;
|
|
|
|
}
|
|
|
|
if (!p->xnack_enabled) {
|
|
|
|
pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
svms = &p->svms;
|
|
|
|
|
|
|
|
pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
|
|
|
|
|
|
|
|
mm = get_task_mm(p->lead_thread);
|
|
|
|
if (!mm) {
|
|
|
|
pr_debug("svms 0x%p failed to get mm\n", svms);
|
|
|
|
r = -ESRCH;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
2021-04-13 02:35:18 +08:00
|
|
|
retry_write_locked:
|
2021-02-25 12:02:21 +08:00
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
prange = svm_range_from_addr(svms, addr, NULL);
|
|
|
|
|
|
|
|
if (!prange) {
|
|
|
|
pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
|
|
|
|
svms, addr);
|
2021-04-13 02:35:18 +08:00
|
|
|
if (!write_locked) {
|
|
|
|
/* Need the write lock to create new range with MMU notifier.
|
|
|
|
* Also flush pending deferred work to make sure the interval
|
|
|
|
* tree is up to date before we add a new range
|
|
|
|
*/
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
mmap_write_lock(mm);
|
|
|
|
write_locked = true;
|
|
|
|
goto retry_write_locked;
|
|
|
|
}
|
|
|
|
prange = svm_range_create_unregistered_range(adev, p, mm, addr);
|
|
|
|
if (!prange) {
|
|
|
|
pr_debug("failed to create unregisterd range svms 0x%p address [0x%llx]\n",
|
|
|
|
svms, addr);
|
|
|
|
mmap_write_downgrade(mm);
|
|
|
|
r = -EFAULT;
|
|
|
|
goto out_unlock_svms;
|
|
|
|
}
|
2021-02-25 12:02:21 +08:00
|
|
|
}
|
2021-04-13 02:35:18 +08:00
|
|
|
if (write_locked)
|
|
|
|
mmap_write_downgrade(mm);
|
2021-02-25 12:02:21 +08:00
|
|
|
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
2021-02-25 12:55:27 +08:00
|
|
|
timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp;
|
|
|
|
/* skip duplicate vm fault on different pages of same range */
|
|
|
|
if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) {
|
|
|
|
pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
|
|
|
|
svms, prange->start, prange->last);
|
|
|
|
goto out_unlock_range;
|
|
|
|
}
|
2021-02-25 12:02:21 +08:00
|
|
|
|
2021-02-25 12:46:28 +08:00
|
|
|
best_loc = svm_range_best_restore_location(prange, adev, &gpuidx);
|
|
|
|
if (best_loc == -1) {
|
|
|
|
pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
|
2021-02-25 12:02:21 +08:00
|
|
|
svms, prange->start, prange->last);
|
2021-02-25 12:46:28 +08:00
|
|
|
r = -EACCES;
|
|
|
|
goto out_unlock_range;
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
|
|
|
|
svms, prange->start, prange->last, best_loc,
|
|
|
|
prange->actual_loc);
|
|
|
|
|
|
|
|
if (prange->actual_loc != best_loc) {
|
|
|
|
if (best_loc) {
|
2021-02-25 12:57:33 +08:00
|
|
|
r = svm_migrate_to_vram(prange, best_loc, mm);
|
2021-02-25 12:46:28 +08:00
|
|
|
if (r) {
|
|
|
|
pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
|
|
|
|
r, addr);
|
|
|
|
/* Fallback to system memory if migration to
|
|
|
|
* VRAM failed
|
|
|
|
*/
|
|
|
|
if (prange->actual_loc)
|
|
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
|
|
|
else
|
|
|
|
r = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
|
|
|
}
|
|
|
|
if (r) {
|
|
|
|
pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
|
|
|
|
r, svms, prange->start, prange->last);
|
|
|
|
goto out_unlock_range;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
r = svm_range_validate_and_map(mm, prange, gpuidx, false, false);
|
|
|
|
if (r)
|
|
|
|
pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
|
|
|
|
