OpenCloudOS-Kernel/drivers/infiniband/hw/hfi1/hfi.h

2005 lines
61 KiB
C
Raw Normal View History

#ifndef _HFI1_KERNEL_H
#define _HFI1_KERNEL_H
/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/sched.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <rdma/rdma_vt.h>
#include "chip_registers.h"
#include "common.h"
#include "verbs.h"
#include "pio.h"
#include "chip.h"
#include "mad.h"
#include "qsfp.h"
#include "platform.h"
#include "affinity.h"
/* bumped 1 from s/w major version of TrueScale */
#define HFI1_CHIP_VERS_MAJ 3U
/* don't care about this except printing */
#define HFI1_CHIP_VERS_MIN 0U
/* The Organization Unique Identifier (Mfg code), and its position in GUID */
#define HFI1_OUI 0x001175
#define HFI1_OUI_LSB 40
#define DROP_PACKET_OFF 0
#define DROP_PACKET_ON 1
extern unsigned long hfi1_cap_mask;
#define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
#define HFI1_CAP_UGET_MASK(mask, cap) \
(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
#define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
#define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
#define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
HFI1_CAP_MISC_MASK)
/* Offline Disabled Reason is 4-bits */
#define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
/*
* Control context is always 0 and handles the error packets.
* It also handles the VL15 and multicast packets.
*/
#define HFI1_CTRL_CTXT 0
/*
* Driver context will store software counters for each of the events
* associated with these status registers
*/
#define NUM_CCE_ERR_STATUS_COUNTERS 41
#define NUM_RCV_ERR_STATUS_COUNTERS 64
#define NUM_MISC_ERR_STATUS_COUNTERS 13
#define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
#define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
#define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
#define NUM_SEND_ERR_STATUS_COUNTERS 3
#define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
#define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
/*
* per driver stats, either not device nor port-specific, or
* summed over all of the devices and ports.
* They are described by name via ipathfs filesystem, so layout
* and number of elements can change without breaking compatibility.
* If members are added or deleted hfi1_statnames[] in debugfs.c must
* change to match.
*/
struct hfi1_ib_stats {
__u64 sps_ints; /* number of interrupts handled */
__u64 sps_errints; /* number of error interrupts */
__u64 sps_txerrs; /* tx-related packet errors */
__u64 sps_rcverrs; /* non-crc rcv packet errors */
__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
__u64 sps_ctxts; /* number of contexts currently open */
__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
__u64 sps_buffull;
__u64 sps_hdrfull;
};
extern struct hfi1_ib_stats hfi1_stats;
extern const struct pci_error_handlers hfi1_pci_err_handler;
/*
* First-cut criterion for "device is active" is
* two thousand dwords combined Tx, Rx traffic per
* 5-second interval. SMA packets are 64 dwords,
* and occur "a few per second", presumably each way.
*/
#define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
/*
* Below contains all data related to a single context (formerly called port).
*/
#ifdef CONFIG_DEBUG_FS
struct hfi1_opcode_stats_perctx;
#endif
struct ctxt_eager_bufs {
ssize_t size; /* total size of eager buffers */
u32 count; /* size of buffers array */
u32 numbufs; /* number of buffers allocated */
u32 alloced; /* number of rcvarray entries used */
u32 rcvtid_size; /* size of each eager rcv tid */
u32 threshold; /* head update threshold */
struct eager_buffer {
void *addr;
dma_addr_t phys;
ssize_t len;
} *buffers;
struct {
void *addr;
dma_addr_t phys;
} *rcvtids;
};
struct exp_tid_set {
struct list_head list;
u32 count;
};
struct hfi1_ctxtdata {
/* shadow the ctxt's RcvCtrl register */
u64 rcvctrl;
/* rcvhdrq base, needs mmap before useful */
void *rcvhdrq;
/* kernel virtual address where hdrqtail is updated */
volatile __le64 *rcvhdrtail_kvaddr;
/*
* Shared page for kernel to signal user processes that send buffers
* need disarming. The process should call HFI1_CMD_DISARM_BUFS
* or HFI1_CMD_ACK_EVENT with IPATH_EVENT_DISARM_BUFS set.
*/
unsigned long *user_event_mask;
/* when waiting for rcv or pioavail */
wait_queue_head_t wait;
/* rcvhdrq size (for freeing) */
size_t rcvhdrq_size;
/* number of rcvhdrq entries */
u16 rcvhdrq_cnt;
/* size of each of the rcvhdrq entries */
u16 rcvhdrqentsize;
/* mmap of hdrq, must fit in 44 bits */
dma_addr_t rcvhdrq_phys;
dma_addr_t rcvhdrqtailaddr_phys;
struct ctxt_eager_bufs egrbufs;
/* this receive context's assigned PIO ACK send context */
struct send_context *sc;
/* dynamic receive available interrupt timeout */
u32 rcvavail_timeout;
/*
* number of opens (including slave sub-contexts) on this instance
* (ignoring forks, dup, etc. for now)
*/
int cnt;
/*
* how much space to leave at start of eager TID entries for
* protocol use, on each TID
*/
/* instead of calculating it */
unsigned ctxt;
/* non-zero if ctxt is being shared. */
u16 subctxt_cnt;
/* non-zero if ctxt is being shared. */
u16 subctxt_id;
u8 uuid[16];
/* job key */
u16 jkey;
/* number of RcvArray groups for this context. */
u32 rcv_array_groups;
/* index of first eager TID entry. */
u32 eager_base;
/* number of expected TID entries */
u32 expected_count;
/* index of first expected TID entry. */
u32 expected_base;
struct exp_tid_set tid_group_list;
struct exp_tid_set tid_used_list;
struct exp_tid_set tid_full_list;
/* lock protecting all Expected TID data */
struct mutex exp_lock;
/* number of pio bufs for this ctxt (all procs, if shared) */
u32 piocnt;
/* first pio buffer for this ctxt */
u32 pio_base;
/* chip offset of PIO buffers for this ctxt */
u32 piobufs;
/* per-context configuration flags */
u32 flags;
/* per-context event flags for fileops/intr communication */
unsigned long event_flags;
/* WAIT_RCV that timed out, no interrupt */
u32 rcvwait_to;
/* WAIT_PIO that timed out, no interrupt */
u32 piowait_to;
/* WAIT_RCV already happened, no wait */
u32 rcvnowait;
/* WAIT_PIO already happened, no wait */
u32 pionowait;
/* total number of polled urgent packets */
u32 urgent;
/* saved total number of polled urgent packets for poll edge trigger */
u32 urgent_poll;
/* pid of process using this ctxt */
pid_t pid;
pid_t subpid[HFI1_MAX_SHARED_CTXTS];
/* same size as task_struct .comm[], command that opened context */
char comm[TASK_COMM_LEN];
/* so file ops can get at unit */
struct hfi1_devdata *dd;
/* so functions that need physical port can get it easily */
struct hfi1_pportdata *ppd;
/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
void *subctxt_uregbase;
/* An array of pages for the eager receive buffers * N */
void *subctxt_rcvegrbuf;
/* An array of pages for the eager header queue entries * N */
void *subctxt_rcvhdr_base;
/* The version of the library which opened this ctxt */
u32 userversion;
/* Bitmask of active slaves */
u32 active_slaves;
/* Type of packets or conditions we want to poll for */
u16 poll_type;
/* receive packet sequence counter */
u8 seq_cnt;
u8 redirect_seq_cnt;
/* ctxt rcvhdrq head offset */
u32 head;
u32 pkt_count;
/* QPs waiting for context processing */
struct list_head qp_wait_list;
/* interrupt handling */
u64 imask; /* clear interrupt mask */
int ireg; /* clear interrupt register */
unsigned numa_id; /* numa node of this context */
/* verbs stats per CTX */
struct hfi1_opcode_stats_perctx *opstats;
/*
* This is the kernel thread that will keep making
* progress on the user sdma requests behind the scenes.
