OpenCloudOS-Kernel/arch/arm/crypto/sha512-armv4.pl

658 lines
17 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
# SPDX-License-Identifier: GPL-2.0
# This code is taken from the OpenSSL project but the author (Andy Polyakov)
# has relicensed it under the GPLv2. Therefore this program is free software;
# you can redistribute it and/or modify it under the terms of the GNU General
# Public License version 2 as published by the Free Software Foundation.
#
# The original headers, including the original license headers, are
# included below for completeness.
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see https://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# SHA512 block procedure for ARMv4. September 2007.
# This code is ~4.5 (four and a half) times faster than code generated
# by gcc 3.4 and it spends ~72 clock cycles per byte [on single-issue
# Xscale PXA250 core].
#
# July 2010.
#
# Rescheduling for dual-issue pipeline resulted in 6% improvement on
# Cortex A8 core and ~40 cycles per processed byte.
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 7%
# improvement on Coxtex A8 core and ~38 cycles per byte.
# March 2011.
#
# Add NEON implementation. On Cortex A8 it was measured to process
# one byte in 23.3 cycles or ~60% faster than integer-only code.
# August 2012.
#
# Improve NEON performance by 12% on Snapdragon S4. In absolute
# terms it's 22.6 cycles per byte, which is disappointing result.
# Technical writers asserted that 3-way S4 pipeline can sustain
# multiple NEON instructions per cycle, but dual NEON issue could
# not be observed, see https://www.openssl.org/~appro/Snapdragon-S4.html
# for further details. On side note Cortex-A15 processes one byte in
# 16 cycles.
# Byte order [in]dependence. =========================================
#
# Originally caller was expected to maintain specific *dword* order in
# h[0-7], namely with most significant dword at *lower* address, which
# was reflected in below two parameters as 0 and 4. Now caller is
# expected to maintain native byte order for whole 64-bit values.
$hi="HI";
$lo="LO";
# ====================================================================
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ctx="r0"; # parameter block
$inp="r1";
$len="r2";
$Tlo="r3";
$Thi="r4";
$Alo="r5";
$Ahi="r6";
$Elo="r7";
$Ehi="r8";
$t0="r9";
$t1="r10";
$t2="r11";
$t3="r12";
############ r13 is stack pointer
$Ktbl="r14";
############ r15 is program counter
$Aoff=8*0;
$Boff=8*1;
