OpenCloudOS-Kernel/drivers/gpu/drm/msm/msm_drv.c

1491 lines
35 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2018, 2020-2021 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <linux/dma-mapping.h>
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
#include <linux/kthread.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
#include <uapi/linux/sched/types.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_prime.h>
#include <drm/drm_of.h>
#include <drm/drm_vblank.h>
#include "disp/msm_disp_snapshot.h"
#include "msm_drv.h"
#include "msm_debugfs.h"
#include "msm_fence.h"
#include "msm_gem.h"
#include "msm_gpu.h"
#include "msm_kms.h"
#include "adreno/adreno_gpu.h"
/*
* MSM driver version:
* - 1.0.0 - initial interface
* - 1.1.0 - adds madvise, and support for submits with > 4 cmd buffers
* - 1.2.0 - adds explicit fence support for submit ioctl
* - 1.3.0 - adds GMEM_BASE + NR_RINGS params, SUBMITQUEUE_NEW +
* SUBMITQUEUE_CLOSE ioctls, and MSM_INFO_IOVA flag for
* MSM_GEM_INFO ioctl.
* - 1.4.0 - softpin, MSM_RELOC_BO_DUMP, and GEM_INFO support to set/get
* GEM object's debug name
* - 1.5.0 - Add SUBMITQUERY_QUERY ioctl
* - 1.6.0 - Syncobj support
* - 1.7.0 - Add MSM_PARAM_SUSPENDS to access suspend count
* - 1.8.0 - Add MSM_BO_CACHED_COHERENT for supported GPUs (a6xx)
*/
#define MSM_VERSION_MAJOR 1
#define MSM_VERSION_MINOR 8
#define MSM_VERSION_PATCHLEVEL 0
static const struct drm_mode_config_funcs mode_config_funcs = {
.fb_create = msm_framebuffer_create,
.output_poll_changed = drm_fb_helper_output_poll_changed,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static const struct drm_mode_config_helper_funcs mode_config_helper_funcs = {
.atomic_commit_tail = msm_atomic_commit_tail,
};
#ifdef CONFIG_DRM_MSM_REGISTER_LOGGING
static bool reglog;
MODULE_PARM_DESC(reglog, "Enable register read/write logging");
module_param(reglog, bool, 0600);
#else
#define reglog 0
#endif
#ifdef CONFIG_DRM_FBDEV_EMULATION
static bool fbdev = true;
MODULE_PARM_DESC(fbdev, "Enable fbdev compat layer");
module_param(fbdev, bool, 0600);
#endif
static char *vram = "16m";
MODULE_PARM_DESC(vram, "Configure VRAM size (for devices without IOMMU/GPUMMU)");
module_param(vram, charp, 0);
bool dumpstate;
MODULE_PARM_DESC(dumpstate, "Dump KMS state on errors");
module_param(dumpstate, bool, 0600);
static bool modeset = true;
MODULE_PARM_DESC(modeset, "Use kernel modesetting [KMS] (1=on (default), 0=disable)");
module_param(modeset, bool, 0600);
/*
* Util/helpers:
*/
struct clk *msm_clk_bulk_get_clock(struct clk_bulk_data *bulk, int count,
const char *name)
{
int i;
char n[32];
snprintf(n, sizeof(n), "%s_clk", name);
for (i = 0; bulk && i < count; i++) {
if (!strcmp(bulk[i].id, name) || !strcmp(bulk[i].id, n))
return bulk[i].clk;
}
return NULL;
}
struct clk *msm_clk_get(struct platform_device *pdev, const char *name)
{
struct clk *clk;
char name2[32];
clk = devm_clk_get(&pdev->dev, name);
if (!IS_ERR(clk) || PTR_ERR(clk) == -EPROBE_DEFER)
return clk;
snprintf(name2, sizeof(name2), "%s_clk", name);
clk = devm_clk_get(&pdev->dev, name2);
if (!IS_ERR(clk))
dev_warn(&pdev->dev, "Using legacy clk name binding. Use "
"\"%s\" instead of \"%s\"\n", name, name2);
return clk;
}
static void __iomem *_msm_ioremap(struct platform_device *pdev, const char *name,
const char *dbgname, bool quiet, phys_addr_t *psize)
{
struct resource *res;
unsigned long size;
void __iomem *ptr;
if (name)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
else
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
if (!quiet)
DRM_DEV_ERROR(&pdev->dev, "failed to get memory resource: %s\n", name);
return ERR_PTR(-EINVAL);
}
size = resource_size(res);
ptr = devm_ioremap(&pdev->dev, res->start, size);
if (!ptr) {
if (!quiet)
DRM_DEV_ERROR(&pdev->dev, "failed to ioremap: %s\n", name);
return ERR_PTR(-ENOMEM);
}
if (reglog)
printk(KERN_DEBUG "IO:region %s %p %08lx\n", dbgname, ptr, size);
if (psize)
*psize = size;
return ptr;
}
void __iomem *msm_ioremap(struct platform_device *pdev, const char *name,
const char *dbgname)
{
return _msm_ioremap(pdev, name, dbgname, false, NULL);
}
void __iomem *msm_ioremap_quiet(struct platform_device *pdev, const char *name,
const char *dbgname)
{
return _msm_ioremap(pdev, name, dbgname, true, NULL);
}
void __iomem *msm_ioremap_size(struct platform_device *pdev, const char *name,
const char *dbgname, phys_addr_t *psize)
{
return _msm_ioremap(pdev, name, dbgname, false, psize);
}
void msm_writel(u32 data, void __iomem *addr)
{
if (reglog)
printk(KERN_DEBUG "IO:W %p %08x\n", addr, data);
writel(data, addr);
}
u32 msm_readl(const void __iomem *addr)
{
u32 val = readl(addr);
if (reglog)
pr_err("IO:R %p %08x\n", addr, val);
return val;
}
void msm_rmw(void __iomem *addr, u32 mask, u32 or)
{
u32 val = msm_readl(addr);
val &= ~mask;
msm_writel(val | or, addr);
}
static enum hrtimer_restart msm_hrtimer_worktimer(struct hrtimer *t)
{
struct msm_hrtimer_work *work = container_of(t,
struct msm_hrtimer_work, timer);
kthread_queue_work(work->worker, &work->work);
return HRTIMER_NORESTART;
}
void msm_hrtimer_queue_work(struct msm_hrtimer_work *work,
ktime_t wakeup_time,
enum hrtimer_mode mode)
{
hrtimer_start(&work->timer, wakeup_time, mode);
}
void msm_hrtimer_work_init(struct msm_hrtimer_work *work,
struct kthread_worker *worker,
kthread_work_func_t fn,
clockid_t clock_id,
enum hrtimer_mode mode)
{
hrtimer_init(&work->timer, clock_id, mode);
work->timer.function = msm_hrtimer_worktimer;
work->worker = worker;
kthread_init_work(&work->work, fn);
}
static irqreturn_t msm_irq(int irq, void *arg)
{
struct drm_device *dev = arg;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
return kms->funcs->irq(kms);
}
static void msm_irq_preinstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
kms->funcs->irq_preinstall(kms);
}
static int msm_irq_postinstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
if (kms->funcs->irq_postinstall)
return kms->funcs->irq_postinstall(kms);
return 0;
}
static int msm_irq_install(struct drm_device *dev, unsigned int irq)
{
int ret;
if (irq == IRQ_NOTCONNECTED)
return -ENOTCONN;
msm_irq_preinstall(dev);
ret = request_irq(irq, msm_irq, 0, dev->driver->name, dev);
if (ret)
return ret;
ret = msm_irq_postinstall(dev);
if (ret) {
free_irq(irq, dev);
return ret;
}
return 0;
}
static void msm_irq_uninstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
kms->funcs->irq_uninstall(kms);
free_irq(kms->irq, dev);
}
struct msm_vblank_work {
struct work_struct work;
int crtc_id;
bool enable;
struct msm_drm_private *priv;
};
static void vblank_ctrl_worker(struct work_struct *work)
{
struct msm_vblank_work *vbl_work = container_of(work,
struct msm_vblank_work, work);
struct msm_drm_private *priv = vbl_work->priv;
struct msm_kms *kms = priv->kms;
if (vbl_work->enable)
kms->funcs->enable_vblank(kms, priv->crtcs[vbl_work->crtc_id]);
else
kms->funcs->disable_vblank(kms, priv->crtcs[vbl_work->crtc_id]);
kfree(vbl_work);
}
static int vblank_ctrl_queue_work(struct msm_drm_private *priv,
int crtc_id, bool enable)
{
struct msm_vblank_work *vbl_work;
vbl_work = kzalloc(sizeof(*vbl_work), GFP_ATOMIC);
if (!vbl_work)
return -ENOMEM;
INIT_WORK(&vbl_work->work, vblank_ctrl_worker);
vbl_work->crtc_id = crtc_id;
vbl_work->enable = enable;
vbl_work->priv = priv;
queue_work(priv->wq, &vbl_work->work);
return 0;
}
static int msm_drm_uninit(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct drm_device *ddev = priv->dev;
struct msm_kms *kms = priv->kms;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
int i;
/*
* Shutdown the hw if we're far enough along where things might be on.