* There is one per context (shared contexts use the master's).
*/
struct task_struct *progress;
struct list_head sdma_queues;
/* protect sdma queues */
spinlock_t sdma_qlock;
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 06:33:06 +08:00
/* Is ASPM interrupt supported for this context */
bool aspm_intr_supported;
/* ASPM state (enabled/disabled) for this context */
bool aspm_enabled;
/* Timer for re-enabling ASPM if interrupt activity quietens down */
struct timer_list aspm_timer;
/* Lock to serialize between intr, timer intr and user threads */
spinlock_t aspm_lock;
/* Is ASPM processing enabled for this context (in intr context) */
bool aspm_intr_enable;
/* Last interrupt timestamp */
ktime_t aspm_ts_last_intr;
/* Last timestamp at which we scheduled a timer for this context */
ktime_t aspm_ts_timer_sched;
/*
* The interrupt handler for a particular receive context can vary
* throughout it's lifetime. This is not a lock protected data member so
* it must be updated atomically and the prev and new value must always
* be valid. Worst case is we process an extra interrupt and up to 64
* packets with the wrong interrupt handler.
*/
int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
};
/*
* Represents a single packet at a high level. Put commonly computed things in
* here so we do not have to keep doing them over and over. The rule of thumb is
* if something is used one time to derive some value, store that something in
* here. If it is used multiple times, then store the result of that derivation
* in here.
*/
struct hfi1_packet {
void *ebuf;
void *hdr;
struct hfi1_ctxtdata *rcd;
__le32 *rhf_addr;
struct rvt_qp *qp;
struct hfi1_other_headers *ohdr;
u64 rhf;
u32 maxcnt;
u32 rhqoff;
u32 hdrqtail;
int numpkt;
u16 tlen;
u16 hlen;
s16 etail;
u16 rsize;
u8 updegr;
u8 rcv_flags;
u8 etype;
};
static inline bool has_sc4_bit(struct hfi1_packet *p)
{
return !!rhf_dc_info(p->rhf);
}
/*
* Private data for snoop/capture support.
*/
struct hfi1_snoop_data {
int mode_flag;
struct cdev cdev;
struct device *class_dev;
/* protect snoop data */
spinlock_t snoop_lock;
struct list_head queue;
wait_queue_head_t waitq;
void *filter_value;
int (*filter_callback)(void *hdr, void *data, void *value);
u64 dcc_cfg; /* saved value of DCC Cfg register */
};
/* snoop mode_flag values */
#define HFI1_PORT_SNOOP_MODE 1U
#define HFI1_PORT_CAPTURE_MODE 2U
struct rvt_sge_state;
/*
* Get/Set IB link-level config parameters for f_get/set_ib_cfg()
* Mostly for MADs that set or query link parameters, also ipath
* config interfaces
*/
#define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
#define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
#define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
#define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
#define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
#define HFI1_IB_CFG_SPD 5 /* current Link spd */
#define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
#define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
#define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
#define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
#define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
#define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
#define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
#define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
#define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
#define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
#define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
#define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
#define HFI1_IB_CFG_VL_HIGH_LIMIT 19
#define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
#define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
/*
* HFI or Host Link States
*
* These describe the states the driver thinks the logical and physical
* states are in. Used as an argument to set_link_state(). Implemented
* as bits for easy multi-state checking. The actual state can only be
* one.
*/
#define __HLS_UP_INIT_BP 0
#define __HLS_UP_ARMED_BP 1
#define __HLS_UP_ACTIVE_BP 2
#define __HLS_DN_DOWNDEF_BP 3 /* link down default */
#define __HLS_DN_POLL_BP 4
#define __HLS_DN_DISABLE_BP 5
#define __HLS_DN_OFFLINE_BP 6
#define __HLS_VERIFY_CAP_BP 7
#define __HLS_GOING_UP_BP 8
#define __HLS_GOING_OFFLINE_BP 9
#define __HLS_LINK_COOLDOWN_BP 10
#define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
#define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
#define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
#define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
#define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
#define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
#define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
#define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
#define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
#define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
#define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
#define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
#define HLS_DOWN ~(HLS_UP)
/* use this MTU size if none other is given */
#define HFI1_DEFAULT_ACTIVE_MTU 10240
/* use this MTU size as the default maximum */
#define HFI1_DEFAULT_MAX_MTU 10240
/* default partition key */
#define DEFAULT_PKEY 0xffff
/*
* Possible fabric manager config parameters for fm_{get,set}_table()
*/
#define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
#define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
#define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
#define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
#define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
#define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
/*
* Possible "operations" for f_rcvctrl(ppd, op, ctxt)
* these are bits so they can be combined, e.g.
* HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
*/
#define HFI1_RCVCTRL_TAILUPD_ENB 0x01
#define HFI1_RCVCTRL_TAILUPD_DIS 0x02
#define HFI1_RCVCTRL_CTXT_ENB 0x04
#define HFI1_RCVCTRL_CTXT_DIS 0x08
#define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
#define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
#define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
#define HFI1_RCVCTRL_PKEY_DIS 0x80
#define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
#define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
#define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
#define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
#define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
#define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
#define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
#define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
/* partition enforcement flags */
#define HFI1_PART_ENFORCE_IN 0x1
#define HFI1_PART_ENFORCE_OUT 0x2
/* how often we check for synthetic counter wrap around */
#define SYNTH_CNT_TIME 2
/* Counter flags */
#define CNTR_NORMAL 0x0 /* Normal counters, just read register */
#define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
#define CNTR_DISABLED 0x2 /* Disable this counter */
#define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
#define CNTR_VL 0x8 /* Per VL counter */
#define CNTR_SDMA 0x10
#define CNTR_INVALID_VL -1 /* Specifies invalid VL */
#define CNTR_MODE_W 0x0
#define CNTR_MODE_R 0x1
/* VLs Supported/Operational */
#define HFI1_MIN_VLS_SUPPORTED 1
#define HFI1_MAX_VLS_SUPPORTED 8
static inline void incr_cntr64(u64 *cntr)
{
if (*cntr < (u64)-1LL)
(*cntr)++;
}
static inline void incr_cntr32(u32 *cntr)
{
if (*cntr < (u32)-1LL)
(*cntr)++;
}
#define MAX_NAME_SIZE 64
struct hfi1_msix_entry {
enum irq_type type;
struct msix_entry msix;
void *arg;
char name[MAX_NAME_SIZE];
cpumask_t mask;
};
/* per-SL CCA information */
struct cca_timer {
struct hrtimer hrtimer;
struct hfi1_pportdata *ppd; /* read-only */
int sl; /* read-only */
u16 ccti; /* read/write - current value of CCTI */
};
struct link_down_reason {
/*
* SMA-facing value. Should be set from .latest when
* HLS_UP_* -> HLS_DN_* transition actually occurs.