$Coff=8*2;
$Doff=8*3;
$Eoff=8*4;
$Foff=8*5;
$Goff=8*6;
$Hoff=8*7;
$Xoff=8*8;
sub BODY_00_15() {
my $magic = shift;
$code.=<<___;
@ Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
@ LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23
@ HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23
mov $t0,$Elo,lsr#14
str $Tlo,[sp,#$Xoff+0]
mov $t1,$Ehi,lsr#14
str $Thi,[sp,#$Xoff+4]
eor $t0,$t0,$Ehi,lsl#18
ldr $t2,[sp,#$Hoff+0] @ h.lo
eor $t1,$t1,$Elo,lsl#18
ldr $t3,[sp,#$Hoff+4] @ h.hi
eor $t0,$t0,$Elo,lsr#18
eor $t1,$t1,$Ehi,lsr#18
eor $t0,$t0,$Ehi,lsl#14
eor $t1,$t1,$Elo,lsl#14
eor $t0,$t0,$Ehi,lsr#9
eor $t1,$t1,$Elo,lsr#9
eor $t0,$t0,$Elo,lsl#23
eor $t1,$t1,$Ehi,lsl#23 @ Sigma1(e)
adds $Tlo,$Tlo,$t0
ldr $t0,[sp,#$Foff+0] @ f.lo
adc $Thi,$Thi,$t1 @ T += Sigma1(e)
ldr $t1,[sp,#$Foff+4] @ f.hi
adds $Tlo,$Tlo,$t2
ldr $t2,[sp,#$Goff+0] @ g.lo
adc $Thi,$Thi,$t3 @ T += h
ldr $t3,[sp,#$Goff+4] @ g.hi
eor $t0,$t0,$t2
str $Elo,[sp,#$Eoff+0]
eor $t1,$t1,$t3
str $Ehi,[sp,#$Eoff+4]
and $t0,$t0,$Elo
str $Alo,[sp,#$Aoff+0]
and $t1,$t1,$Ehi
str $Ahi,[sp,#$Aoff+4]
eor $t0,$t0,$t2
ldr $t2,[$Ktbl,#$lo] @ K[i].lo
eor $t1,$t1,$t3 @ Ch(e,f,g)
ldr $t3,[$Ktbl,#$hi] @ K[i].hi
adds $Tlo,$Tlo,$t0
ldr $Elo,[sp,#$Doff+0] @ d.lo
adc $Thi,$Thi,$t1 @ T += Ch(e,f,g)
ldr $Ehi,[sp,#$Doff+4] @ d.hi
adds $Tlo,$Tlo,$t2
and $t0,$t2,#0xff
adc $Thi,$Thi,$t3 @ T += K[i]
adds $Elo,$Elo,$Tlo
ldr $t2,[sp,#$Boff+0] @ b.lo
adc $Ehi,$Ehi,$Thi @ d += T
teq $t0,#$magic
ldr $t3,[sp,#$Coff+0] @ c.lo
#if __ARM_ARCH__>=7
it eq @ Thumb2 thing, sanity check in ARM
#endif
orreq $Ktbl,$Ktbl,#1
@ Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
@ LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25
@ HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25
mov $t0,$Alo,lsr#28
mov $t1,$Ahi,lsr#28
eor $t0,$t0,$Ahi,lsl#4
eor $t1,$t1,$Alo,lsl#4
eor $t0,$t0,$Ahi,lsr#2
eor $t1,$t1,$Alo,lsr#2
eor $t0,$t0,$Alo,lsl#30
eor $t1,$t1,$Ahi,lsl#30
eor $t0,$t0,$Ahi,lsr#7
eor $t1,$t1,$Alo,lsr#7
eor $t0,$t0,$Alo,lsl#25
eor $t1,$t1,$Ahi,lsl#25 @ Sigma0(a)
adds $Tlo,$Tlo,$t0
and $t0,$Alo,$t2
adc $Thi,$Thi,$t1 @ T += Sigma0(a)
ldr $t1,[sp,#$Boff+4] @ b.hi
orr $Alo,$Alo,$t2
ldr $t2,[sp,#$Coff+4] @ c.hi
and $Alo,$Alo,$t3
and $t3,$Ahi,$t1
orr $Ahi,$Ahi,$t1
orr $Alo,$Alo,$t0 @ Maj(a,b,c).lo
and $Ahi,$Ahi,$t2
adds $Alo,$Alo,$Tlo
orr $Ahi,$Ahi,$t3 @ Maj(a,b,c).hi
sub sp,sp,#8
adc $Ahi,$Ahi,$Thi @ h += T
tst $Ktbl,#1
add $Ktbl,$Ktbl,#8
___
}
$code=<<___;
#ifndef __KERNEL__