* If we run this too early, we'll end up panicking in any variety of
* places. Since we don't register the drm device until late in
* msm_drm_init, drm_dev->registered is used as an indicator that the
* shutdown will be successful.
*/
if (ddev->registered) {
drm_dev_unregister(ddev);
drm_atomic_helper_shutdown(ddev);
}
/* We must cancel and cleanup any pending vblank enable/disable
* work before msm_irq_uninstall() to avoid work re-enabling an
* irq after uninstall has disabled it.
*/
flush_workqueue(priv->wq);
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
/* clean up event worker threads */
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
for (i = 0; i < priv->num_crtcs; i++) {
if (priv->event_thread[i].worker)
kthread_destroy_worker(priv->event_thread[i].worker);
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
}
msm_gem_shrinker_cleanup(ddev);
drm_kms_helper_poll_fini(ddev);
msm_perf_debugfs_cleanup(priv);
msm_rd_debugfs_cleanup(priv);
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (fbdev && priv->fbdev)
msm_fbdev_free(ddev);
#endif
msm_disp_snapshot_destroy(ddev);
drm_mode_config_cleanup(ddev);
pm_runtime_get_sync(dev);
msm_irq_uninstall(ddev);
pm_runtime_put_sync(dev);
if (kms && kms->funcs)
kms->funcs->destroy(kms);
if (priv->vram.paddr) {
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
unsigned long attrs = DMA_ATTR_NO_KERNEL_MAPPING;
drm_mm_takedown(&priv->vram.mm);
dma_free_attrs(dev, priv->vram.size, NULL,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
priv->vram.paddr, attrs);
}
component_unbind_all(dev, ddev);
ddev->dev_private = NULL;
drm_dev_put(ddev);
destroy_workqueue(priv->wq);
return 0;
}
#define KMS_MDP4 4
#define KMS_MDP5 5
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
#define KMS_DPU 3
static int get_mdp_ver(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
return (int) (unsigned long) of_device_get_match_data(dev);
}
#include <linux/of_address.h>
bool msm_use_mmu(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
/* a2xx comes with its own MMU */
return priv->is_a2xx || iommu_present(&platform_bus_type);
}
static int msm_init_vram(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct device_node *node;
unsigned long size = 0;
int ret = 0;
/* In the device-tree world, we could have a 'memory-region'
* phandle, which gives us a link to our "vram". Allocating
* is all nicely abstracted behind the dma api, but we need
* to know the entire size to allocate it all in one go. There
* are two cases:
* 1) device with no IOMMU, in which case we need exclusive
* access to a VRAM carveout big enough for all gpu
* buffers
* 2) device with IOMMU, but where the bootloader puts up
* a splash screen. In this case, the VRAM carveout
* need only be large enough for fbdev fb. But we need
* exclusive access to the buffer to avoid the kernel
* using those pages for other purposes (which appears
* as corruption on screen before we have a chance to
* load and do initial modeset)
*/
node = of_parse_phandle(dev->dev->of_node, "memory-region", 0);
if (node) {
struct resource r;
ret = of_address_to_resource(node, 0, &r);
of_node_put(node);
if (ret)
return ret;
size = r.end - r.start + 1;
DRM_INFO("using VRAM carveout: %lx@%pa\n", size, &r.start);
/* if we have no IOMMU, then we need to use carveout allocator.
* Grab the entire CMA chunk carved out in early startup in
* mach-msm:
*/
} else if (!msm_use_mmu(dev)) {
DRM_INFO("using %s VRAM carveout\n", vram);
size = memparse(vram, NULL);
}
if (size) {
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
unsigned long attrs = 0;
void *p;
priv->vram.size = size;
drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1);
spin_lock_init(&priv->vram.lock);
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
attrs |= DMA_ATTR_NO_KERNEL_MAPPING;
attrs |= DMA_ATTR_WRITE_COMBINE;
/* note that for no-kernel-mapping, the vaddr returned
* is bogus, but non-null if allocation succeeded:
*/
p = dma_alloc_attrs(dev->dev, size,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
&priv->vram.paddr, GFP_KERNEL, attrs);
if (!p) {
DRM_DEV_ERROR(dev->dev, "failed to allocate VRAM\n");
priv->vram.paddr = 0;
return -ENOMEM;
}
DRM_DEV_INFO(dev->dev, "VRAM: %08x->%08x\n",
(uint32_t)priv->vram.paddr,
(uint32_t)(priv->vram.paddr + size));
}
return ret;
}
drm/<drivers>: Constify struct drm_driver Only the following drivers aren't converted: - amdgpu, because of the driver_feature mangling due to virt support. Subsequent patch will address this. - nouveau, because DRIVER_ATOMIC uapi is still not the default on the platforms where it's supported (i.e. again driver_feature mangling) - vc4, again because of driver_feature mangling - qxl, because the ioctl table is somewhere else and moving that is maybe a bit too much, hence the num_ioctls assignment prevents a const driver structure. - arcpgu, because that is stuck behind a pending tiny-fication series from me. - legacy drivers, because legacy requires non-const drm_driver. Note that for armada I also went ahead and made the ioctl array const. Only cc'ing the driver people who've not been converted (everyone else is way too much). v2: Fix one misplaced const static, should be static const (0day) v3: - Improve commit message (Sam) Acked-by: Sam Ravnborg <sam@ravnborg.org> Cc: kernel test robot <lkp@intel.com> Acked-by: Maxime Ripard <mripard@kernel.org> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Dave Airlie <airlied@redhat.com> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: virtualization@lists.linux-foundation.org Cc: Harry Wentland <harry.wentland@amd.com> Cc: Leo Li <sunpeng.li@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Eric Anholt <eric@anholt.net> Cc: Maxime Ripard <mripard@kernel.org> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: nouveau@lists.freedesktop.org Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201104100425.1922351-5-daniel.vetter@ffwll.ch
2020-11-04 18:04:24 +08:00
static int msm_drm_init(struct device *dev, const struct drm_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev;
struct msm_kms *kms;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
int ret, i;
ddev = drm_dev_alloc(drv, dev);
if (IS_ERR(ddev)) {
DRM_DEV_ERROR(dev, "failed to allocate drm_device\n");
return PTR_ERR(ddev);
}
ddev->dev_private = priv;
priv->dev = ddev;
priv->wq = alloc_ordered_workqueue("msm", 0);
priv->hangcheck_period = DRM_MSM_HANGCHECK_DEFAULT_PERIOD;
INIT_LIST_HEAD(&priv->objects);