r, svms, prange->start, prange->last);
|
2021-02-25 12:02:21 +08:00
|
|
|
|
2021-02-25 12:46:28 +08:00
|
|
|
out_unlock_range:
|
2021-02-25 12:02:21 +08:00
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
out_unlock_svms:
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
mmput(mm);
|
|
|
|
out:
|
|
|
|
kfd_unref_process(p);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
void svm_range_list_fini(struct kfd_process *p)
|
|
|
|
{
|
2021-02-25 08:56:09 +08:00
|
|
|
struct svm_range *prange;
|
|
|
|
struct svm_range *next;
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
|
2020-04-08 23:09:45 +08:00
|
|
|
|
|
|
|
/* Ensure list work is finished before process is destroyed */
|
|
|
|
flush_work(&p->svms.deferred_list_work);
|
2021-02-25 08:56:09 +08:00
|
|
|
|
|
|
|
list_for_each_entry_safe(prange, next, &p->svms.list, list) {
|
|
|
|
svm_range_unlink(prange);
|
|
|
|
svm_range_remove_notifier(prange);
|
|
|
|
svm_range_free(prange);
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_destroy(&p->svms.lock);
|
|
|
|
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int svm_range_list_init(struct kfd_process *p)
|
|
|
|
{
|
|
|
|
struct svm_range_list *svms = &p->svms;
|
|
|
|
|
|
|
|
svms->objects = RB_ROOT_CACHED;
|
|
|
|
mutex_init(&svms->lock);
|
|
|
|
INIT_LIST_HEAD(&svms->list);
|
2021-02-25 07:47:52 +08:00
|
|
|
atomic_set(&svms->evicted_ranges, 0);
|
|
|
|
INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
|
2020-04-08 23:09:45 +08:00
|
|
|
INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
|
|
|
|
INIT_LIST_HEAD(&svms->deferred_range_list);
|
|
|
|
spin_lock_init(&svms->deferred_list_lock);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_is_valid - check if virtual address range is valid
|
|
|
|
* @mm: current process mm_struct
|
|
|
|
* @start: range start address, in pages
|
|
|
|
* @size: range size, in pages
|
|
|
|
*
|
|
|
|
* Valid virtual address range means it belongs to one or more VMAs
|
|
|
|
*
|
|
|
|
* Context: Process context
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* true - valid svm range
|
|
|
|
* false - invalid svm range
|
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
svm_range_is_valid(struct mm_struct *mm, uint64_t start, uint64_t size)
|
|
|
|
{
|
|
|
|
const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
|
|
|
|
struct vm_area_struct *vma;
|
|
|
|
unsigned long end;
|
|
|
|
|
|
|
|
start <<= PAGE_SHIFT;
|
|
|
|
end = start + (size << PAGE_SHIFT);
|
|
|
|
|
|
|
|
do {
|
|
|
|
vma = find_vma(mm, start);
|
|
|
|
if (!vma || start < vma->vm_start ||
|
|
|
|
(vma->vm_flags & device_vma))
|
|
|
|
return false;
|
|
|
|
start = min(end, vma->vm_end);
|
|
|
|
} while (start < end);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* svm_range_add - add svm range and handle overlap
|
|
|
|
* @p: the range add to this process svms
|
|
|
|
* @start: page size aligned
|
|
|
|
* @size: page size aligned
|
|
|
|
* @nattr: number of attributes
|
|
|
|
* @attrs: array of attributes
|
|
|
|
* @update_list: output, the ranges need validate and update GPU mapping
|
|
|
|
* @insert_list: output, the ranges need insert to svms
|
|
|
|
* @remove_list: output, the ranges are replaced and need remove from svms
|
|
|
|
*
|
|
|
|
* Check if the virtual address range has overlap with the registered ranges,
|
|
|
|
* split the overlapped range, copy and adjust pages address and vram nodes in
|
|
|
|
* old and new ranges.