# include "arm_arch.h"
# define VFP_ABI_PUSH vstmdb sp!,{d8-d15}
# define VFP_ABI_POP vldmia sp!,{d8-d15}
#else
# define __ARM_ARCH__ __LINUX_ARM_ARCH__
# define __ARM_MAX_ARCH__ 7
# define VFP_ABI_PUSH
# define VFP_ABI_POP
#endif
#ifdef __ARMEL__
# define LO 0
# define HI 4
# define WORD64(hi0,lo0,hi1,lo1) .word lo0,hi0, lo1,hi1
#else
# define HI 0
# define LO 4
# define WORD64(hi0,lo0,hi1,lo1) .word hi0,lo0, hi1,lo1
#endif
.text
#if __ARM_ARCH__<7
.code 32
#else
.syntax unified
# ifdef __thumb2__
.thumb
# else
.code 32
# endif
#endif
.type K512,%object
.align 5
K512:
WORD64(0x428a2f98,0xd728ae22, 0x71374491,0x23ef65cd)
WORD64(0xb5c0fbcf,0xec4d3b2f, 0xe9b5dba5,0x8189dbbc)
WORD64(0x3956c25b,0xf348b538, 0x59f111f1,0xb605d019)
WORD64(0x923f82a4,0xaf194f9b, 0xab1c5ed5,0xda6d8118)
WORD64(0xd807aa98,0xa3030242, 0x12835b01,0x45706fbe)
WORD64(0x243185be,0x4ee4b28c, 0x550c7dc3,0xd5ffb4e2)
WORD64(0x72be5d74,0xf27b896f, 0x80deb1fe,0x3b1696b1)
WORD64(0x9bdc06a7,0x25c71235, 0xc19bf174,0xcf692694)
WORD64(0xe49b69c1,0x9ef14ad2, 0xefbe4786,0x384f25e3)
WORD64(0x0fc19dc6,0x8b8cd5b5, 0x240ca1cc,0x77ac9c65)
WORD64(0x2de92c6f,0x592b0275, 0x4a7484aa,0x6ea6e483)
WORD64(0x5cb0a9dc,0xbd41fbd4, 0x76f988da,0x831153b5)
WORD64(0x983e5152,0xee66dfab, 0xa831c66d,0x2db43210)
WORD64(0xb00327c8,0x98fb213f, 0xbf597fc7,0xbeef0ee4)
WORD64(0xc6e00bf3,0x3da88fc2, 0xd5a79147,0x930aa725)
WORD64(0x06ca6351,0xe003826f, 0x14292967,0x0a0e6e70)
WORD64(0x27b70a85,0x46d22ffc, 0x2e1b2138,0x5c26c926)
WORD64(0x4d2c6dfc,0x5ac42aed, 0x53380d13,0x9d95b3df)
WORD64(0x650a7354,0x8baf63de, 0x766a0abb,0x3c77b2a8)
WORD64(0x81c2c92e,0x47edaee6, 0x92722c85,0x1482353b)
WORD64(0xa2bfe8a1,0x4cf10364, 0xa81a664b,0xbc423001)
WORD64(0xc24b8b70,0xd0f89791, 0xc76c51a3,0x0654be30)
WORD64(0xd192e819,0xd6ef5218, 0xd6990624,0x5565a910)
WORD64(0xf40e3585,0x5771202a, 0x106aa070,0x32bbd1b8)
WORD64(0x19a4c116,0xb8d2d0c8, 0x1e376c08,0x5141ab53)
WORD64(0x2748774c,0xdf8eeb99, 0x34b0bcb5,0xe19b48a8)
WORD64(0x391c0cb3,0xc5c95a63, 0x4ed8aa4a,0xe3418acb)
WORD64(0x5b9cca4f,0x7763e373, 0x682e6ff3,0xd6b2b8a3)
WORD64(0x748f82ee,0x5defb2fc, 0x78a5636f,0x43172f60)
WORD64(0x84c87814,0xa1f0ab72, 0x8cc70208,0x1a6439ec)
WORD64(0x90befffa,0x23631e28, 0xa4506ceb,0xde82bde9)
WORD64(0xbef9a3f7,0xb2c67915, 0xc67178f2,0xe372532b)
WORD64(0xca273ece,0xea26619c, 0xd186b8c7,0x21c0c207)
WORD64(0xeada7dd6,0xcde0eb1e, 0xf57d4f7f,0xee6ed178)
WORD64(0x06f067aa,0x72176fba, 0x0a637dc5,0xa2c898a6)
WORD64(0x113f9804,0xbef90dae, 0x1b710b35,0x131c471b)
WORD64(0x28db77f5,0x23047d84, 0x32caab7b,0x40c72493)