mutex_init(&priv->obj_lock);
INIT_LIST_HEAD(&priv->inactive_willneed);
INIT_LIST_HEAD(&priv->inactive_dontneed);
INIT_LIST_HEAD(&priv->inactive_unpinned);
mutex_init(&priv->mm_lock);
/* Teach lockdep about lock ordering wrt. shrinker: */
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&priv->mm_lock);
fs_reclaim_release(GFP_KERNEL);
drm_mode_config_init(ddev);
ret = msm_init_vram(ddev);
if (ret)
return ret;
/* Bind all our sub-components: */
ret = component_bind_all(dev, ddev);
if (ret)
return ret;
dma_set_max_seg_size(dev, UINT_MAX);
drm/msm: Set dma maximum segment size for mdss Turning on CONFIG_DMA_API_DEBUG_SG results in the following error: [ 12.078665] msm ae00000.mdss: DMA-API: mapping sg segment longer than device claims to support [len=3526656] [max=65536] [ 12.089870] WARNING: CPU: 6 PID: 334 at /mnt/host/source/src/third_party/kernel/v4.19/kernel/dma/debug.c:1301 debug_dma_map_sg+0x1dc/0x318 [ 12.102655] Modules linked in: joydev [ 12.106442] CPU: 6 PID: 334 Comm: frecon Not tainted 4.19.0 #2 [ 12.112450] Hardware name: Google Cheza (rev3+) (DT) [ 12.117566] pstate: 60400009 (nZCv daif +PAN -UAO) [ 12.122506] pc : debug_dma_map_sg+0x1dc/0x318 [ 12.126995] lr : debug_dma_map_sg+0x1dc/0x318 [ 12.131487] sp : ffffff800cc3ba80 [ 12.134913] x29: ffffff800cc3ba80 x28: 0000000000000000 [ 12.140395] x27: 0000000000000004 x26: 0000000000000004 [ 12.145868] x25: ffffff8008e55b18 x24: 0000000000000000 [ 12.151337] x23: 00000000ffffffff x22: ffffff800921c000 [ 12.156809] x21: ffffffc0fa75b080 x20: ffffffc0f7195090 [ 12.162280] x19: ffffffc0f1c53280 x18: 0000000000000000 [ 12.167749] x17: 0000000000000000 x16: 0000000000000000 [ 12.173218] x15: 0000000000000000 x14: 0720072007200720 [ 12.178689] x13: 0720072007200720 x12: 0720072007200720 [ 12.184161] x11: 0720072007200720 x10: 0720072007200720 [ 12.189641] x9 : ffffffc0f1fc6b60 x8 : 0000000000000000 [ 12.195110] x7 : ffffff8008132ce0 x6 : 0000000000000000 [ 12.200585] x5 : 0000000000000000 x4 : ffffff8008134734 [ 12.206058] x3 : ffffff800cc3b830 x2 : ffffffc0f1fc6240 [ 12.211532] x1 : 25045a74f48a7400 x0 : 25045a74f48a7400 [ 12.217006] Call trace: [ 12.219535] debug_dma_map_sg+0x1dc/0x318 [ 12.223671] get_pages+0x19c/0x20c [ 12.227177] msm_gem_fault+0x64/0xfc [ 12.230874] __do_fault+0x3c/0x140 [ 12.234383] __handle_mm_fault+0x70c/0xdb8 [ 12.238603] handle_mm_fault+0xac/0xc4 [ 12.242473] do_page_fault+0x1bc/0x3d4 [ 12.246342] do_translation_fault+0x54/0x88 [ 12.250652] do_mem_abort+0x60/0xf0 [ 12.254250] el0_da+0x20/0x24 [ 12.257317] irq event stamp: 67260 [ 12.260828] hardirqs last enabled at (67259): [<ffffff8008132d0c>] console_unlock+0x214/0x608 [ 12.269693] hardirqs last disabled at (67260): [<ffffff8008080e0c>] do_debug_exception+0x5c/0x178 [ 12.278820] softirqs last enabled at (67256): [<ffffff8008081664>] __do_softirq+0x4d4/0x520 [ 12.287510] softirqs last disabled at (67249): [<ffffff80080be574>] irq_exit+0xa8/0x100 [ 12.295742] ---[ end trace e63cfc40c313ffab ]--- The root of the problem is that the default segment size for sgt is (UINT_MAX & PAGE_MASK), and the default segment size for device dma is 64K. As such, if you compare the 2, you would deduce that the sg segment will overflow the device's capacity. In reality, the hardware can accommodate the larger sg segments, it's just not initializing its max segment properly. This patch initializes the max segment size for the mdss device, which gets rid of that pesky warning. Reported-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Stephen Boyd <swboyd@chromium.org> Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org> Reviewed-by: Rob Clark <robdclark@gmail.com> Signed-off-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://patchwork.freedesktop.org/patch/msgid/20200121111813.REPOST.1.I92c66a35fb13f368095b05287bdabdbe88ca6922@changeid
2020-01-22 03:18:48 +08:00
msm_gem_shrinker_init(ddev);
switch (get_mdp_ver(pdev)) {
case KMS_MDP4:
kms = mdp4_kms_init(ddev);
priv->kms = kms;
break;
case KMS_MDP5:
kms = mdp5_kms_init(ddev);
break;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
case KMS_DPU:
kms = dpu_kms_init(ddev);
priv->kms = kms;
break;
default:
/* valid only for the dummy headless case, where of_node=NULL */
WARN_ON(dev->of_node);
kms = NULL;
break;
}
if (IS_ERR(kms)) {
DRM_DEV_ERROR(dev, "failed to load kms\n");
ret = PTR_ERR(kms);
priv->kms = NULL;
goto err_msm_uninit;
}
/* Enable normalization of plane zpos */
ddev->mode_config.normalize_zpos = true;
if (kms) {
kms->dev = ddev;
ret = kms->funcs->hw_init(kms);
if (ret) {
DRM_DEV_ERROR(dev, "kms hw init failed: %d\n", ret);
goto err_msm_uninit;
}
}
ddev->mode_config.funcs = &mode_config_funcs;
ddev->mode_config.helper_private = &mode_config_helper_funcs;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
for (i = 0; i < priv->num_crtcs; i++) {
/* initialize event thread */
priv->event_thread[i].crtc_id = priv->crtcs[i]->base.id;
priv->event_thread[i].dev = ddev;
priv->event_thread[i].worker = kthread_create_worker(0,
"crtc_event:%d", priv->event_thread[i].crtc_id);
if (IS_ERR(priv->event_thread[i].worker)) {
ret = PTR_ERR(priv->event_thread[i].worker);
drm pull request for 4.21-rc1 -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJcExwOAAoJEAx081l5xIa+euIP/1NZZvSB+bsCtOwDG8I6uWsS OU5JUZ8q2dqyyFagRxzlkeSt3uWJqKp5NyNwuc9z/5u6AGF+3/97D0J1lG6Os/st 4abF6NadivYJ4cXhJ1ddIHOFMVDcAsyMWNDb93NwPwncCsQ0jt5FFOsrCyj6BGY+ ihHFlHrIyDrbBGDHz+u1E/EO5WkNnaLDoC+/k2fTRWCNI3bQL3O+orsYTI6S2uvU lQJnRfYAllgLD2p1k/rrBHcHXBv50roR0e8uhGmbdhGdp5bEW30UGBLHXxQjjSVy fQCwFwTO8X6zoxU53Zbbk+MVrp+jkTHcGKViHRuLkaHzE5mX26UXDwlXdN32ZUbK yHOJp+uDaWXX7MIz0LsB9Iqj2+eIUoFaIJMoZTMGVTNvqnTxKnoHnjAtbTH2u258 teFgmy4BIgPgo2kwEnBEZjCapou0Eivyut2wq8bTAB2Fe8LwURJpr3cioTtMLlUO L5/PoD27eFvBCAeFrQIwF3b2XiQEnBpXocmilEwP1xDMPgoyeePAfIF2iEpDvi0U jce3rLd2yVvo92xYUgoHkVTD8si/pKKnZ1D0U3+RI6pxK6s0HJEHjcNEMdvdm+2S 4qgvBQV3wlWFkXEK8PR5BHPoLntg18tKon/BTLBjgGkN9E1o9fWs1/s6KQGY4xdo l3Vvfx2LTdkgEoBssSwB =wh4W -----END PGP SIGNATURE----- Merge tag 'drm-next-2018-12-14' of git://anongit.freedesktop.org/drm/drm Pull drm updates from Dave Airlie: "Core: - shared fencing staging removal - drop transactional atomic helpers and move helpers to new location - DP/MST atomic cleanup - Leasing cleanups and drop EXPORT_SYMBOL - Convert drivers to atomic helpers and generic fbdev. - removed deprecated obj_ref/unref in favour of get/put - Improve dumb callback documentation - MODESET_LOCK_BEGIN/END helpers panels: - CDTech panels, Banana Pi Panel, DLC1010GIG, - Olimex LCD-O-LinuXino, Samsung S6D16D0, Truly NT35597 WQXGA, - Himax HX8357D, simulated RTSM AEMv8. - GPD Win2 panel - AUO G101EVN010 vgem: - render node support ttm: - move global init out of drivers - fix LRU handling for ghost objects - Support for simultaneous submissions to multiple engines scheduler: - timeout/fault handling changes to help GPU recovery - helpers for hw with preemption support i915: - Scaler/Watermark fixes - DP MST + powerwell fixes - PSR fixes - Break long get/put shmemfs pages - Icelake fixes - Icelake DSI video mode enablement - Engine workaround improvements amdgpu: - freesync support - GPU reset enabled on CI, VI, SOC15 dGPUs - ABM support in DC - KFD support for vega12/polaris12 - SDMA paging queue on vega - More amdkfd code sharing - DCC scanout on GFX9 - DC kerneldoc - Updated SMU firmware for GFX8 chips - XGMI PSP + hive reset support - GPU reset - DC trace support - Powerplay updates for newer Polaris - Cursor plane update fast path - kfd dma-buf support virtio-gpu: - add EDID support vmwgfx: - pageflip with damage support nouveau: - Initial Turing TU104/TU106 modesetting support msm: - a2xx gpu support for apq8060 and imx5 - a2xx gpummu support - mdp4 display support for apq8060 - DPU fixes and cleanups - enhanced profiling support - debug object naming interface - get_iova/page pinning decoupling tegra: - Tegra194 host1x, VIC and display support enabled - Audio over HDMI for Tegra186 and Tegra194 exynos: - DMA/IOMMU refactoring - plane alpha + blend mode support - Color format fixes for mixer driver rcar-du: - R8A7744 and R8A77470 support - R8A77965 LVDS support imx: - fbdev emulation fix - multi-tiled scalling fixes - SPDX identifiers rockchip - dw_hdmi support - dw-mipi-dsi + dual dsi support - mailbox read size fix qxl: - fix cursor pinning vc4: - YUV support (scaling + cursor) v3d: - enable TFU (Texture Formatting Unit) mali-dp: - add support for linear tiled formats sun4i: - Display Engine 3 support - H6 DE3 mixer 0 support - H6 display engine support - dw-hdmi support - H6 HDMI phy support - implicit fence waiting - BGRX8888 support meson: - Overlay plane support - implicit fence waiting - HDMI 1.4 4k modes bridge: - i2c fixes for sii902x" * tag 'drm-next-2018-12-14' of git://anongit.freedesktop.org/drm/drm: (1403 commits) drm/amd/display: Add fast path for cursor plane updates drm/amdgpu: Enable GPU recovery by default for CI drm/amd/display: Fix duplicating scaling/underscan connector state drm/amd/display: Fix unintialized max_bpc state values Revert "drm/amd/display: Set RMX_ASPECT as default" drm/amdgpu: Fix stub function name drm/msm/dpu: Fix clock issue after bind failure drm/msm/dpu: Clean up dpu_media_info.h static inline functions drm/msm/dpu: Further cleanups for static inline functions drm/msm/dpu: Cleanup the debugfs functions drm/msm/dpu: Remove dpu_irq and unused functions drm/msm: Make irq_postinstall optional drm/msm/dpu: Cleanup callers of dpu_hw_blk_init drm/msm/dpu: Remove unused functions drm/msm/dpu: Remove dpu_crtc_is_enabled() drm/msm/dpu: Remove dpu_crtc_get_mixer_height drm/msm/dpu: Remove dpu_dbg drm/msm: dpu: Remove crtc_lock drm/msm: dpu: Remove vblank_requested flag from dpu_crtc drm/msm: dpu: Separate crtc assignment from vblank enable ...
2018-12-26 03:48:26 +08:00
DRM_DEV_ERROR(dev, "failed to create crtc_event kthread\n");
ret = PTR_ERR(priv->event_thread[i].worker);
goto err_msm_uninit;
}
This tree adds the sched_set_fifo*() encapsulation APIs to remove static priority level knowledge from non-scheduler code. The three APIs for non-scheduler code to set SCHED_FIFO are: - sched_set_fifo() - sched_set_fifo_low() - sched_set_normal() These are two FIFO priority levels: default (high), and a 'low' priority level, plus sched_set_normal() to set the policy back to non-SCHED_FIFO. Since the changes affect a lot of non-scheduler code, we kept this in a separate tree. When merging to the latest upstream tree there's a conflict in drivers/spi/spi.c, which can be resolved via: sched_set_fifo(ctlr->kworker_task); Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8pPQIRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1j0Jw/+LlSyX6gD2ATy3cizGL7DFPZogD5MVKTb IXbhXH/ACpuPQlBe1+haRLbJj6XfXqbOlAleVKt7eh+jZ1jYjC972RCSTO4566mJ 0v8Iy9kkEeb2TDbYx1H3bnk78lf85t0CB+sCzyKUYFuTrXU04eRj7MtN3vAQyRQU xJg83x/sT5DGdDTP50sL7lpbwk3INWkD0aDCJEaO/a9yHElMsTZiZBKoXxN/s30o FsfzW56jqtng771H2bo8ERN7+abwJg10crQU5mIaLhacNMETuz0NZ/f8fY/fydCL Ju8HAdNKNXyphWkAOmixQuyYtWKe2/GfbHg8hld0jmpwxkOSTgZjY+pFcv7/w306 g2l1TPOt8e1n5jbfnY3eig+9Kr8y0qHkXPfLfgRqKwMMaOqTTYixEzj+NdxEIRX9 Kr7oFAv6VEFfXGSpb5L1qyjIGVgQ5/JE/p3OC3GHEsw5VKiy5yjhNLoSmSGzdS61 1YurVvypSEUAn3DqTXgeGX76f0HH365fIKqmbFrUWxliF+YyflMhtrj2JFtejGzH Md3RgAzxusE9S6k3gw1ev4byh167bPBbY8jz0w3Gd7IBRKy9vo92h6ZRYIl6xeoC BU2To1IhCAydIr6hNsIiCSDTgiLbsYQzPuVVovUxNh+l1ZvKV2X+csEHhs8oW4pr 4BRU7dKL2NE= =/7JH -----END PGP SIGNATURE----- Merge tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull sched/fifo updates from Ingo Molnar: "This adds the sched_set_fifo*() encapsulation APIs to remove static priority level knowledge from non-scheduler code. The three APIs for non-scheduler code to set SCHED_FIFO are: - sched_set_fifo() - sched_set_fifo_low() - sched_set_normal() These are two FIFO priority levels: default (high), and a 'low' priority level, plus sched_set_normal() to set the policy back to non-SCHED_FIFO. Since the changes affect a lot of non-scheduler code, we kept this in a separate tree" * tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) sched,tracing: Convert to sched_set_fifo() sched: Remove sched_set_*() return value sched: Remove sched_setscheduler*() EXPORTs sched,psi: Convert to sched_set_fifo_low() sched,rcutorture: Convert to sched_set_fifo_low() sched,rcuperf: Convert to sched_set_fifo_low() sched,locktorture: Convert to sched_set_fifo() sched,irq: Convert to sched_set_fifo() sched,watchdog: Convert to sched_set_fifo() sched,serial: Convert to sched_set_fifo() sched,powerclamp: Convert to sched_set_fifo() sched,ion: Convert to sched_set_normal() sched,powercap: Convert to sched_set_fifo*() sched,spi: Convert to sched_set_fifo*() sched,mmc: Convert to sched_set_fifo*() sched,ivtv: Convert to sched_set_fifo*() sched,drm/scheduler: Convert to sched_set_fifo*() sched,msm: Convert to sched_set_fifo*() sched,psci: Convert to sched_set_fifo*() sched,drbd: Convert to sched_set_fifo*() ...