|
|
|
|
*
|
|
|
|
* Context: Process context, caller must hold svms->lock
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 - OK, otherwise error code
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
|
|
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
|
|
|
|
struct list_head *update_list, struct list_head *insert_list,
|
|
|
|
struct list_head *remove_list)
|
|
|
|
{
|
|
|
|
uint64_t last = start + size - 1UL;
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range new = {0};
|
|
|
|
struct svm_range *prange;
|
|
|
|
unsigned long left = 0;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx]\n", &p->svms, start, last);
|
|
|
|
|
|
|
|
svm_range_apply_attrs(p, &new, nattr, attrs);
|
|
|
|
|
|
|
|
svms = &p->svms;
|
|
|
|
|
|
|
|
r = svm_range_handle_overlap(svms, &new, start, last, update_list,
|
|
|
|
insert_list, remove_list, &left);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
prange = svm_range_new(svms, last - left + 1, last);
|
|
|
|
list_add(&prange->insert_list, insert_list);
|
|
|
|
list_add(&prange->update_list, update_list);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-02-25 12:46:28 +08:00
|
|
|
/* svm_range_best_prefetch_location - decide the best prefetch location
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
* @prange: svm range structure
|
|
|
|
*
|
|
|
|
* For xnack off:
|
|
|
|
* If range map to single GPU, the best acutal location is prefetch loc, which
|
|
|
|
* can be CPU or GPU.
|
|
|
|
*
|
|
|
|
* If range map to multiple GPUs, only if mGPU connection on xgmi same hive,
|
|
|
|
* the best actual location could be prefetch_loc GPU. If mGPU connection on
|
|
|
|
* PCIe, the best actual location is always CPU, because GPU cannot access vram
|
|
|
|
* of other GPUs, assuming PCIe small bar (large bar support is not upstream).
|
|
|
|
*
|
|
|
|
* For xnack on:
|
|
|
|
* The best actual location is prefetch location. If mGPU connection on xgmi
|
|
|
|
* same hive, range map to multiple GPUs. Otherwise, the range only map to
|
|
|
|
* actual location GPU. Other GPU access vm fault will trigger migration.
|
|
|
|
*
|
|
|
|
* Context: Process context
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 for CPU or GPU id
|
|
|
|
*/
|
2021-02-25 12:46:28 +08:00
|
|
|
static uint32_t
|
|
|
|
svm_range_best_prefetch_location(struct svm_range *prange)
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
{
|
|
|
|
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
|
|
|
|
uint32_t best_loc = prange->prefetch_loc;
|
|
|
|
struct kfd_process_device *pdd;
|
|
|
|
struct amdgpu_device *bo_adev;
|
|
|
|
struct amdgpu_device *adev;
|
|
|
|
struct kfd_process *p;
|
|
|
|
uint32_t gpuidx;
|
|
|
|
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
|
|
|
|
/* xnack on */
|
|
|
|
if (p->xnack_enabled)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* xnack off */
|
|
|
|
if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
bo_adev = svm_range_get_adev_by_id(prange, best_loc);
|
2021-02-25 12:57:33 +08:00
|
|
|
if (!bo_adev) {
|
|
|
|
WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc);
|
|
|
|
best_loc = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
|
|
|
|
MAX_GPU_INSTANCE);
|
|
|
|
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
if (!pdd) {
|
|
|
|
pr_debug("failed to get device by idx 0x%x\n", gpuidx);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
adev = (struct amdgpu_device *)pdd->dev->kgd;
|
|
|
|
|
|
|
|
if (adev == bo_adev)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!amdgpu_xgmi_same_hive(adev, bo_adev)) {
|
|
|
|
best_loc = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
|
|
|
|
p->xnack_enabled, &p->svms, prange->start, prange->last,
|
|
|
|
best_loc);
|
|
|
|
|
|
|
|
return best_loc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* FIXME: This is a workaround for page locking bug when some pages are
|
|
|
|
* invalid during migration to VRAM
|
|
|
|
*/
|
|
|
|
void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
struct hmm_range *hmm_range;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
if (prange->validated_once)
|
|
|
|
return;
|
|
|
|
|
|
|
|
r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
|
|
|
|
prange->start << PAGE_SHIFT,
|
|
|
|
prange->npages, &hmm_range,
|
|
|
|
false, true);
|
|
|
|
if (!r) {
|
|
|
|
amdgpu_hmm_range_get_pages_done(hmm_range);
|
|
|
|
prange->validated_once = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* svm_range_trigger_migration - start page migration if prefetch loc changed
|
|
|
|
* @mm: current process mm_struct
|
|
|
|
* @prange: svm range structure
|
|
|
|
* @migrated: output, true if migration is triggered
|
|
|
|
*
|
|
|
|
* If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
|
|
|
|
* from ram to vram.