WORD64(0x3c9ebe0a,0x15c9bebc, 0x431d67c4,0x9c100d4c)
WORD64(0x4cc5d4be,0xcb3e42b6, 0x597f299c,0xfc657e2a)
WORD64(0x5fcb6fab,0x3ad6faec, 0x6c44198c,0x4a475817)
.size K512,.-K512
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha512_block_data_order
.skip 32-4
#else
.skip 32
#endif
.global sha512_block_data_order
.type sha512_block_data_order,%function
sha512_block_data_order:
crypto: sha512/arm - fix crash bug in Thumb2 build The SHA512 code we adopted from the OpenSSL project uses a rather peculiar way to take the address of the round constant table: it takes the address of the sha256_block_data_order() routine, and substracts a constant known quantity to arrive at the base of the table, which is emitted by the same assembler code right before the routine's entry point. However, recent versions of binutils have helpfully changed the behavior of references emitted via an ADR instruction when running in Thumb2 mode: it now takes the Thumb execution mode bit into account, which is bit 0 af the address. This means the produced table address also has bit 0 set, and so we end up with an address value pointing 1 byte past the start of the table, which results in crashes such as Unable to handle kernel paging request at virtual address bf825000 pgd = 42f44b11 [bf825000] *pgd=80000040206003, *pmd=5f1bd003, *pte=00000000 Internal error: Oops: 207 [#1] PREEMPT SMP THUMB2 Modules linked in: sha256_arm(+) sha1_arm_ce sha1_arm ... CPU: 7 PID: 396 Comm: cryptomgr_test Not tainted 5.0.0-rc6+ #144 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 PC is at sha256_block_data_order+0xaaa/0xb30 [sha256_arm] LR is at __this_module+0x17fd/0xffffe800 [sha256_arm] pc : [<bf820bca>] lr : [<bf824ffd>] psr: 800b0033 sp : ebc8bbe8 ip : faaabe1c fp : 2fdd3433 r10: 4c5f1692 r9 : e43037df r8 : b04b0a5a r7 : c369d722 r6 : 39c3693e r5 : 7a013189 r4 : 1580d26b r3 : 8762a9b0 r2 : eea9c2cd r1 : 3e9ab536 r0 : 1dea4ae7 Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA Thumb Segment user Control: 70c5383d Table: 6b8467c0 DAC: dbadc0de Process cryptomgr_test (pid: 396, stack limit = 0x69e1fe23) Stack: (0xebc8bbe8 to 0xebc8c000) ... unwind: Unknown symbol address bf820bca unwind: Index not found bf820bca Code: 441a ea80 40f9 440a (f85e) 3b04 ---[ end trace e560cce92700ef8a ]--- Given that this affects older kernels as well, in case they are built with a recent toolchain, apply a minimal backportable fix, which is to emit another non-code label at the start of the routine, and reference that instead. (This is similar to the current upstream state of this file in OpenSSL) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-02-16 21:51:26 +08:00