2020-08-07 02:55:43 +08:00
sched_set_fifo(priv->event_thread[i].worker->task);
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
}
ret = drm_vblank_init(ddev, priv->num_crtcs);
if (ret < 0) {
DRM_DEV_ERROR(dev, "failed to initialize vblank\n");
goto err_msm_uninit;
}
if (kms) {
pm_runtime_get_sync(dev);
ret = msm_irq_install(ddev, kms->irq);
pm_runtime_put_sync(dev);
if (ret < 0) {
DRM_DEV_ERROR(dev, "failed to install IRQ handler\n");
goto err_msm_uninit;
}
}
ret = drm_dev_register(ddev, 0);
if (ret)
goto err_msm_uninit;
if (kms) {
ret = msm_disp_snapshot_init(ddev);
if (ret)
DRM_DEV_ERROR(dev, "msm_disp_snapshot_init failed ret = %d\n", ret);
}
drm_mode_config_reset(ddev);
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (kms && fbdev)
priv->fbdev = msm_fbdev_init(ddev);
#endif
ret = msm_debugfs_late_init(ddev);
if (ret)
goto err_msm_uninit;
drm_kms_helper_poll_init(ddev);
return 0;
err_msm_uninit:
msm_drm_uninit(dev);
return ret;
}
/*
* DRM operations:
*/
static void load_gpu(struct drm_device *dev)
{
static DEFINE_MUTEX(init_lock);
struct msm_drm_private *priv = dev->dev_private;
mutex_lock(&init_lock);
if (!priv->gpu)
priv->gpu = adreno_load_gpu(dev);
mutex_unlock(&init_lock);
}
static int context_init(struct drm_device *dev, struct drm_file *file)
{
static atomic_t ident = ATOMIC_INIT(0);
struct msm_drm_private *priv = dev->dev_private;
struct msm_file_private *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
drm/msm: Fix crash on dev file close If the device file was opened prior to fw being available (such as from initrd before rootfs is mounted, when the initrd does not contain GPU fw), that would cause a later crash when the dev file is closed due to unitialized submitqueues list: CPU: 4 PID: 263 Comm: plymouthd Tainted: G W 5.15.0-rc2-next-20210924 #2 Hardware name: LENOVO 81JL/LNVNB161216, BIOS 9UCN33WW(V2.06) 06/ 4/2019 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : msm_submitqueue_close+0x30/0x190 [msm] lr : msm_postclose+0x54/0xf0 [msm] sp : ffff80001074bb80 x29: ffff80001074bb80 x28: ffff03ad80c4db80 x27: ffff03ad80dc5ab0 x26: 0000000000000000 x25: ffff03ad80dc5af8 x24: ffff03ad81e90800 x23: 0000000000000000 x22: ffff03ad81e90800 x21: ffff03ad8b35e788 x20: ffff03ad81e90878 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: ffffda15f14f7940 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000001 x12: 0000000000000040 x11: 0000000000000000 x10: 0000000000000000 x9 : ffffda15cd18ff88 x8 : ffff03ad80c4db80 x7 : 0000000000000228 x6 : 0000000000000000 x5 : 1793a4e807e636bd x4 : ffff03ad80c4db80 x3 : ffff03ad81e90878 x2 : 0000000000000000 x1 : ffff03ad80c4db80 x0 : 0000000000000000 Call trace: msm_submitqueue_close+0x30/0x190 [msm] msm_postclose+0x54/0xf0 [msm] drm_file_free.part.0+0x1cc/0x2e0 [drm] drm_close_helper.isra.0+0x74/0x84 [drm] drm_release+0x78/0x120 [drm] __fput+0x78/0x23c ____fput+0x1c/0x30 task_work_run+0xcc/0x22c do_exit+0x304/0x9f4 do_group_exit+0x44/0xb0 __wake_up_parent+0x0/0x3c invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x4c/0xf4 do_el0_svc+0x30/0x9c el0_svc+0x20/0x60 el0t_64_sync_handler+0xe8/0xf0 el0t_64_sync+0x1a0/0x1a4 Code: aa0003f5 a90153f3 f8408eb3 aa1303e0 (f85e8674) ---[ end trace 39b2fa37509a2be2 ]--- Fixing recursive fault but reboot is needed! Fixes: 86c2a0f000c1 drm/msm: ("Small submitqueue creation cleanup") Reported-by: Steev Klimaszewski <steev@kali.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2021-09-27 02:56:58 +08:00
INIT_LIST_HEAD(&ctx->submitqueues);
rwlock_init(&ctx->queuelock);
kref_init(&ctx->ref);
msm_submitqueue_init(dev, ctx);
ctx->aspace = msm_gpu_create_private_address_space(priv->gpu, current);
file->driver_priv = ctx;
ctx->seqno = atomic_inc_return(&ident);
return 0;
}
static int msm_open(struct drm_device *dev, struct drm_file *file)
{
/* For now, load gpu on open.. to avoid the requirement of having
* firmware in the initrd.
*/
load_gpu(dev);
return context_init(dev, file);
}
static void context_close(struct msm_file_private *ctx)
{
msm_submitqueue_close(ctx);
msm_file_private_put(ctx);
}
static void msm_postclose(struct drm_device *dev, struct drm_file *file)
{
struct msm_file_private *ctx = file->driver_priv;
context_close(ctx);
}
int msm_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
unsigned int pipe = crtc->index;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
if (!kms)
return -ENXIO;
drm_dbg_vbl(dev, "crtc=%u", pipe);
return vblank_ctrl_queue_work(priv, pipe, true);
}
void msm_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
unsigned int pipe = crtc->index;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
if (!kms)
return;
drm_dbg_vbl(dev, "crtc=%u", pipe);
vblank_ctrl_queue_work(priv, pipe, false);
}
/*
* DRM ioctls:
*/
static int msm_ioctl_get_param(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct msm_drm_private *priv = dev->dev_private;
struct drm_msm_param *args = data;
struct msm_gpu *gpu;
/* for now, we just have 3d pipe.. eventually this would need to
* be more clever to dispatch to appropriate gpu module:
*/
if (args->pipe != MSM_PIPE_3D0)
return -EINVAL;
gpu = priv->gpu;
if (!gpu)
return -ENXIO;
return gpu->funcs->get_param(gpu, args->param, &args->value);
}
static int msm_ioctl_gem_new(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_new *args = data;
if (args->flags & ~MSM_BO_FLAGS) {
DRM_ERROR("invalid flags: %08x\n", args->flags);
return -EINVAL;
}
return msm_gem_new_handle(dev, file, args->size,
args->flags, &args->handle, NULL);
}
static inline ktime_t to_ktime(struct drm_msm_timespec timeout)
{
return ktime_set(timeout.tv_sec, timeout.tv_nsec);
}
static int msm_ioctl_gem_cpu_prep(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_cpu_prep *args = data;
struct drm_gem_object *obj;
ktime_t timeout = to_ktime(args->timeout);
int ret;
if (args->op & ~MSM_PREP_FLAGS) {
DRM_ERROR("invalid op: %08x\n", args->op);
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
ret = msm_gem_cpu_prep(obj, args->op, &timeout);
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_gem_cpu_fini(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_cpu_fini *args = data;
struct drm_gem_object *obj;
int ret;
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
ret = msm_gem_cpu_fini(obj);
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_gem_info_iova(struct drm_device *dev,
struct drm_file *file, struct drm_gem_object *obj,
uint64_t *iova)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_file_private *ctx = file->driver_priv;
if (!priv->gpu)
return -EINVAL;
/*
* Don't pin the memory here - just get an address so that userspace can
* be productive
*/
return msm_gem_get_iova(obj, ctx->aspace, iova);
}
static int msm_ioctl_gem_info(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_info *args = data;
struct drm_gem_object *obj;
struct msm_gem_object *msm_obj;
int i, ret = 0;
if (args->pad)
return -EINVAL;
switch (args->info) {
case MSM_INFO_GET_OFFSET:
case MSM_INFO_GET_IOVA:
/* value returned as immediate, not pointer, so len==0: */
if (args->len)
return -EINVAL;
break;
case MSM_INFO_SET_NAME:
case MSM_INFO_GET_NAME:
break;
default:
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
msm_obj = to_msm_bo(obj);
switch (args->info) {
case MSM_INFO_GET_OFFSET:
args->value = msm_gem_mmap_offset(obj);
break;
case MSM_INFO_GET_IOVA:
ret = msm_ioctl_gem_info_iova(dev, file, obj, &args->value);
break;
case MSM_INFO_SET_NAME:
/* length check should leave room for terminating null: */
if (args->len >= sizeof(msm_obj->name)) {
ret = -EINVAL;
break;
}
if (copy_from_user(msm_obj->name, u64_to_user_ptr(args->value),
args->len)) {
msm_obj->name[0] = '\0';
ret = -EFAULT;
break;
}
msm_obj->name[args->len] = '\0';
for (i = 0; i < args->len; i++) {
if (!isprint(msm_obj->name[i])) {
msm_obj->name[i] = '\0';
break;
}
}
break;
case MSM_INFO_GET_NAME:
if (args->value && (args->len < strlen(msm_obj->name))) {
ret = -EINVAL;
break;
}
args->len = strlen(msm_obj->name);
if (args->value) {
if (copy_to_user(u64_to_user_ptr(args->value),
msm_obj->name, args->len))
ret = -EFAULT;
}
break;
}
drm_gem_object_put(obj);
return ret;
}
static int wait_fence(struct msm_gpu_submitqueue *queue, uint32_t fence_id,
ktime_t timeout)
{
struct dma_fence *fence;
int ret;
if (fence_after(fence_id, queue->last_fence)) {