|
|
|
|
* If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
|
|
|
|
* from vram to ram.
|
|
|
|
*
|
|
|
|
* If GPU vm fault retry is not enabled, migration interact with MMU notifier
|
|
|
|
* and restore work:
|
|
|
|
* 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
|
|
|
|
* stops all queues, schedule restore work
|
|
|
|
* 2. svm_range_restore_work wait for migration is done by
|
|
|
|
* a. svm_range_validate_vram takes prange->migrate_mutex
|
|
|
|
* b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
|
|
|
|
* 3. restore work update mappings of GPU, resume all queues.
|
|
|
|
*
|
|
|
|
* Context: Process context
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* 0 - OK, otherwise - error code of migration
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
|
|
|
|
bool *migrated)
|
|
|
|
{
|
|
|
|
uint32_t best_loc;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
*migrated = false;
|
2021-02-25 12:46:28 +08:00
|
|
|
best_loc = svm_range_best_prefetch_location(prange);
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
|
|
|
|
if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
|
|
best_loc == prange->actual_loc)
|
|
|
|
return 0;
|
|
|
|
|
2021-02-25 12:57:33 +08:00
|
|
|
/*
|
|
|
|
* Prefetch to GPU without host access flag, set actual_loc to gpu, then
|
|
|
|
* validate on gpu and map to gpus will be handled afterwards.
|
|
|
|
*/
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
if (best_loc && !prange->actual_loc &&
|
2021-02-25 12:57:33 +08:00
|
|
|
!(prange->flags & KFD_IOCTL_SVM_FLAG_HOST_ACCESS)) {
|
|
|
|
prange->actual_loc = best_loc;
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
return 0;
|
2021-02-25 12:57:33 +08:00
|
|
|
}
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
|
2021-02-25 12:57:33 +08:00
|
|
|
if (!best_loc) {
|
2021-02-25 12:46:28 +08:00
|
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
2021-02-25 12:57:33 +08:00
|
|
|
*migrated = !r;
|
|
|
|
return r;
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
}
|
|
|
|
|
2021-02-25 12:57:33 +08:00
|
|
|
r = svm_migrate_to_vram(prange, best_loc, mm);
|
|
|
|
*migrated = !r;
|
2021-03-17 12:24:12 +08:00
|
|
|
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2021-02-25 12:24:53 +08:00
|
|
|
int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
|
|
|
|
{
|
|
|
|
if (!fence)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (dma_fence_is_signaled(&fence->base))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (fence->svm_bo) {
|
|
|
|
WRITE_ONCE(fence->svm_bo->evicting, 1);
|
|
|
|
schedule_work(&fence->svm_bo->eviction_work);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void svm_range_evict_svm_bo_worker(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
struct kfd_process *p;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
|
|
|
|
svm_bo = container_of(work, struct svm_range_bo, eviction_work);
|
|
|
|
if (!svm_bo_ref_unless_zero(svm_bo))
|
|
|
|
return; /* svm_bo was freed while eviction was pending */
|
|
|
|
|
|
|
|
/* svm_range_bo_release destroys this worker thread. So during
|
|
|
|
* the lifetime of this thread, kfd_process and mm will be valid.