.Lsha512_block_data_order:
#if __ARM_ARCH__<7
sub r3,pc,#8 @ sha512_block_data_order
#else
crypto: sha512/arm - fix crash bug in Thumb2 build The SHA512 code we adopted from the OpenSSL project uses a rather peculiar way to take the address of the round constant table: it takes the address of the sha256_block_data_order() routine, and substracts a constant known quantity to arrive at the base of the table, which is emitted by the same assembler code right before the routine's entry point. However, recent versions of binutils have helpfully changed the behavior of references emitted via an ADR instruction when running in Thumb2 mode: it now takes the Thumb execution mode bit into account, which is bit 0 af the address. This means the produced table address also has bit 0 set, and so we end up with an address value pointing 1 byte past the start of the table, which results in crashes such as Unable to handle kernel paging request at virtual address bf825000 pgd = 42f44b11 [bf825000] *pgd=80000040206003, *pmd=5f1bd003, *pte=00000000 Internal error: Oops: 207 [#1] PREEMPT SMP THUMB2 Modules linked in: sha256_arm(+) sha1_arm_ce sha1_arm ... CPU: 7 PID: 396 Comm: cryptomgr_test Not tainted 5.0.0-rc6+ #144 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 PC is at sha256_block_data_order+0xaaa/0xb30 [sha256_arm] LR is at __this_module+0x17fd/0xffffe800 [sha256_arm] pc : [<bf820bca>] lr : [<bf824ffd>] psr: 800b0033 sp : ebc8bbe8 ip : faaabe1c fp : 2fdd3433 r10: 4c5f1692 r9 : e43037df r8 : b04b0a5a r7 : c369d722 r6 : 39c3693e r5 : 7a013189 r4 : 1580d26b r3 : 8762a9b0 r2 : eea9c2cd r1 : 3e9ab536 r0 : 1dea4ae7 Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA Thumb Segment user Control: 70c5383d Table: 6b8467c0 DAC: dbadc0de Process cryptomgr_test (pid: 396, stack limit = 0x69e1fe23) Stack: (0xebc8bbe8 to 0xebc8c000) ... unwind: Unknown symbol address bf820bca unwind: Index not found bf820bca Code: 441a ea80 40f9 440a (f85e) 3b04 ---[ end trace e560cce92700ef8a ]--- Given that this affects older kernels as well, in case they are built with a recent toolchain, apply a minimal backportable fix, which is to emit another non-code label at the start of the routine, and reference that instead. (This is similar to the current upstream state of this file in OpenSSL) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-02-16 21:51:26 +08:00