DRM_ERROR_RATELIMITED("waiting on invalid fence: %u (of %u)\n",
fence_id, queue->last_fence);
return -EINVAL;
}
/*
* Map submitqueue scoped "seqno" (which is actually an idr key)
* back to underlying dma-fence
*
* The fence is removed from the fence_idr when the submit is
* retired, so if the fence is not found it means there is nothing
* to wait for
*/
ret = mutex_lock_interruptible(&queue->lock);
if (ret)
return ret;
fence = idr_find(&queue->fence_idr, fence_id);
if (fence)
fence = dma_fence_get_rcu(fence);
mutex_unlock(&queue->lock);
if (!fence)
return 0;
ret = dma_fence_wait_timeout(fence, true, timeout_to_jiffies(&timeout));
if (ret == 0) {
ret = -ETIMEDOUT;
} else if (ret != -ERESTARTSYS) {
ret = 0;
}
dma_fence_put(fence);
return ret;
}
static int msm_ioctl_wait_fence(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct msm_drm_private *priv = dev->dev_private;
struct drm_msm_wait_fence *args = data;
struct msm_gpu_submitqueue *queue;
int ret;
if (args->pad) {
DRM_ERROR("invalid pad: %08x\n", args->pad);
return -EINVAL;
}
if (!priv->gpu)
return 0;
queue = msm_submitqueue_get(file->driver_priv, args->queueid);
if (!queue)
return -ENOENT;
ret = wait_fence(queue, args->fence, to_ktime(args->timeout));
msm_submitqueue_put(queue);
return ret;
}
static int msm_ioctl_gem_madvise(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_madvise *args = data;
struct drm_gem_object *obj;
int ret;
switch (args->madv) {
case MSM_MADV_DONTNEED:
case MSM_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj) {
return -ENOENT;
}
ret = msm_gem_madvise(obj, args->madv);
if (ret >= 0) {
args->retained = ret;
ret = 0;
}
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_submitqueue_new(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_submitqueue *args = data;
if (args->flags & ~MSM_SUBMITQUEUE_FLAGS)
return -EINVAL;
return msm_submitqueue_create(dev, file->driver_priv, args->prio,
args->flags, &args->id);
}
static int msm_ioctl_submitqueue_query(struct drm_device *dev, void *data,
struct drm_file *file)
{
return msm_submitqueue_query(dev, file->driver_priv, data);
}
static int msm_ioctl_submitqueue_close(struct drm_device *dev, void *data,
struct drm_file *file)
{
u32 id = *(u32 *) data;
return msm_submitqueue_remove(file->driver_priv, id);
}
static const struct drm_ioctl_desc msm_ioctls[] = {
DRM_IOCTL_DEF_DRV(MSM_GET_PARAM, msm_ioctl_get_param, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_NEW, msm_ioctl_gem_new, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_INFO, msm_ioctl_gem_info, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_PREP, msm_ioctl_gem_cpu_prep, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_FINI, msm_ioctl_gem_cpu_fini, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_SUBMIT, msm_ioctl_gem_submit, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_WAIT_FENCE, msm_ioctl_wait_fence, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_MADVISE, msm_ioctl_gem_madvise, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_NEW, msm_ioctl_submitqueue_new, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_CLOSE, msm_ioctl_submitqueue_close, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_QUERY, msm_ioctl_submitqueue_query, DRM_RENDER_ALLOW),
};
DEFINE_DRM_GEM_FOPS(fops);
drm/<drivers>: Constify struct drm_driver Only the following drivers aren't converted: - amdgpu, because of the driver_feature mangling due to virt support. Subsequent patch will address this. - nouveau, because DRIVER_ATOMIC uapi is still not the default on the platforms where it's supported (i.e. again driver_feature mangling) - vc4, again because of driver_feature mangling - qxl, because the ioctl table is somewhere else and moving that is maybe a bit too much, hence the num_ioctls assignment prevents a const driver structure. - arcpgu, because that is stuck behind a pending tiny-fication series from me. - legacy drivers, because legacy requires non-const drm_driver. Note that for armada I also went ahead and made the ioctl array const. Only cc'ing the driver people who've not been converted (everyone else is way too much). v2: Fix one misplaced const static, should be static const (0day) v3: - Improve commit message (Sam) Acked-by: Sam Ravnborg <sam@ravnborg.org> Cc: kernel test robot <lkp@intel.com> Acked-by: Maxime Ripard <mripard@kernel.org> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Dave Airlie <airlied@redhat.com> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: virtualization@lists.linux-foundation.org Cc: Harry Wentland <harry.wentland@amd.com> Cc: Leo Li <sunpeng.li@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Eric Anholt <eric@anholt.net> Cc: Maxime Ripard <mripard@kernel.org> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: nouveau@lists.freedesktop.org Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201104100425.1922351-5-daniel.vetter@ffwll.ch
2020-11-04 18:04:24 +08:00
static const struct drm_driver msm_driver = {
.driver_features = DRIVER_GEM |
DRIVER_RENDER |
DRIVER_ATOMIC |
DRIVER_MODESET |
DRIVER_SYNCOBJ,
.open = msm_open,
.postclose = msm_postclose,
.lastclose = drm_fb_helper_lastclose,
.dumb_create = msm_gem_dumb_create,
.dumb_map_offset = msm_gem_dumb_map_offset,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_import_sg_table = msm_gem_prime_import_sg_table,
.gem_prime_mmap = drm_gem_prime_mmap,
#ifdef CONFIG_DEBUG_FS
.debugfs_init = msm_debugfs_init,
#endif
.ioctls = msm_ioctls,
.num_ioctls = ARRAY_SIZE(msm_ioctls),
.fops = &fops,
.name = "msm",
.desc = "MSM Snapdragon DRM",
.date = "20130625",
.major = MSM_VERSION_MAJOR,
.minor = MSM_VERSION_MINOR,
.patchlevel = MSM_VERSION_PATCHLEVEL,
};
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static int __maybe_unused msm_runtime_suspend(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
struct msm_mdss *mdss = priv->mdss;
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
DBG("");
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
if (mdss && mdss->funcs)
return mdss->funcs->disable(mdss);
return 0;
}
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static int __maybe_unused msm_runtime_resume(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
struct msm_mdss *mdss = priv->mdss;
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
DBG("");
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
if (mdss && mdss->funcs)
return mdss->funcs->enable(mdss);
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
return 0;
}
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static int __maybe_unused msm_pm_suspend(struct device *dev)
{
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
if (pm_runtime_suspended(dev))
return 0;
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
return msm_runtime_suspend(dev);
}
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static int __maybe_unused msm_pm_resume(struct device *dev)
{
if (pm_runtime_suspended(dev))
return 0;
return msm_runtime_resume(dev);
}
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static int __maybe_unused msm_pm_prepare(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev = priv ? priv->dev : NULL;
drm/msm: Fix suspend/resume on i.MX5 When putting iMX5 into suspend, the following flow is observed: [ 70.023427] [<c07755f0>] (msm_atomic_commit_tail) from [<c06e7218>] (commit_tail+0x9c/0x18c) [ 70.031890] [<c06e7218>] (commit_tail) from [<c0e2920c>] (drm_atomic_helper_commit+0x1a0/0x1d4) [ 70.040627] [<c0e2920c>] (drm_atomic_helper_commit) from [<c06e74d4>] (drm_atomic_helper_disable_all+0x1c4/0x1d4) [ 70.050913] [<c06e74d4>] (drm_atomic_helper_disable_all) from [<c0e2943c>] (drm_atomic_helper_suspend+0xb8/0x170) [ 70.061198] [<c0e2943c>] (drm_atomic_helper_suspend) from [<c06e84bc>] (drm_mode_config_helper_suspend+0x24/0x58) In the i.MX5 case, priv->kms is not populated (as i.MX5 does not use any of the Qualcomm display controllers), causing a NULL pointer dereference in msm_atomic_commit_tail(): [ 24.268964] 8<--- cut here --- [ 24.274602] Unable to handle kernel NULL pointer dereference at virtual address 00000000 [ 24.283434] pgd = (ptrval) [ 24.286387] [00000000] *pgd=ca212831 [ 24.290788] Internal error: Oops: 17 [#1] SMP ARM [ 24.295609] Modules linked in: [ 24.298777] CPU: 0 PID: 197 Comm: init Not tainted 5.11.0-rc2-next-20210111 #333 [ 24.306276] Hardware name: Freescale i.MX53 (Device Tree Support) [ 24.312442] PC is at msm_atomic_commit_tail+0x54/0xb9c [ 24.317743] LR is at commit_tail+0xa4/0x1b0 Fix the problem by calling drm_mode_config_helper_suspend/resume() only when priv->kms is available. Fixes: ca8199f13498 ("drm/msm/dpu: ensure device suspend happens during PM sleep") Signed-off-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Rob Clark <robdclark@chromium.org>