|
|
|
|
*/
|
|
|
|
p = container_of(svm_bo->svms, struct kfd_process, svms);
|
|
|
|
mm = p->mm;
|
|
|
|
if (!mm)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
|
|
while (!list_empty(&svm_bo->range_list)) {
|
|
|
|
struct svm_range *prange =
|
|
|
|
list_first_entry(&svm_bo->range_list,
|
|
|
|
struct svm_range, svm_bo_list);
|
|
|
|
list_del_init(&prange->svm_bo_list);
|
|
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
|
|
prange->start, prange->last);
|
|
|
|
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
svm_migrate_vram_to_ram(prange, svm_bo->eviction_fence->mm);
|
|
|
|
|
|
|
|
mutex_lock(&prange->lock);
|
|
|
|
prange->svm_bo = NULL;
|
|
|
|
mutex_unlock(&prange->lock);
|
|
|
|
|
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
|
|
}
|
|
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
|
|
|
|
dma_fence_signal(&svm_bo->eviction_fence->base);
|
|
|
|
/* This is the last reference to svm_bo, after svm_range_vram_node_free
|
|
|
|
* has been called in svm_migrate_vram_to_ram
|
|
|
|
*/
|
|
|
|
WARN_ONCE(kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
|
|
|
|
svm_range_bo_unref(svm_bo);
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
static int
|
|
|
|
svm_range_set_attr(struct kfd_process *p, uint64_t start, uint64_t size,
|
|
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
|
|
{
|
|
|
|
struct amdkfd_process_info *process_info = p->kgd_process_info;
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
struct list_head update_list;
|
|
|
|
struct list_head insert_list;
|
|
|
|
struct list_head remove_list;
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range *prange;
|
|
|
|
struct svm_range *next;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
|
|
|
|
p->pasid, &p->svms, start, start + size - 1, size);
|
|
|
|
|
|
|
|
r = svm_range_check_attr(p, nattr, attrs);
|
|
|
|
if (r)
|
|
|
|
return r;
|
|
|
|
|
|
|
|
svms = &p->svms;
|
|
|
|
|
|
|
|
mutex_lock(&process_info->lock);
|
|
|
|
|
2020-04-08 23:09:45 +08:00
|
|
|
svm_range_list_lock_and_flush_work(svms, mm);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
|
|
|
|
if (!svm_range_is_valid(mm, start, size)) {
|
|
|
|
pr_debug("invalid range\n");
|
|
|
|
r = -EFAULT;
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
|
|
|
|
/* Add new range and split existing ranges as needed */
|
|
|
|
r = svm_range_add(p, start, size, nattr, attrs, &update_list,
|
|
|
|
&insert_list, &remove_list);
|
|
|
|
if (r) {
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* Apply changes as a transaction */
|
|
|
|
list_for_each_entry_safe(prange, next, &insert_list, insert_list) {
|
|
|
|
svm_range_add_to_svms(prange);
|
2020-02-16 04:02:49 +08:00
|
|
|
svm_range_add_notifier_locked(mm, prange);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
}
|
|
|
|
list_for_each_entry(prange, &update_list, update_list) {
|
|
|
|
svm_range_apply_attrs(p, prange, nattr, attrs);
|
|
|
|
/* TODO: unmap ranges from GPU that lost access */
|
|
|
|
}
|
|
|
|
list_for_each_entry_safe(prange, next, &remove_list,
|
|
|
|
remove_list) {
|
|
|
|
pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
|
|
prange->svms, prange, prange->start,
|
|
|
|
prange->last);
|
|
|
|
svm_range_unlink(prange);
|
2020-02-16 04:02:49 +08:00
|
|
|
svm_range_remove_notifier(prange);
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
svm_range_free(prange);
|
|
|
|
}
|
|
|
|
|
|
|
|
mmap_write_downgrade(mm);
|
|
|
|
/* Trigger migrations and revalidate and map to GPUs as needed. If
|
|
|
|
* this fails we may be left with partially completed actions. There
|
|
|
|
* is no clean way of rolling back to the previous state in such a
|
|
|
|
* case because the rollback wouldn't be guaranteed to work either.