adr r3,.Lsha512_block_data_order
#endif
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
tst r12,#1
bne .LNEON
#endif
add $len,$inp,$len,lsl#7 @ len to point at the end of inp
stmdb sp!,{r4-r12,lr}
sub $Ktbl,r3,#672 @ K512
sub sp,sp,#9*8
ldr $Elo,[$ctx,#$Eoff+$lo]
ldr $Ehi,[$ctx,#$Eoff+$hi]
ldr $t0, [$ctx,#$Goff+$lo]
ldr $t1, [$ctx,#$Goff+$hi]
ldr $t2, [$ctx,#$Hoff+$lo]
ldr $t3, [$ctx,#$Hoff+$hi]
.Loop:
str $t0, [sp,#$Goff+0]
str $t1, [sp,#$Goff+4]
str $t2, [sp,#$Hoff+0]
str $t3, [sp,#$Hoff+4]
ldr $Alo,[$ctx,#$Aoff+$lo]
ldr $Ahi,[$ctx,#$Aoff+$hi]
ldr $Tlo,[$ctx,#$Boff+$lo]
ldr $Thi,[$ctx,#$Boff+$hi]
ldr $t0, [$ctx,#$Coff+$lo]
ldr $t1, [$ctx,#$Coff+$hi]
ldr $t2, [$ctx,#$Doff+$lo]
ldr $t3, [$ctx,#$Doff+$hi]
str $Tlo,[sp,#$Boff+0]
str $Thi,[sp,#$Boff+4]
str $t0, [sp,#$Coff+0]
str $t1, [sp,#$Coff+4]
str $t2, [sp,#$Doff+0]
str $t3, [sp,#$Doff+4]
ldr $Tlo,[$ctx,#$Foff+$lo]
ldr $Thi,[$ctx,#$Foff+$hi]
str $Tlo,[sp,#$Foff+0]
str $Thi,[sp,#$Foff+4]
.L00_15:
#if __ARM_ARCH__<7
ldrb $Tlo,[$inp,#7]
ldrb $t0, [$inp,#6]
ldrb $t1, [$inp,#5]
ldrb $t2, [$inp,#4]
ldrb $Thi,[$inp,#3]
ldrb $t3, [$inp,#2]
orr $Tlo,$Tlo,$t0,lsl#8
ldrb $t0, [$inp,#1]
orr $Tlo,$Tlo,$t1,lsl#16
ldrb $t1, [$inp],#8
orr $Tlo,$Tlo,$t2,lsl#24
orr $Thi,$Thi,$t3,lsl#8
orr $Thi,$Thi,$t0,lsl#16
orr $Thi,$Thi,$t1,lsl#24
#else
ldr $Tlo,[$inp,#4]
ldr $Thi,[$inp],#8
#ifdef __ARMEL__
rev $Tlo,$Tlo
rev $Thi,$Thi
#endif
#endif
___
&BODY_00_15(0x94);
$code.=<<___;
tst $Ktbl,#1
beq .L00_15
ldr $t0,[sp,#`$Xoff+8*(16-1)`+0]
ldr $t1,[sp,#`$Xoff+8*(16-1)`+4]
bic $Ktbl,$Ktbl,#1
.L16_79:
@ sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
@ LO lo>>1^hi<<31 ^ lo>>8^hi<<24 ^ lo>>7^hi<<25
@ HI hi>>1^lo<<31 ^ hi>>8^lo<<24 ^ hi>>7
mov $Tlo,$t0,lsr#1
ldr $t2,[sp,#`$Xoff+8*(16-14)`+0]
mov $Thi,$t1,lsr#1
ldr $t3,[sp,#`$Xoff+8*(16-14)`+4]
eor $Tlo,$Tlo,$t1,lsl#31
eor $Thi,$Thi,$t0,lsl#31
eor $Tlo,$Tlo,$t0,lsr#8
eor $Thi,$Thi,$t1,lsr#8
eor $Tlo,$Tlo,$t1,lsl#24
eor $Thi,$Thi,$t0,lsl#24
eor $Tlo,$Tlo,$t0,lsr#7
eor $Thi,$Thi,$t1,lsr#7
eor $Tlo,$Tlo,$t1,lsl#25
@ sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
@ LO lo>>19^hi<<13 ^ hi>>29^lo<<3 ^ lo>>6^hi<<26
@ HI hi>>19^lo<<13 ^ lo>>29^hi<<3 ^ hi>>6
mov $t0,$t2,lsr#19
mov $t1,$t3,lsr#19
eor $t0,$t0,$t3,lsl#13
eor $t1,$t1,$t2,lsl#13
eor $t0,$t0,$t3,lsr#29
eor $t1,$t1,$t2,lsr#29
eor $t0,$t0,$t2,lsl#3
eor $t1,$t1,$t3,lsl#3
eor $t0,$t0,$t2,lsr#6
eor $t1,$t1,$t3,lsr#6
ldr $t2,[sp,#`$Xoff+8*(16-9)`+0]