*/
u8 sma;
u8 latest;
};
enum {
LO_PRIO_TABLE,
HI_PRIO_TABLE,
MAX_PRIO_TABLE
};
struct vl_arb_cache {
/* protect vl arb cache */
spinlock_t lock;
struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
};
/*
* The structure below encapsulates data relevant to a physical IB Port.
* Current chips support only one such port, but the separation
* clarifies things a bit. Note that to conform to IB conventions,
* port-numbers are one-based. The first or only port is port1.
*/
struct hfi1_pportdata {
struct hfi1_ibport ibport_data;
struct hfi1_devdata *dd;
struct kobject pport_cc_kobj;
struct kobject sc2vl_kobj;
struct kobject sl2sc_kobj;
struct kobject vl2mtu_kobj;
/* PHY support */
u32 port_type;
struct qsfp_data qsfp_info;
/* GUID for this interface, in host order */
u64 guid;
/* GUID for peer interface, in host order */
u64 neighbor_guid;
/* up or down physical link state */
u32 linkup;
/*
* this address is mapped read-only into user processes so they can
* get status cheaply, whenever they want. One qword of status per port
*/
u64 *statusp;
/* SendDMA related entries */
struct workqueue_struct *hfi1_wq;
/* move out of interrupt context */
struct work_struct link_vc_work;
struct work_struct link_up_work;
struct work_struct link_down_work;
struct work_struct sma_message_work;
struct work_struct freeze_work;
struct work_struct link_downgrade_work;
struct work_struct link_bounce_work;
/* host link state variables */
struct mutex hls_lock;
u32 host_link_state;
spinlock_t sdma_alllock ____cacheline_aligned_in_smp;
u32 lstate; /* logical link state */
/* these are the "32 bit" regs */
u32 ibmtu; /* The MTU programmed for this unit */
/*
* Current max size IB packet (in bytes) including IB headers, that
* we can send. Changes when ibmtu changes.
*/
u32 ibmaxlen;
u32 current_egress_rate; /* units [10^6 bits/sec] */
/* LID programmed for this instance */
u16 lid;
/* list of pkeys programmed; 0 if not set */
u16 pkeys[MAX_PKEY_VALUES];
u16 link_width_supported;
u16 link_width_downgrade_supported;
u16 link_speed_supported;
u16 link_width_enabled;
u16 link_width_downgrade_enabled;
u16 link_speed_enabled;
u16 link_width_active;
u16 link_width_downgrade_tx_active;
u16 link_width_downgrade_rx_active;
u16 link_speed_active;
u8 vls_supported;
u8 vls_operational;
u8 actual_vls_operational;
/* LID mask control */
u8 lmc;
/* Rx Polarity inversion (compensate for ~tx on partner) */
u8 rx_pol_inv;
u8 hw_pidx; /* physical port index */
u8 port; /* IB port number and index into dd->pports - 1 */
/* type of neighbor node */
u8 neighbor_type;
u8 neighbor_normal;
u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
u8 neighbor_port_number;
u8 is_sm_config_started;
u8 offline_disabled_reason;
u8 is_active_optimize_enabled;
u8 driver_link_ready; /* driver ready for active link */
u8 link_enabled; /* link enabled? */
u8 linkinit_reason;
u8 local_tx_rate; /* rate given to 8051 firmware */
u8 last_pstate; /* info only */
/* placeholders for IB MAD packet settings */
u8 overrun_threshold;
u8 phy_error_threshold;
/* Used to override LED behavior for things like maintenance beaconing*/
/*
* Alternates per phase of blink
* [0] holds LED off duration, [1] holds LED on duration
*/
unsigned long led_override_vals[2];
u8 led_override_phase; /* LSB picks from vals[] */
atomic_t led_override_timer_active;
/* Used to flash LEDs in override mode */
struct timer_list led_override_timer;
u32 sm_trap_qp;
u32 sa_qp;
/*
* cca_timer_lock protects access to the per-SL cca_timer
* structures (specifically the ccti member).
*/
spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
struct cca_timer cca_timer[OPA_MAX_SLS];
/* List of congestion control table entries */
struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
/* congestion entries, each entry corresponding to a SL */
struct opa_congestion_setting_entry_shadow
congestion_entries[OPA_MAX_SLS];
/*
* cc_state_lock protects (write) access to the per-port
* struct cc_state.
*/
spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
struct cc_state __rcu *cc_state;
/* Total number of congestion control table entries */
u16 total_cct_entry;
/* Bit map identifying service level */
u32 cc_sl_control_map;
/* CA's max number of 64 entry units in the congestion control table */
u8 cc_max_table_entries;
/*
* begin congestion log related entries
* cc_log_lock protects all congestion log related data
*/
spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
u16 threshold_event_counter;
struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
int cc_log_idx; /* index for logging events */
int cc_mad_idx; /* index for reporting events */
/* end congestion log related entries */
struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
/* port relative counter buffer */
u64 *cntrs;
/* port relative synthetic counter buffer */
u64 *scntrs;
/* port_xmit_discards are synthesized from different egress errors */
u64 port_xmit_discards;
u64 port_xmit_discards_vl[C_VL_COUNT];
u64 port_xmit_constraint_errors;
u64 port_rcv_constraint_errors;
/* count of 'link_err' interrupts from DC */
u64 link_downed;
/* number of times link retrained successfully */
u64 link_up;
/* number of times a link unknown frame was reported */
u64 unknown_frame_count;
/* port_ltp_crc_mode is returned in 'portinfo' MADs */
u16 port_ltp_crc_mode;
/* port_crc_mode_enabled is the crc we support */
u8 port_crc_mode_enabled;
/* mgmt_allowed is also returned in 'portinfo' MADs */
u8 mgmt_allowed;
u8 part_enforce; /* partition enforcement flags */
struct link_down_reason local_link_down_reason;
struct link_down_reason neigh_link_down_reason;
/* Value to be sent to link peer on LinkDown .*/
u8 remote_link_down_reason;
/* Error events that will cause a port bounce. */
u32 port_error_action;
struct work_struct linkstate_active_work;
/* Does this port need to prescan for FECNs */
bool cc_prescan;
};
typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
typedef void (*opcode_handler)(struct hfi1_packet *packet);
/* return values for the RHF receive functions */
#define RHF_RCV_CONTINUE 0 /* keep going */
#define RHF_RCV_DONE 1 /* stop, this packet processed */
#define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
struct rcv_array_data {
u8 group_size;
u16 ngroups;
u16 nctxt_extra;
};
struct per_vl_data {
u16 mtu;
struct send_context *sc;
};
/* 16 to directly index */
#define PER_VL_SEND_CONTEXTS 16
struct err_info_rcvport {
u8 status_and_code;
u64 packet_flit1;
u64 packet_flit2;
};
struct err_info_constraint {
u8 status;
u16 pkey;
u32 slid;
};
struct hfi1_temp {
unsigned int curr; /* current temperature */
unsigned int lo_lim; /* low temperature limit */
unsigned int hi_lim; /* high temperature limit */
unsigned int crit_lim; /* critical temperature limit */
u8 triggers; /* temperature triggers */
};
/* common data between shared ASIC HFIs */
struct hfi1_asic_data {
struct hfi1_devdata *dds[2]; /* back pointers */
struct mutex asic_resource_mutex;
};
/* device data struct now contains only "general per-device" info.