|
|
|
|
*/
|
|
|
|
list_for_each_entry(prange, &update_list, update_list) {
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
bool migrated;
|
|
|
|
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
|
|
|
|
r = svm_range_trigger_migration(mm, prange, &migrated);
|
|
|
|
if (r)
|
|
|
|
goto out_unlock_range;
|
|
|
|
|
2021-02-25 11:34:11 +08:00
|
|
|
if (migrated && !p->xnack_enabled) {
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
pr_debug("restore_work will update mappings of GPUs\n");
|
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2020-02-16 04:02:49 +08:00
|
|
|
r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
|
|
|
|
true, true);
|
drm/amdkfd: HMM migrate ram to vram
Register svm range with same address and size but perferred_location
is changed from CPU to GPU or from GPU to CPU, trigger migration the svm
range from ram to vram or from vram to ram.
If svm range prefetch location is GPU with flags
KFD_IOCTL_SVM_FLAG_HOST_ACCESS, validate the svm range on ram first,
then migrate it from ram to vram.
After migrating to vram is done, CPU access will have cpu page fault,
page fault handler migrate it back to ram and resume cpu access.
Migration steps:
1. migrate_vma_pages get svm range ram pages, notify the
interval is invalidated and unmap from CPU page table, HMM interval
notifier callback evict process queues
2. Allocate new pages in vram using TTM
3. Use svm copy memory to sdma copy data from ram to vram
4. migrate_vma_pages copy ram pages structure to vram pages structure
5. migrate_vma_finalize put ram pages to free ram pages and memory
6. Restore work wait for migration is finished, then update GPUs page
table mapping to new vram pages, resume process queues
If migrate_vma_setup failed to collect all ram pages of range, retry 3
times until success to start migration.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2021-02-25 09:40:20 +08:00
|
|
|
if (r)
|
|
|
|
pr_debug("failed %d to map svm range\n", r);
|
|
|
|
|
|
|
|
out_unlock_range:
|
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
if (r)
|
2020-02-16 04:02:49 +08:00
|
|
|
break;
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
svm_range_debug_dump(svms);
|
|
|
|
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
out:
|
|
|
|
mutex_unlock(&process_info->lock);
|
|
|
|
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
|
|
|
|
&p->svms, start, start + size - 1, r);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2020-02-17 01:42:00 +08:00
|
|
|
static int
|
|
|
|
svm_range_get_attr(struct kfd_process *p, uint64_t start, uint64_t size,
|
|
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
|
|
{
|
|
|
|
DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
bool get_preferred_loc = false;
|
|
|
|
bool get_prefetch_loc = false;
|
|
|
|
bool get_granularity = false;
|
|
|
|
bool get_accessible = false;
|
|
|
|
bool get_flags = false;
|
|
|
|
uint64_t last = start + size - 1UL;
|
|
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
uint8_t granularity = 0xff;
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
struct svm_range_list *svms;
|
|
|
|
struct svm_range *prange;
|
|
|
|
uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
uint32_t flags = 0xffffffff;
|
|
|
|
int gpuidx;
|
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
|
|
|
|
start + size - 1, nattr);
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
if (!svm_range_is_valid(mm, start, size)) {
|
|
|
|
pr_debug("invalid range\n");
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
|
|
switch (attrs[i].type) {
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
|
|
get_preferred_loc = true;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
|
|
get_prefetch_loc = true;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
|
|
get_accessible = true;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
|
|
get_flags = true;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
|
|
get_granularity = true;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
|
|
fallthrough;
|
|
|
|
default:
|
|
|
|
pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
svms = &p->svms;
|
|
|
|
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
|
|
|
|
node = interval_tree_iter_first(&svms->objects, start, last);
|
|
|
|
if (!node) {
|
|
|
|
pr_debug("range attrs not found return default values\n");
|
|
|
|
svm_range_set_default_attributes(&location, &prefetch_loc,
|
|
|
|
&granularity, &flags);
|
|
|
|