eor $t0,$t0,$t3,lsl#26
ldr $t3,[sp,#`$Xoff+8*(16-9)`+4]
adds $Tlo,$Tlo,$t0
ldr $t0,[sp,#`$Xoff+8*16`+0]
adc $Thi,$Thi,$t1
ldr $t1,[sp,#`$Xoff+8*16`+4]
adds $Tlo,$Tlo,$t2
adc $Thi,$Thi,$t3
adds $Tlo,$Tlo,$t0
adc $Thi,$Thi,$t1
___
&BODY_00_15(0x17);
$code.=<<___;
#if __ARM_ARCH__>=7
ittt eq @ Thumb2 thing, sanity check in ARM
#endif
ldreq $t0,[sp,#`$Xoff+8*(16-1)`+0]
ldreq $t1,[sp,#`$Xoff+8*(16-1)`+4]
beq .L16_79
bic $Ktbl,$Ktbl,#1
ldr $Tlo,[sp,#$Boff+0]
ldr $Thi,[sp,#$Boff+4]
ldr $t0, [$ctx,#$Aoff+$lo]
ldr $t1, [$ctx,#$Aoff+$hi]
ldr $t2, [$ctx,#$Boff+$lo]
ldr $t3, [$ctx,#$Boff+$hi]
adds $t0,$Alo,$t0
str $t0, [$ctx,#$Aoff+$lo]
adc $t1,$Ahi,$t1
str $t1, [$ctx,#$Aoff+$hi]
adds $t2,$Tlo,$t2
str $t2, [$ctx,#$Boff+$lo]
adc $t3,$Thi,$t3
str $t3, [$ctx,#$Boff+$hi]
ldr $Alo,[sp,#$Coff+0]
ldr $Ahi,[sp,#$Coff+4]
ldr $Tlo,[sp,#$Doff+0]
ldr $Thi,[sp,#$Doff+4]
ldr $t0, [$ctx,#$Coff+$lo]
ldr $t1, [$ctx,#$Coff+$hi]
ldr $t2, [$ctx,#$Doff+$lo]
ldr $t3, [$ctx,#$Doff+$hi]
adds $t0,$Alo,$t0
str $t0, [$ctx,#$Coff+$lo]
adc $t1,$Ahi,$t1
str $t1, [$ctx,#$Coff+$hi]
adds $t2,$Tlo,$t2
str $t2, [$ctx,#$Doff+$lo]
adc $t3,$Thi,$t3
str $t3, [$ctx,#$Doff+$hi]
ldr $Tlo,[sp,#$Foff+0]
ldr $Thi,[sp,#$Foff+4]
ldr $t0, [$ctx,#$Eoff+$lo]
ldr $t1, [$ctx,#$Eoff+$hi]
ldr $t2, [$ctx,#$Foff+$lo]
ldr $t3, [$ctx,#$Foff+$hi]
adds $Elo,$Elo,$t0
str $Elo,[$ctx,#$Eoff+$lo]
adc $Ehi,$Ehi,$t1
str $Ehi,[$ctx,#$Eoff+$hi]
adds $t2,$Tlo,$t2
str $t2, [$ctx,#$Foff+$lo]
adc $t3,$Thi,$t3
str $t3, [$ctx,#$Foff+$hi]
ldr $Alo,[sp,#$Goff+0]
ldr $Ahi,[sp,#$Goff+4]
ldr $Tlo,[sp,#$Hoff+0]
ldr $Thi,[sp,#$Hoff+4]
ldr $t0, [$ctx,#$Goff+$lo]
ldr $t1, [$ctx,#$Goff+$hi]
ldr $t2, [$ctx,#$Hoff+$lo]
ldr $t3, [$ctx,#$Hoff+$hi]
adds $t0,$Alo,$t0
str $t0, [$ctx,#$Goff+$lo]
adc $t1,$Ahi,$t1
str $t1, [$ctx,#$Goff+$hi]
adds $t2,$Tlo,$t2
str $t2, [$ctx,#$Hoff+$lo]
adc $t3,$Thi,$t3
str $t3, [$ctx,#$Hoff+$hi]
add sp,sp,#640
sub $Ktbl,$Ktbl,#640
teq $inp,$len
bne .Loop
add sp,sp,#8*9 @ destroy frame
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r12,pc}
#else
ldmia sp!,{r4-r12,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha512_block_data_order,.-sha512_block_data_order
___
{
my @Sigma0=(28,34,39);
my @Sigma1=(14,18,41);
my @sigma0=(1, 8, 7);
my @sigma1=(19,61,6);
my $Ktbl="r3";
my $cnt="r12"; # volatile register known as ip, intra-procedure-call scratch
my @X=map("d$_",(0..15));
my @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("d$_",(16..23));
sub NEON_00_15() {
my $i=shift;
my ($a,$b,$c,$d,$e,$f,$g,$h)=@_;