2021-03-20 19:56:03 +08:00
if (!priv || !priv->kms)
return 0;
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
return drm_mode_config_helper_suspend(ddev);
}
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
static void __maybe_unused msm_pm_complete(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev = priv ? priv->dev : NULL;
drm/msm: Fix suspend/resume on i.MX5 When putting iMX5 into suspend, the following flow is observed: [ 70.023427] [<c07755f0>] (msm_atomic_commit_tail) from [<c06e7218>] (commit_tail+0x9c/0x18c) [ 70.031890] [<c06e7218>] (commit_tail) from [<c0e2920c>] (drm_atomic_helper_commit+0x1a0/0x1d4) [ 70.040627] [<c0e2920c>] (drm_atomic_helper_commit) from [<c06e74d4>] (drm_atomic_helper_disable_all+0x1c4/0x1d4) [ 70.050913] [<c06e74d4>] (drm_atomic_helper_disable_all) from [<c0e2943c>] (drm_atomic_helper_suspend+0xb8/0x170) [ 70.061198] [<c0e2943c>] (drm_atomic_helper_suspend) from [<c06e84bc>] (drm_mode_config_helper_suspend+0x24/0x58) In the i.MX5 case, priv->kms is not populated (as i.MX5 does not use any of the Qualcomm display controllers), causing a NULL pointer dereference in msm_atomic_commit_tail(): [ 24.268964] 8<--- cut here --- [ 24.274602] Unable to handle kernel NULL pointer dereference at virtual address 00000000 [ 24.283434] pgd = (ptrval) [ 24.286387] [00000000] *pgd=ca212831 [ 24.290788] Internal error: Oops: 17 [#1] SMP ARM [ 24.295609] Modules linked in: [ 24.298777] CPU: 0 PID: 197 Comm: init Not tainted 5.11.0-rc2-next-20210111 #333 [ 24.306276] Hardware name: Freescale i.MX53 (Device Tree Support) [ 24.312442] PC is at msm_atomic_commit_tail+0x54/0xb9c [ 24.317743] LR is at commit_tail+0xa4/0x1b0 Fix the problem by calling drm_mode_config_helper_suspend/resume() only when priv->kms is available. Fixes: ca8199f13498 ("drm/msm/dpu: ensure device suspend happens during PM sleep") Signed-off-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Rob Clark <robdclark@chromium.org>
2021-03-20 19:56:03 +08:00
if (!priv || !priv->kms)
return;
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
drm_mode_config_helper_resume(ddev);
}
static const struct dev_pm_ops msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_pm_suspend, msm_pm_resume)
SET_RUNTIME_PM_OPS(msm_runtime_suspend, msm_runtime_resume, NULL)
drm/msm/dpu: ensure device suspend happens during PM sleep "The PM core always increments the runtime usage counter before calling the ->suspend() callback and decrements it after calling the ->resume() callback" DPU and DSI are managed as runtime devices. When suspend is triggered, PM core adds a refcount on all the devices and calls device suspend, since usage count is already incremented, runtime suspend was not getting called and it kept the clocks on which resulted in target not entering into XO shutdown. Add changes to force suspend on runtime devices during pm sleep. Changes in v1: - Remove unnecessary checks in the function _dpu_kms_disable_dpu (Rob Clark). Changes in v2: - Avoid using suspend_late to reset the usagecount as suspend_late might not be called during suspend call failures (Doug). Changes in v3: - Use force suspend instead of managing device usage_count via runtime put and get API's to trigger callbacks (Doug). Changes in v4: - Check the return values of pm_runtime_force_suspend and pm_runtime_force_resume API's and pass appropriately (Doug). Changes in v5: - With v4 patch, test cycle has uncovered issues in device resume. On bubs: cmd tx failures were seen as SW is sending panel off commands when the dsi resources are turned off. Upon suspend, DRM driver will issue a NULL composition to the dpu, followed by turning off all the HW blocks. v5 changes will serialize the NULL commit and resource unwinding by handling them under PM prepare and PM complete phases there by ensuring that clks are on when panel off commands are being processed. Changes in v6: - Use drm_mode_config_helper_suspend/resume() instead of legacy API drm_atomic_helper_suspend/resume() (Doug). Trigger runtime callbacks from the suspend/resume call to turn off the resources. Changes in v7: - Add "__maybe_unused" to the functions to avoid compilation failures. Cleanup unnecessary configs (Doug). Signed-off-by: Kalyan Thota <kalyan_t@codeaurora.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Rob Clark <robdclark@chromium.org>
2020-06-18 22:01:24 +08:00
.prepare = msm_pm_prepare,
.complete = msm_pm_complete,
};
/*
* Componentized driver support:
*/
/*
* NOTE: duplication of the same code as exynos or imx (or probably any other).
* so probably some room for some helpers
*/
static int compare_of(struct device *dev, void *data)
{
return dev->of_node == data;
}
/*
* Identify what components need to be added by parsing what remote-endpoints
* our MDP output ports are connected to. In the case of LVDS on MDP4, there
* is no external component that we need to add since LVDS is within MDP4
* itself.
*/
static int add_components_mdp(struct device *mdp_dev,
struct component_match **matchptr)
{
struct device_node *np = mdp_dev->of_node;
struct device_node *ep_node;
struct device *master_dev;
/*
* on MDP4 based platforms, the MDP platform device is the component
* master that adds other display interface components to itself.
*
* on MDP5 based platforms, the MDSS platform device is the component
* master that adds MDP5 and other display interface components to
* itself.
*/
if (of_device_is_compatible(np, "qcom,mdp4"))
master_dev = mdp_dev;
else
master_dev = mdp_dev->parent;
for_each_endpoint_of_node(np, ep_node) {
struct device_node *intf;
struct of_endpoint ep;
int ret;
ret = of_graph_parse_endpoint(ep_node, &ep);
if (ret) {
DRM_DEV_ERROR(mdp_dev, "unable to parse port endpoint\n");
of_node_put(ep_node);
return ret;
}
/*
* The LCDC/LVDS port on MDP4 is a speacial case where the
* remote-endpoint isn't a component that we need to add
*/
if (of_device_is_compatible(np, "qcom,mdp4") &&
ep.port == 0)
continue;
/*
* It's okay if some of the ports don't have a remote endpoint
* specified. It just means that the port isn't connected to
* any external interface.
*/
intf = of_graph_get_remote_port_parent(ep_node);
if (!intf)
continue;
if (of_device_is_available(intf))
drm_of_component_match_add(master_dev, matchptr,
compare_of, intf);
of_node_put(intf);
}
return 0;
}
static int find_mdp_node(struct device *dev, void *data)
{
return of_match_node(dpu_dt_match, dev->of_node) ||
of_match_node(mdp5_dt_match, dev->of_node);
}
static int add_display_components(struct platform_device *pdev,
struct component_match **matchptr)
{
struct device *mdp_dev;
struct device *dev = &pdev->dev;
int ret;
/*
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
* MDP5/DPU based devices don't have a flat hierarchy. There is a top
* level parent: MDSS, and children: MDP5/DPU, DSI, HDMI, eDP etc.
* Populate the children devices, find the MDP5/DPU node, and then add
* the interfaces to our components list.
*/
switch (get_mdp_ver(pdev)) {
case KMS_MDP5:
case KMS_DPU:
ret = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (ret) {
DRM_DEV_ERROR(dev, "failed to populate children devices\n");
return ret;
}
mdp_dev = device_find_child(dev, NULL, find_mdp_node);
if (!mdp_dev) {
DRM_DEV_ERROR(dev, "failed to find MDSS MDP node\n");
of_platform_depopulate(dev);
return -ENODEV;
}
put_device(mdp_dev);
/* add the MDP component itself */
drm_of_component_match_add(dev, matchptr, compare_of,
mdp_dev->of_node);
break;
case KMS_MDP4:
/* MDP4 */
mdp_dev = dev;
break;
}
ret = add_components_mdp(mdp_dev, matchptr);
if (ret)
of_platform_depopulate(dev);
return ret;
}
/*
* We don't know what's the best binding to link the gpu with the drm device.
* Fow now, we just hunt for all the possible gpus that we support, and add them
* as components.