* fields related to a physical IB port are in a hfi1_pportdata struct.
*/
struct sdma_engine;
struct sdma_vl_map;
#define BOARD_VERS_MAX 96 /* how long the version string can be */
#define SERIAL_MAX 16 /* length of the serial number */
staging/rdma/hfi1: Adaptive PIO for short messages The change requires a new pio_busy field in the iowait structure to track the number of outstanding pios. The new counter together with the sdma counter serve as the basis for a packet by packet decision as to which egress mechanism to use. Since packets given to different egress mechanisms are not ordered, this scheme will preserve the order. The iowait drain/wait mechanisms are extended for a pio case. An additional qp wait flag is added for the PIO drain wait case. Currently the only pio wait is for buffers, so the no_bufs_available() routine name is changed to pio_wait() and a third argument is passed with one of the two pio wait flags to generalize the routine. A module parameter is added to hold a configurable threshold. For now, the module parameter is zero. A heuristic routine is added to return the func pointer of the proper egress routine to use. The heuristic is as follows: - SMI always uses pio - GSI,UD qps <= threshold use pio - UD qps > threadhold use sdma o No coordination with sdma is required because order is not required and this qp pio count is not maintained for UD - RC/UC ONLY packets <= threshold chose as follows: o If sdmas pending, use SDMA o Otherwise use pio and enable the pio tracking count at the time the pio buffer is allocated - RC/UC ONLY packets > threshold use SDMA o If pio's are pending the pio_wait with the new wait flag is called to delay for pios to drain The threshold is potentially reduced by the QP's mtu. The sc_buffer_alloc() has two additional args (a callback, a void *) which are exploited by the RC/UC cases to pass a new complete routine and a qp *. When the shadow ring completes the credit associated with a packet, the new complete routine is called. The verbs_pio_complete() will then decrement the busy count and trigger any drain waiters in qp destroy or reset. Reviewed-by: Jubin John <jubin.john@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-15 04:45:36 +08:00
typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
struct hfi1_devdata {
struct hfi1_ibdev verbs_dev; /* must be first */
struct list_head list;
/* pointers to related structs for this device */
/* pci access data structure */
struct pci_dev *pcidev;
struct cdev user_cdev;
struct cdev diag_cdev;
struct cdev ui_cdev;
struct device *user_device;
struct device *diag_device;
struct device *ui_device;
/* mem-mapped pointer to base of chip regs */
u8 __iomem *kregbase;
/* end of mem-mapped chip space excluding sendbuf and user regs */
u8 __iomem *kregend;
/* physical address of chip for io_remap, etc. */
resource_size_t physaddr;
/* receive context data */
struct hfi1_ctxtdata **rcd;
/* send context data */
struct send_context_info *send_contexts;
/* map hardware send contexts to software index */
u8 *hw_to_sw;
/* spinlock for allocating and releasing send context resources */
spinlock_t sc_lock;
/* Per VL data. Enough for all VLs but not all elements are set/used. */
struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
/* lock for pio_map */
spinlock_t pio_map_lock;
/* array of kernel send contexts */
struct send_context **kernel_send_context;
/* array of vl maps */
struct pio_vl_map __rcu *pio_map;
/* seqlock for sc2vl */
seqlock_t sc2vl_lock;
u64 sc2vl[4];
/* Send Context initialization lock. */
spinlock_t sc_init_lock;
/* fields common to all SDMA engines */
/* default flags to last descriptor */
u64 default_desc1;
volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
dma_addr_t sdma_heads_phys;
void *sdma_pad_dma; /* DMA'ed by chip */
dma_addr_t sdma_pad_phys;
/* for deallocation */
size_t sdma_heads_size;
/* number from the chip */
u32 chip_sdma_engines;
/* num used */
u32 num_sdma;
/* lock for sdma_map */
spinlock_t sde_map_lock;
/* array of engines sized by num_sdma */
struct sdma_engine *per_sdma;
/* array of vl maps */
struct sdma_vl_map __rcu *sdma_map;
/* SPC freeze waitqueue and variable */
wait_queue_head_t sdma_unfreeze_wq;
atomic_t sdma_unfreeze_count;
/* common data between shared ASIC HFIs in this OS */
struct hfi1_asic_data *asic_data;
/* hfi1_pportdata, points to array of (physical) port-specific
* data structs, indexed by pidx (0..n-1)
*/
struct hfi1_pportdata *pport;
/* mem-mapped pointer to base of PIO buffers */
void __iomem *piobase;
/*
* write-combining mem-mapped pointer to base of RcvArray
* memory.
*/
void __iomem *rcvarray_wc;
/*
* credit return base - a per-NUMA range of DMA address that
* the chip will use to update the per-context free counter
*/
struct credit_return_base *cr_base;
/* send context numbers and sizes for each type */
struct sc_config_sizes sc_sizes[SC_MAX];
u32 lcb_access_count; /* count of LCB users */
char *boardname; /* human readable board info */
/* device (not port) flags, basically device capabilities */
u32 flags;
/* reset value */
u64 z_int_counter;
u64 z_rcv_limit;
u64 z_send_schedule;
/* percpu int_counter */
u64 __percpu *int_counter;
u64 __percpu *rcv_limit;
u64 __percpu *send_schedule;
/* number of receive contexts in use by the driver */
u32 num_rcv_contexts;
/* number of pio send contexts in use by the driver */
u32 num_send_contexts;
/*
* number of ctxts available for PSM open
*/
u32 freectxts;
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 06:33:06 +08:00
/* total number of available user/PSM contexts */
u32 num_user_contexts;
/* base receive interrupt timeout, in CSR units */
u32 rcv_intr_timeout_csr;
u64 __iomem *egrtidbase;
spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
/* around rcd and (user ctxts) ctxt_cnt use (intr vs free) */
spinlock_t uctxt_lock; /* rcd and user context changes */
/* exclusive access to 8051 */
spinlock_t dc8051_lock;
/* exclusive access to 8051 memory */
spinlock_t dc8051_memlock;
int dc8051_timed_out; /* remember if the 8051 timed out */
/*
* A page that will hold event notification bitmaps for all
* contexts. This page will be mapped into all processes.