/* TODO: Automatically create SVM ranges and map them on
|
|
|
|
* GPU page faults
|
|
|
|
if (p->xnack_enabled)
|
|
|
|
bitmap_fill(bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
*/
|
|
|
|
|
|
|
|
goto fill_values;
|
|
|
|
}
|
|
|
|
bitmap_fill(bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
bitmap_fill(bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
|
|
|
|
while (node) {
|
|
|
|
struct interval_tree_node *next;
|
|
|
|
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
|
|
next = interval_tree_iter_next(node, start, last);
|
|
|
|
|
|
|
|
if (get_preferred_loc) {
|
|
|
|
if (prange->preferred_loc ==
|
|
|
|
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
|
|
(location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
|
|
|
|
location != prange->preferred_loc)) {
|
|
|
|
location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
get_preferred_loc = false;
|
|
|
|
} else {
|
|
|
|
location = prange->preferred_loc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (get_prefetch_loc) {
|
|
|
|
if (prange->prefetch_loc ==
|
|
|
|
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
|
|
(prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
|
|
|
|
prefetch_loc != prange->prefetch_loc)) {
|
|
|
|
prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
|
|
get_prefetch_loc = false;
|
|
|
|
} else {
|
|
|
|
prefetch_loc = prange->prefetch_loc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (get_accessible) {
|
|
|
|
bitmap_and(bitmap_access, bitmap_access,
|
|
|
|
prange->bitmap_access, MAX_GPU_INSTANCE);
|
|
|
|
bitmap_and(bitmap_aip, bitmap_aip,
|
|
|
|
prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
}
|
|
|
|
if (get_flags)
|
|
|
|
flags &= prange->flags;
|
|
|
|
|
|
|
|
if (get_granularity && prange->granularity < granularity)
|
|
|
|
granularity = prange->granularity;
|
|
|
|
|
|
|
|
node = next;
|
|
|
|
}
|
|
|
|
fill_values:
|
|
|
|
mutex_unlock(&svms->lock);
|
|
|
|
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
|
|
switch (attrs[i].type) {
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
|
|
attrs[i].value = location;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
|
|
attrs[i].value = prefetch_loc;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
|
|
attrs[i].value);
|
|
|
|
if (gpuidx < 0) {
|
|
|
|
pr_debug("invalid gpuid %x\n", attrs[i].value);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (test_bit(gpuidx, bitmap_access))
|
|
|
|
attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
|
|
|
|
else if (test_bit(gpuidx, bitmap_aip))
|
|
|
|
attrs[i].type =
|
|
|
|
KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
|
|
|
|
else
|
|
|
|
attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
|
|
attrs[i].value = flags;
|
|
|
|
break;
|
|
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
|
|
attrs[i].value = (uint32_t)granularity;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
int
|
|
|
|
svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
|
|
|
|
uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
|
|
|
|
start >>= PAGE_SHIFT;
|
|
|
|
size >>= PAGE_SHIFT;
|
|
|
|
|
|
|
|
switch (op) {
|
|
|
|
case KFD_IOCTL_SVM_OP_SET_ATTR:
|
|
|
|
r = svm_range_set_attr(p, start, size, nattrs, attrs);
|
|
|
|
break;
|
2020-02-17 01:42:00 +08:00
|
|
|
case KFD_IOCTL_SVM_OP_GET_ATTR:
|
|
|
|
r = svm_range_get_attr(p, start, size, nattrs, attrs);
|
|
|
|
break;
|
drm/amdkfd: register svm range
svm range structure stores the range start address, size, attributes,
flags, prefetch location and gpu bitmap which indicates which GPU this
range maps to. Same virtual address is shared by CPU and GPUs.
Process has svm range list which uses both interval tree and list to
store all svm ranges registered by the process. Interval tree is used by
GPU vm fault handler and CPU page fault handler to get svm range
structure from the specific address. List is used to scan all ranges in
eviction restore work.
No overlap range interval [start, last] exist in svms object interval
tree. If process registers new range which has overlap with old range,
the old range split into 2 ranges depending on the overlap happens at
head or tail part of old range.
Apply attributes preferred location, prefetch location, mapping flags,
migration granularity to svm range, store mapping gpu index into bitmap.
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-02-07 02:43:56 +08:00
|
|
|
default:
|
|
|
|
r = EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|