*/
static const struct of_device_id msm_gpu_match[] = {
{ .compatible = "qcom,adreno" },
{ .compatible = "qcom,adreno-3xx" },
{ .compatible = "amd,imageon" },
{ .compatible = "qcom,kgsl-3d0" },
{ },
};
static int add_gpu_components(struct device *dev,
struct component_match **matchptr)
{
struct device_node *np;
np = of_find_matching_node(NULL, msm_gpu_match);
if (!np)
return 0;
if (of_device_is_available(np))
drm_of_component_match_add(dev, matchptr, compare_of, np);
of_node_put(np);
return 0;
}
static int msm_drm_bind(struct device *dev)
{
return msm_drm_init(dev, &msm_driver);
}
static void msm_drm_unbind(struct device *dev)
{
msm_drm_uninit(dev);
}
static const struct component_master_ops msm_drm_ops = {
.bind = msm_drm_bind,
.unbind = msm_drm_unbind,
};
/*
* Platform driver:
*/
static int msm_pdev_probe(struct platform_device *pdev)
{
struct component_match *match = NULL;
struct msm_drm_private *priv;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, priv);
switch (get_mdp_ver(pdev)) {
case KMS_MDP5:
ret = mdp5_mdss_init(pdev);
break;
case KMS_DPU:
ret = dpu_mdss_init(pdev);
break;
default:
ret = 0;
break;
}
if (ret) {
platform_set_drvdata(pdev, NULL);
return ret;
}
if (get_mdp_ver(pdev)) {
ret = add_display_components(pdev, &match);
if (ret)
goto fail;
}
ret = add_gpu_components(&pdev->dev, &match);
if (ret)
goto fail;
/* on all devices that I am aware of, iommu's which can map
* any address the cpu can see are used:
*/
ret = dma_set_mask_and_coherent(&pdev->dev, ~0);
if (ret)
goto fail;
ret = component_master_add_with_match(&pdev->dev, &msm_drm_ops, match);
if (ret)
goto fail;
return 0;
fail:
of_platform_depopulate(&pdev->dev);
if (priv->mdss && priv->mdss->funcs)
priv->mdss->funcs->destroy(priv->mdss);
return ret;
}
static int msm_pdev_remove(struct platform_device *pdev)
{
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct msm_mdss *mdss = priv->mdss;
component_master_del(&pdev->dev, &msm_drm_ops);
of_platform_depopulate(&pdev->dev);
if (mdss && mdss->funcs)
mdss->funcs->destroy(mdss);
return 0;
}
static void msm_pdev_shutdown(struct platform_device *pdev)
{
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct drm_device *drm = priv ? priv->dev : NULL;
drm/msm: fix shutdown hook in case GPU components failed to bind If GPU components have failed to bind, shutdown callback would fail with the following backtrace. Add safeguard check to stop that oops from happening and allow the board to reboot. [ 66.617046] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 66.626066] Mem abort info: [ 66.628939] ESR = 0x96000006 [ 66.632088] EC = 0x25: DABT (current EL), IL = 32 bits [ 66.637542] SET = 0, FnV = 0 [ 66.640688] EA = 0, S1PTW = 0 [ 66.643924] Data abort info: [ 66.646889] ISV = 0, ISS = 0x00000006 [ 66.650832] CM = 0, WnR = 0 [ 66.653890] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000107f81000 [ 66.660505] [0000000000000000] pgd=0000000100bb2003, p4d=0000000100bb2003, pud=0000000100897003, pmd=0000000000000000 [ 66.671398] Internal error: Oops: 96000006 [#1] PREEMPT SMP [ 66.677115] Modules linked in: [ 66.680261] CPU: 6 PID: 352 Comm: reboot Not tainted 5.11.0-rc2-00309-g79e3faa756b2 #38 [ 66.688473] Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT) [ 66.695347] pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--) [ 66.701507] pc : msm_atomic_commit_tail+0x78/0x4e0 [ 66.706437] lr : commit_tail+0xa4/0x184 [ 66.710381] sp : ffff8000108f3af0 [ 66.713791] x29: ffff8000108f3af0 x28: ffff418c44337000 [ 66.719242] x27: 0000000000000000 x26: ffff418c40a24490 [ 66.724693] x25: ffffd3a842a4f1a0 x24: 0000000000000008 [ 66.730146] x23: ffffd3a84313f030 x22: ffff418c444ce000 [ 66.735598] x21: ffff418c408a4980 x20: 0000000000000000 [ 66.741049] x19: 0000000000000000 x18: ffff800010710fbc [ 66.746500] x17: 000000000000000c x16: 0000000000000001 [ 66.751954] x15: 0000000000010008 x14: 0000000000000068 [ 66.757405] x13: 0000000000000001 x12: 0000000000000000 [ 66.762855] x11: 0000000000000001 x10: 00000000000009b0 [ 66.768306] x9 : ffffd3a843192000 x8 : ffff418c44337000 [ 66.773757] x7 : 0000000000000000 x6 : 00000000a401b34e [ 66.779210] x5 : 00ffffffffffffff x4 : 0000000000000000 [ 66.784660] x3 : 0000000000000000 x2 : ffff418c444ce000 [ 66.790111] x1 : ffffd3a841dce530 x0 : ffff418c444cf000 [ 66.795563] Call trace: [ 66.798075] msm_atomic_commit_tail+0x78/0x4e0 [ 66.802633] commit_tail+0xa4/0x184 [ 66.806217] drm_atomic_helper_commit+0x160/0x390 [ 66.811051] drm_atomic_commit+0x4c/0x60 [ 66.815082] drm_atomic_helper_disable_all+0x1f4/0x210 [ 66.820355] drm_atomic_helper_shutdown+0x80/0x130 [ 66.825276] msm_pdev_shutdown+0x14/0x20 [ 66.829303] platform_shutdown+0x28/0x40 [ 66.833330] device_shutdown+0x158/0x330 [ 66.837357] kernel_restart+0x40/0xa0 [ 66.841122] __do_sys_reboot+0x228/0x250 [ 66.845148] __arm64_sys_reboot+0x28/0x34 [ 66.849264] el0_svc_common.constprop.0+0x74/0x190 [ 66.854187] do_el0_svc+0x24/0x90 [ 66.857595] el0_svc+0x14/0x20 [ 66.860739] el0_sync_handler+0x1a4/0x1b0 [ 66.864858] el0_sync+0x174/0x180 [ 66.868269] Code: 1ac020a0 2a000273 eb02007f 54ffff01 (f9400285) [ 66.874525] ---[ end trace 20dedb2a3229fec8 ]--- Fixes: 9d5cbf5fe46e ("drm/msm: add shutdown support for display platform_driver") Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Signed-off-by: Fabio Estevam <festevam@gmail.com> Signed-off-by: Rob Clark <robdclark@chromium.org>
2021-03-20 19:56:02 +08:00
if (!priv || !priv->kms)
return;
drm_atomic_helper_shutdown(drm);
}
static const struct of_device_id dt_match[] = {
{ .compatible = "qcom,mdp4", .data = (void *)KMS_MDP4 },
{ .compatible = "qcom,mdss", .data = (void *)KMS_MDP5 },
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
{ .compatible = "qcom,sdm845-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sc7180-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sc7280-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sm8150-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sm8250-mdss", .data = (void *)KMS_DPU },
{}
};
MODULE_DEVICE_TABLE(of, dt_match);
static struct platform_driver msm_platform_driver = {
.probe = msm_pdev_probe,
.remove = msm_pdev_remove,
.shutdown = msm_pdev_shutdown,
.driver = {
.name = "msm",
.of_match_table = dt_match,
.pm = &msm_pm_ops,
},
};
static int __init msm_drm_register(void)
{
if (!modeset)
return -EINVAL;
DBG("init");
msm_mdp_register();
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
msm_dpu_register();
msm_dsi_register();
msm_hdmi_register();
msm_dp_register();
adreno_register();
return platform_driver_register(&msm_platform_driver);
}
static void __exit msm_drm_unregister(void)
{
DBG("fini");
platform_driver_unregister(&msm_platform_driver);
msm_dp_unregister();
msm_hdmi_unregister();
adreno_unregister();
msm_dsi_unregister();
msm_mdp_unregister();
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-28 03:26:09 +08:00
msm_dpu_unregister();
}
module_init(msm_drm_register);
module_exit(msm_drm_unregister);
MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
MODULE_DESCRIPTION("MSM DRM Driver");
MODULE_LICENSE("GPL");