*/
unsigned long *events;
/*
* per unit status, see also portdata statusp
* mapped read-only into user processes so they can get unit and
* IB link status cheaply
*/
struct hfi1_status *status;
u32 freezelen; /* max length of freezemsg */
/* revision register shadow */
u64 revision;
/* Base GUID for device (network order) */
u64 base_guid;
/* these are the "32 bit" regs */
/* value we put in kr_rcvhdrsize */
u32 rcvhdrsize;
/* number of receive contexts the chip supports */
u32 chip_rcv_contexts;
/* number of receive array entries */
u32 chip_rcv_array_count;
/* number of PIO send contexts the chip supports */
u32 chip_send_contexts;
/* number of bytes in the PIO memory buffer */
u32 chip_pio_mem_size;
/* number of bytes in the SDMA memory buffer */
u32 chip_sdma_mem_size;
/* size of each rcvegrbuffer */
u32 rcvegrbufsize;
/* log2 of above */
u16 rcvegrbufsize_shift;
/* both sides of the PCIe link are gen3 capable */
u8 link_gen3_capable;
/* localbus width (1, 2,4,8,16,32) from config space */
u32 lbus_width;
/* localbus speed in MHz */
u32 lbus_speed;
int unit; /* unit # of this chip */
int node; /* home node of this chip */
/* save these PCI fields to restore after a reset */
u32 pcibar0;
u32 pcibar1;
u32 pci_rom;
u16 pci_command;
u16 pcie_devctl;
u16 pcie_lnkctl;
u16 pcie_devctl2;
u32 pci_msix0;
u32 pci_lnkctl3;
u32 pci_tph2;
/*
* ASCII serial number, from flash, large enough for original
* all digit strings, and longer serial number format
*/
u8 serial[SERIAL_MAX];
/* human readable board version */
u8 boardversion[BOARD_VERS_MAX];
u8 lbus_info[32]; /* human readable localbus info */
/* chip major rev, from CceRevision */
u8 majrev;
/* chip minor rev, from CceRevision */
u8 minrev;
/* hardware ID */
u8 hfi1_id;
/* implementation code */
u8 icode;
/* default link down value (poll/sleep) */
u8 link_default;
/* vAU of this device */
u8 vau;
/* vCU of this device */
u8 vcu;
/* link credits of this device */
u16 link_credits;
/* initial vl15 credits to use */
u16 vl15_init;
/* Misc small ints */
/* Number of physical ports available */
u8 num_pports;
/* Lowest context number which can be used by user processes */
u8 first_user_ctxt;
u8 n_krcv_queues;
u8 qos_shift;
u8 qpn_mask;
u16 rhf_offset; /* offset of RHF within receive header entry */
u16 irev; /* implementation revision */
u16 dc8051_ver; /* 8051 firmware version */
struct platform_config platform_config;
struct platform_config_cache pcfg_cache;
struct diag_client *diag_client;
spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
u8 psxmitwait_supported;
/* cycle length of PS* counters in HW (in picoseconds) */
u16 psxmitwait_check_rate;
/* high volume overflow errors deferred to tasklet */
struct tasklet_struct error_tasklet;
/* MSI-X information */
struct hfi1_msix_entry *msix_entries;
u32 num_msix_entries;
/* INTx information */
u32 requested_intx_irq; /* did we request one? */
char intx_name[MAX_NAME_SIZE]; /* INTx name */
/* general interrupt: mask of handled interrupts */
u64 gi_mask[CCE_NUM_INT_CSRS];
struct rcv_array_data rcv_entries;
/*
* 64 bit synthetic counters
*/
struct timer_list synth_stats_timer;
/*
* device counters
*/
char *cntrnames;
size_t cntrnameslen;
size_t ndevcntrs;
u64 *cntrs;
u64 *scntrs;
/*
* remembered values for synthetic counters
*/
u64 last_tx;
u64 last_rx;
/*
* per-port counters
*/
size_t nportcntrs;
char *portcntrnames;
size_t portcntrnameslen;
struct hfi1_snoop_data hfi1_snoop;
struct err_info_rcvport err_info_rcvport;
struct err_info_constraint err_info_rcv_constraint;
struct err_info_constraint err_info_xmit_constraint;
u8 err_info_uncorrectable;
u8 err_info_fmconfig;
atomic_t drop_packet;
u8 do_drop;
/*
* Software counters for the status bits defined by the
* associated error status registers
*/
u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
/* Software counter that spans all contexts */
u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
/* Software counter that spans all DMA engines */
u64 sw_send_dma_eng_err_status_cnt[
NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
/* Software counter that aggregates all cce_err_status errors */
u64 sw_cce_err_status_aggregate;
/* Software counter that aggregates all bypass packet rcv errors */
u64 sw_rcv_bypass_packet_errors;
/* receive interrupt functions */
rhf_rcv_function_ptr *rhf_rcv_function_map;
rhf_rcv_function_ptr normal_rhf_rcv_functions[8];
/*
* Handlers for outgoing data so that snoop/capture does not
* have to have its hooks in the send path
*/
staging/rdma/hfi1: Adaptive PIO for short messages The change requires a new pio_busy field in the iowait structure to track the number of outstanding pios. The new counter together with the sdma counter serve as the basis for a packet by packet decision as to which egress mechanism to use. Since packets given to different egress mechanisms are not ordered, this scheme will preserve the order. The iowait drain/wait mechanisms are extended for a pio case. An additional qp wait flag is added for the PIO drain wait case. Currently the only pio wait is for buffers, so the no_bufs_available() routine name is changed to pio_wait() and a third argument is passed with one of the two pio wait flags to generalize the routine. A module parameter is added to hold a configurable threshold. For now, the module parameter is zero. A heuristic routine is added to return the func pointer of the proper egress routine to use. The heuristic is as follows: - SMI always uses pio - GSI,UD qps <= threshold use pio - UD qps > threadhold use sdma o No coordination with sdma is required because order is not required and this qp pio count is not maintained for UD - RC/UC ONLY packets <= threshold chose as follows: o If sdmas pending, use SDMA o Otherwise use pio and enable the pio tracking count at the time the pio buffer is allocated - RC/UC ONLY packets > threshold use SDMA o If pio's are pending the pio_wait with the new wait flag is called to delay for pios to drain The threshold is potentially reduced by the QP's mtu. The sc_buffer_alloc() has two additional args (a callback, a void *) which are exploited by the RC/UC cases to pass a new complete routine and a qp *. When the shadow ring completes the credit associated with a packet, the new complete routine is called. The verbs_pio_complete() will then decrement the busy count and trigger any drain waiters in qp destroy or reset. Reviewed-by: Jubin John <jubin.john@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-15 04:45:36 +08:00
send_routine process_pio_send;
send_routine process_dma_send;
void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
u64 pbc, const void *from, size_t count);
/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
u8 oui1;
u8 oui2;
u8 oui3;
/* Timer and counter used to detect RcvBufOvflCnt changes */
struct timer_list rcverr_timer;
u32 rcv_ovfl_cnt;
wait_queue_head_t event_queue;
/* Save the enabled LCB error bits */
u64 lcb_err_en;
u8 dc_shutdown;
/* receive context tail dummy address */
__le64 *rcvhdrtail_dummy_kvaddr;
dma_addr_t rcvhdrtail_dummy_physaddr;
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 06:33:06 +08:00
bool eprom_available; /* true if EPROM is available for this device */
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 06:33:06 +08:00
bool aspm_supported; /* Does HW support ASPM */
bool aspm_enabled; /* ASPM state: enabled/disabled */
/* Serialize ASPM enable/disable between multiple verbs contexts */
spinlock_t aspm_lock;
/* Number of verbs contexts which have disabled ASPM */
atomic_t aspm_disabled_cnt;
struct hfi1_affinity *affinity;
struct kobject kobj;
};
/* 8051 firmware version helper */
#define dc8051_ver(a, b) ((a) << 8 | (b))
/* f_put_tid types */
#define PT_EXPECTED 0
#define PT_EAGER 1
#define PT_INVALID 2
struct tid_rb_node;
struct mmu_rb_node;
/* Private data for file operations */
struct hfi1_filedata {
struct hfi1_ctxtdata *uctxt;
unsigned subctxt;
struct hfi1_user_sdma_comp_q *cq;
struct hfi1_user_sdma_pkt_q *pq;
/* for cpu affinity; -1 if none */
int rec_cpu_num;
u32 tid_n_pinned;
struct rb_root tid_rb_root;
struct tid_rb_node **entry_to_rb;
spinlock_t tid_lock; /* protect tid_[limit,used] counters */
u32 tid_limit;
u32 tid_used;
u32 *invalid_tids;
u32 invalid_tid_idx;
/* protect invalid_tids array and invalid_tid_idx */
spinlock_t invalid_lock;
};
extern struct list_head hfi1_dev_list;
extern spinlock_t hfi1_devs_lock;
struct hfi1_devdata *hfi1_lookup(int unit);
extern u32 hfi1_cpulist_count;
extern unsigned long *hfi1_cpulist;
extern unsigned int snoop_drop_send;
extern unsigned int snoop_force_capture;
int hfi1_init(struct hfi1_devdata *, int);
int hfi1_count_units(int *npresentp, int *nupp);
int hfi1_count_active_units(void);
int hfi1_diag_add(struct hfi1_devdata *);
void hfi1_diag_remove(struct hfi1_devdata *);
void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
int hfi1_create_rcvhdrq(struct hfi1_devdata *, struct hfi1_ctxtdata *);
int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *);
int hfi1_create_ctxts(struct hfi1_devdata *dd);
struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *, u32, int);
void hfi1_init_pportdata(struct pci_dev *, struct hfi1_pportdata *,
struct hfi1_devdata *, u8, u8);
void hfi1_free_ctxtdata(struct hfi1_devdata *, struct hfi1_ctxtdata *);
int handle_receive_interrupt(struct hfi1_ctxtdata *, int);
int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *, int);
int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *, int);
void set_all_slowpath(struct hfi1_devdata *dd);
extern const struct pci_device_id hfi1_pci_tbl[];
/* receive packet handler dispositions */
#define RCV_PKT_OK 0x0 /* keep going */
#define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
#define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
/* calculate the current RHF address */
static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
{
return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset;
}
int hfi1_reset_device(int);
/* return the driver's idea of the logical OPA port state */
static inline u32 driver_lstate(struct hfi1_pportdata *ppd)
{
return ppd->lstate; /* use the cached value */
}
void receive_interrupt_work(struct work_struct *work);
/* extract service channel from header and rhf */
static inline int hdr2sc(struct hfi1_message_header *hdr, u64 rhf)
{
return ((be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf) |
((!!(rhf & RHF_DC_INFO_SMASK)) << 4);
}
static inline u16 generate_jkey(kuid_t uid)
{
return from_kuid(current_user_ns(), uid) & 0xffff;
}
/*
* active_egress_rate
*
* returns the active egress rate in units of [10^6 bits/sec]
*/
static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
{
u16 link_speed = ppd->link_speed_active;
u16 link_width = ppd->link_width_active;
u32 egress_rate;
if (link_speed == OPA_LINK_SPEED_25G)
egress_rate = 25000;
else /* assume OPA_LINK_SPEED_12_5G */
egress_rate = 12500;
switch (link_width) {
case OPA_LINK_WIDTH_4X:
egress_rate *= 4;
break;
case OPA_LINK_WIDTH_3X:
egress_rate *= 3;
break;
case OPA_LINK_WIDTH_2X:
egress_rate *= 2;
break;
default:
/* assume IB_WIDTH_1X */
break;
}
return egress_rate;
}
/*
* egress_cycles
*
* Returns the number of 'fabric clock cycles' to egress a packet
* of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
* rate is (approximately) 805 MHz, the units of the returned value
* are (1/805 MHz).
*/
static inline u32 egress_cycles(u32 len, u32 rate)
{
u32 cycles;
/*
* cycles is:
*
* (length) [bits] / (rate) [bits/sec]
* ---------------------------------------------------
* fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
*/
cycles = len * 8; /* bits */
cycles *= 805;
cycles /= rate;
return cycles;
}
void set_link_ipg(struct hfi1_pportdata *ppd);
void process_becn(struct hfi1_pportdata *ppd, u8 sl, u16 rlid, u32 lqpn,
u32 rqpn, u8 svc_type);
void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
u32 pkey, u32 slid, u32 dlid, u8 sc5,
const struct ib_grh *old_grh);
#define PKEY_CHECK_INVALID -1
int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
u8 sc5, int8_t s_pkey_index);
#define PACKET_EGRESS_TIMEOUT 350
static inline void pause_for_credit_return(struct hfi1_devdata *dd)
{
/* Pause at least 1us, to ensure chip returns all credits */
u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
udelay(usec ? usec : 1);
}
/**
* sc_to_vlt() reverse lookup sc to vl
* @dd - devdata
* @sc5 - 5 bit sc
*/
static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
{
unsigned seq;
u8 rval;
if (sc5 >= OPA_MAX_SCS)
return (u8)(0xff);
do {
seq = read_seqbegin(&dd->sc2vl_lock);
rval = *(((u8 *)dd->sc2vl) + sc5);
} while (read_seqretry(&dd->sc2vl_lock, seq));
return rval;
}
#define PKEY_MEMBER_MASK 0x8000
#define PKEY_LOW_15_MASK 0x7fff
/*
* ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
* being an entry from the ingress partition key table), return 0
* otherwise. Use the matching criteria for ingress partition keys
* specified in the OPAv1 spec., section 9.10.14.
*/
static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
{
u16 mkey = pkey & PKEY_LOW_15_MASK;
u16 ment = ent & PKEY_LOW_15_MASK;
if (mkey == ment) {
/*
* If pkey[15] is clear (limited partition member),
* is bit 15 in the corresponding table element
* clear (limited member)?
*/
if (!(pkey & PKEY_MEMBER_MASK))
return !!(ent & PKEY_MEMBER_MASK);
return 1;
}
return 0;
}
/*
* ingress_pkey_table_search - search the entire pkey table for
* an entry which matches 'pkey'. return 0 if a match is found,
* and 1 otherwise.
*/
static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
{
int i;
for (i = 0; i < MAX_PKEY_VALUES; i++) {
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
return 0;
}
return 1;
}
/*
* ingress_pkey_table_fail - record a failure of ingress pkey validation,
* i.e., increment port_rcv_constraint_errors for the port, and record
* the 'error info' for this failure.
*/
static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
u16 slid)
{
struct hfi1_devdata *dd = ppd->dd;
incr_cntr64(&ppd->port_rcv_constraint_errors);
if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
dd->err_info_rcv_constraint.slid = slid;
dd->err_info_rcv_constraint.pkey = pkey;
}
}
/*
* ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
* is a hint as to the best place in the partition key table to begin
* searching. This function should not be called on the data path because
* of performance reasons. On datapath pkey check is expected to be done
* by HW and rcv_pkey_check function should be called instead.
*/
static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u8 idx, u16 slid)
{
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
/* Is the pkey = 0x0, or 0x8000? */
if ((pkey & PKEY_LOW_15_MASK) == 0)
goto bad;
/* The most likely matching pkey has index 'idx' */
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
return 0;
/* no match - try the whole table */
if (!ingress_pkey_table_search(ppd, pkey))
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/*
* rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. It only ensures pkey is vlid for QP0. This function
* should be called on the data path instead of ingress_pkey_check
* as on data path, pkey check is done by HW (except for QP0).
*/
static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u16 slid)
{
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/* MTU handling */
/* MTU enumeration, 256-4k match IB */
#define OPA_MTU_0 0
#define OPA_MTU_256 1
#define OPA_MTU_512 2
#define OPA_MTU_1024 3
#define OPA_MTU_2048 4
#define OPA_MTU_4096 5
u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
int mtu_to_enum(u32 mtu, int default_if_bad);
u16 enum_to_mtu(int);
static inline int valid_ib_mtu(unsigned int mtu)
{
return mtu == 256 || mtu == 512 ||
mtu == 1024 || mtu == 2048 ||
mtu == 4096;
}
static inline int valid_opa_max_mtu(unsigned int mtu)
{
return mtu >= 2048 &&
(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
}
int set_mtu(struct hfi1_pportdata *);
int hfi1_set_lid(struct hfi1_pportdata *, u32, u8);
void hfi1_disable_after_error(struct hfi1_devdata *);
int hfi1_set_uevent_bits(struct hfi1_pportdata *, const int);
int hfi1_rcvbuf_validate(u32, u8, u16 *);
int fm_get_table(struct hfi1_pportdata *, int, void *);
int fm_set_table(struct hfi1_pportdata *, int, void *);
void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf);
void reset_link_credits(struct hfi1_devdata *dd);
void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
int snoop_recv_handler(struct hfi1_packet *packet);
int snoop_send_dma_handler(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc);
int snoop_send_pio_handler(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc);
void snoop_inline_pio_send(struct hfi1_devdata *dd, struct pio_buf *pbuf,
u64 pbc, const void *from, size_t count);
int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
{
return ppd->dd;
}
static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
{
return container_of(dev, struct hfi1_devdata, verbs_dev);
}
static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
{
return dd_from_dev(to_idev(ibdev));
}
static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
{
return container_of(ibp, struct hfi1_pportdata, ibport_data);
}
static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
{
return container_of(rdi, struct hfi1_ibdev, rdi);
}
static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
WARN_ON(pidx >= dd->num_pports);
return &dd->pport[pidx].ibport_data;
}
/*
* Return the indexed PKEY from the port PKEY table.
*/
static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 ret;
if (index >= ARRAY_SIZE(ppd->pkeys))
ret = 0;
else
ret = ppd->pkeys[index];
return ret;
}
/*
* Readers of cc_state must call get_cc_state() under rcu_read_lock().
* Writers of cc_state must call get_cc_state() under cc_state_lock.
*/
static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
{
return rcu_dereference(ppd->cc_state);
}
/*
* values for dd->flags (_device_ related flags)
*/
#define HFI1_INITTED 0x1 /* chip and driver up and initted */
#define HFI1_PRESENT 0x2 /* chip accesses can be done */
#define HFI1_FROZEN 0x4 /* chip in SPC freeze */
#define HFI1_HAS_SDMA_TIMEOUT 0x8
#define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
#define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
/* IB dword length mask in PBC (lower 11 bits); same for all chips */
#define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
/* ctxt_flag bit offsets */
/* context has been setup */
#define HFI1_CTXT_SETUP_DONE 1
/* waiting for a packet to arrive */
#define HFI1_CTXT_WAITING_RCV 2
/* master has not finished initializing */
#define HFI1_CTXT_MASTER_UNINIT 4
/* waiting for an urgent packet to arrive */
#define HFI1_CTXT_WAITING_URG 5
/* free up any allocated data at closes */
struct hfi1_devdata *hfi1_init_dd(struct pci_dev *,
const struct pci_device_id *);
void hfi1_free_devdata(struct hfi1_devdata *);
void cc_state_reclaim(struct rcu_head *rcu);
struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
/* LED beaconing functions */
void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
unsigned int timeoff);
void shutdown_led_override(struct hfi1_pportdata *ppd);
#define HFI1_CREDIT_RETURN_RATE (100)
/*
* The number of words for the KDETH protocol field. If this is
* larger then the actual field used, then part of the payload
* will be in the header.
*
* Optimally, we want this sized so that a typical case will
* use full cache lines. The typical local KDETH header would
* be:
*
* Bytes Field
* 8 LRH
* 12 BHT
* ?? KDETH
* 8 RHF
* ---
* 28 + KDETH
*
* For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
*/
#define DEFAULT_RCVHDRSIZE 9
/*
* Maximal header byte count:
*
* Bytes Field
* 8 LRH
* 40 GRH (optional)
* 12 BTH
* ?? KDETH
* 8 RHF
* ---
* 68 + KDETH
*
* We also want to maintain a cache line alignment to assist DMA'ing
* of the header bytes. Round up to a good size.
*/
#define DEFAULT_RCVHDR_ENTSIZE 32
bool hfi1_can_pin_pages(struct hfi1_devdata *, u32, u32);
int hfi1_acquire_user_pages(unsigned long, size_t, bool, struct page **);
void hfi1_release_user_pages(struct mm_struct *, struct page **, size_t, bool);
static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
*((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
}
static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
/*
* volatile because it's a DMA target from the chip, routine is
* inlined, and don't want register caching or reordering.
*/
return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
}
/*
* sysfs interface.
*/
extern const char ib_hfi1_version[];
int hfi1_device_create(struct hfi1_devdata *);
void hfi1_device_remove(struct hfi1_devdata *);
int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
struct kobject *kobj);
int hfi1_verbs_register_sysfs(struct hfi1_devdata *);
void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *);
/* Hook for sysfs read of QSFP */
int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
int hfi1_pcie_init(struct pci_dev *, const struct pci_device_id *);
void hfi1_pcie_cleanup(struct pci_dev *);
int hfi1_pcie_ddinit(struct hfi1_devdata *, struct pci_dev *,
const struct pci_device_id *);
void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
void hfi1_pcie_flr(struct hfi1_devdata *);
int pcie_speeds(struct hfi1_devdata *);
void request_msix(struct hfi1_devdata *, u32 *, struct hfi1_msix_entry *);
void hfi1_enable_intx(struct pci_dev *);
void restore_pci_variables(struct hfi1_devdata *dd);
int do_pcie_gen3_transition(struct hfi1_devdata *dd);
int parse_platform_config(struct hfi1_devdata *dd);
int get_platform_config_field(struct hfi1_devdata *dd,
enum platform_config_table_type_encoding
table_type, int table_index, int field_index,
u32 *data, u32 len);
const char *get_unit_name(int unit);
const char *get_card_name(struct rvt_dev_info *rdi);
struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
/*
* Flush write combining store buffers (if present) and perform a write
* barrier.
*/
static inline void flush_wc(void)
{
asm volatile("sfence" : : : "memory");
}
void handle_eflags(struct hfi1_packet *packet);
int process_receive_ib(struct hfi1_packet *packet);
int process_receive_bypass(struct hfi1_packet *packet);
int process_receive_error(struct hfi1_packet *packet);
int kdeth_process_expected(struct hfi1_packet *packet);
int kdeth_process_eager(struct hfi1_packet *packet);
int process_receive_invalid(struct hfi1_packet *packet);
extern rhf_rcv_function_ptr snoop_rhf_rcv_functions[8];
void update_sge(struct rvt_sge_state *ss, u32 length);
/* global module parameter variables */
extern unsigned int hfi1_max_mtu;
extern unsigned int hfi1_cu;
extern unsigned int user_credit_return_threshold;
extern int num_user_contexts;
extern unsigned n_krcvqs;
extern uint krcvqs[];
extern int krcvqsset;
extern uint kdeth_qp;
extern uint loopback;
extern uint quick_linkup;
extern uint rcv_intr_timeout;
extern uint rcv_intr_count;
extern uint rcv_intr_dynamic;
extern ushort link_crc_mask;
extern struct mutex hfi1_mutex;
/* Number of seconds before our card status check... */
#define STATUS_TIMEOUT 60
#define DRIVER_NAME "hfi1"
#define HFI1_USER_MINOR_BASE 0
#define HFI1_TRACE_MINOR 127
#define HFI1_DIAGPKT_MINOR 128
#define HFI1_DIAG_MINOR_BASE 129
#define HFI1_SNOOP_CAPTURE_BASE 200
#define HFI1_NMINORS 255
#define PCI_VENDOR_ID_INTEL 0x8086
#define PCI_DEVICE_ID_INTEL0 0x24f0
#define PCI_DEVICE_ID_INTEL1 0x24f1
#define HFI1_PKT_USER_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
#define HFI1_PKT_KERNEL_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
u16 ctxt_type)
{
u64 base_sc_integrity =
SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (ctxt_type == SC_USER)
base_sc_integrity |= HFI1_PKT_USER_SC_INTEGRITY;
else
base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
if (is_ax(dd))
/* turn off send-side job key checks - A0 */
return base_sc_integrity &
~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sc_integrity;
}
static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
{
u64 base_sdma_integrity =
SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (is_ax(dd))
/* turn off send-side job key checks - A0 */
return base_sdma_integrity &
~SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sdma_integrity;
}
/*
* hfi1_early_err is used (only!) to print early errors before devdata is
* allocated, or when dd->pcidev may not be valid, and at the tail end of
* cleanup when devdata may have been freed, etc. hfi1_dev_porterr is
* the same as dd_dev_err, but is used when the message really needs
* the IB port# to be definitive as to what's happening..
*/
#define hfi1_early_err(dev, fmt, ...) \
dev_err(dev, fmt, ##__VA_ARGS__)
#define hfi1_early_info(dev, fmt, ...) \
dev_info(dev, fmt, ##__VA_ARGS__)
#define dd_dev_emerg(dd, fmt, ...) \
dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_err(dd, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_warn(dd, fmt, ...) \
dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_warn_ratelimited(dd, fmt, ...) \
dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_info(dd, fmt, ...) \
dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_dbg(dd, fmt, ...) \
dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define hfi1_dev_porterr(dd, port, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
get_unit_name((dd)->unit), (port), ##__VA_ARGS__)
/*
* this is used for formatting hw error messages...
*/
struct hfi1_hwerror_msgs {
u64 mask;
const char *msg;
size_t sz;
};
/* in intr.c... */
void hfi1_format_hwerrors(u64 hwerrs,
const struct hfi1_hwerror_msgs *hwerrmsgs,
size_t nhwerrmsgs, char *msg, size_t lmsg);
#define USER_OPCODE_CHECK_VAL 0xC0
#define USER_OPCODE_CHECK_MASK 0xC0
#define OPCODE_CHECK_VAL_DISABLED 0x0
#define OPCODE_CHECK_MASK_DISABLED 0x0
static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int i;
dd->z_int_counter = get_all_cpu_total(dd->int_counter);
dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
ppd->ibport_data.rvp.z_rc_acks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
ppd->ibport_data.rvp.z_rc_qacks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
}
}
/* Control LED state */
static inline void setextled(struct hfi1_devdata *dd, u32 on)
{
if (on)
write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
else
write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
}
/* return the i2c resource given the target */
static inline u32 i2c_target(u32 target)
{
return target ? CR_I2C2 : CR_I2C1;
}
/* return the i2c chain chip resource that this HFI uses for QSFP */
static inline u32 qsfp_resource(struct hfi1_devdata *dd)
{
return i2c_target(dd->hfi1_id);
}
int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
#define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
#define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
#define packettype_name(etype) { RHF_RCV_TYPE_##etype, #etype }
#define show_packettype(etype) \
__print_symbolic(etype, \
packettype_name(EXPECTED), \
packettype_name(EAGER), \
packettype_name(IB), \
packettype_name(ERROR), \
packettype_name(BYPASS))
#define ib_opcode_name(opcode) { IB_OPCODE_##opcode, #opcode }
#define show_ib_opcode(opcode) \
__print_symbolic(opcode, \
ib_opcode_name(RC_SEND_FIRST), \
ib_opcode_name(RC_SEND_MIDDLE), \
ib_opcode_name(RC_SEND_LAST), \
ib_opcode_name(RC_SEND_LAST_WITH_IMMEDIATE), \
ib_opcode_name(RC_SEND_ONLY), \
ib_opcode_name(RC_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_WRITE_FIRST), \
ib_opcode_name(RC_RDMA_WRITE_MIDDLE), \
ib_opcode_name(RC_RDMA_WRITE_LAST), \
ib_opcode_name(RC_RDMA_WRITE_LAST_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_WRITE_ONLY), \
ib_opcode_name(RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_READ_REQUEST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_FIRST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_MIDDLE), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_LAST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_ONLY), \
ib_opcode_name(RC_ACKNOWLEDGE), \
ib_opcode_name(RC_ATOMIC_ACKNOWLEDGE), \
ib_opcode_name(RC_COMPARE_SWAP), \
ib_opcode_name(RC_FETCH_ADD), \
ib_opcode_name(UC_SEND_FIRST), \
ib_opcode_name(UC_SEND_MIDDLE), \
ib_opcode_name(UC_SEND_LAST), \
ib_opcode_name(UC_SEND_LAST_WITH_IMMEDIATE), \
ib_opcode_name(UC_SEND_ONLY), \
ib_opcode_name(UC_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(UC_RDMA_WRITE_FIRST), \
ib_opcode_name(UC_RDMA_WRITE_MIDDLE), \
ib_opcode_name(UC_RDMA_WRITE_LAST), \
ib_opcode_name(UC_RDMA_WRITE_LAST_WITH_IMMEDIATE), \
ib_opcode_name(UC_RDMA_WRITE_ONLY), \
ib_opcode_name(UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(UD_SEND_ONLY), \
ib_opcode_name(UD_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(CNP))
#endif /* _HFI1_KERNEL_H */