my ($t0,$t1,$t2,$T1,$K,$Ch,$Maj)=map("d$_",(24..31)); # temps
$code.=<<___ if ($i<16 || $i&1);
vshr.u64 $t0,$e,#@Sigma1[0] @ $i
#if $i<16
vld1.64 {@X[$i%16]},[$inp]! @ handles unaligned
#endif
vshr.u64 $t1,$e,#@Sigma1[1]
#if $i>0
vadd.i64 $a,$Maj @ h+=Maj from the past
#endif
vshr.u64 $t2,$e,#@Sigma1[2]
___
$code.=<<___;
vld1.64 {$K},[$Ktbl,:64]! @ K[i++]
vsli.64 $t0,$e,#`64-@Sigma1[0]`
vsli.64 $t1,$e,#`64-@Sigma1[1]`
vmov $Ch,$e
vsli.64 $t2,$e,#`64-@Sigma1[2]`
#if $i<16 && defined(__ARMEL__)
vrev64.8 @X[$i],@X[$i]
#endif
veor $t1,$t0
vbsl $Ch,$f,$g @ Ch(e,f,g)
vshr.u64 $t0,$a,#@Sigma0[0]
veor $t2,$t1 @ Sigma1(e)
vadd.i64 $T1,$Ch,$h
vshr.u64 $t1,$a,#@Sigma0[1]
vsli.64 $t0,$a,#`64-@Sigma0[0]`
vadd.i64 $T1,$t2
vshr.u64 $t2,$a,#@Sigma0[2]
vadd.i64 $K,@X[$i%16]
vsli.64 $t1,$a,#`64-@Sigma0[1]`
veor $Maj,$a,$b
vsli.64 $t2,$a,#`64-@Sigma0[2]`
veor $h,$t0,$t1
vadd.i64 $T1,$K
vbsl $Maj,$c,$b @ Maj(a,b,c)
veor $h,$t2 @ Sigma0(a)
vadd.i64 $d,$T1
vadd.i64 $Maj,$T1
@ vadd.i64 $h,$Maj
___
}
sub NEON_16_79() {
my $i=shift;
if ($i&1) { &NEON_00_15($i,@_); return; }
# 2x-vectorized, therefore runs every 2nd round
my @X=map("q$_",(0..7)); # view @X as 128-bit vector
my ($t0,$t1,$s0,$s1) = map("q$_",(12..15)); # temps
my ($d0,$d1,$d2) = map("d$_",(24..26)); # temps from NEON_00_15
my $e=@_[4]; # $e from NEON_00_15
$i /= 2;
$code.=<<___;
vshr.u64 $t0,@X[($i+7)%8],#@sigma1[0]
vshr.u64 $t1,@X[($i+7)%8],#@sigma1[1]
vadd.i64 @_[0],d30 @ h+=Maj from the past
vshr.u64 $s1,@X[($i+7)%8],#@sigma1[2]
vsli.64 $t0,@X[($i+7)%8],#`64-@sigma1[0]`
vext.8 $s0,@X[$i%8],@X[($i+1)%8],#8 @ X[i+1]
vsli.64 $t1,@X[($i+7)%8],#`64-@sigma1[1]`
veor $s1,$t0
vshr.u64 $t0,$s0,#@sigma0[0]
veor $s1,$t1 @ sigma1(X[i+14])
vshr.u64 $t1,$s0,#@sigma0[1]
vadd.i64 @X[$i%8],$s1
vshr.u64 $s1,$s0,#@sigma0[2]
vsli.64 $t0,$s0,#`64-@sigma0[0]`
vsli.64 $t1,$s0,#`64-@sigma0[1]`
vext.8 $s0,@X[($i+4)%8],@X[($i+5)%8],#8 @ X[i+9]
veor $s1,$t0
vshr.u64 $d0,$e,#@Sigma1[0] @ from NEON_00_15
vadd.i64 @X[$i%8],$s0
vshr.u64 $d1,$e,#@Sigma1[1] @ from NEON_00_15
veor $s1,$t1 @ sigma0(X[i+1])
vshr.u64 $d2,$e,#@Sigma1[2] @ from NEON_00_15
vadd.i64 @X[$i%8],$s1
___
&NEON_00_15(2*$i,@_);
}
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.arch armv7-a
.fpu neon
.global sha512_block_data_order_neon
.type sha512_block_data_order_neon,%function
.align 4
sha512_block_data_order_neon:
.LNEON:
dmb @ errata #451034 on early Cortex A8
add $len,$inp,$len,lsl#7 @ len to point at the end of inp
VFP_ABI_PUSH
adr $Ktbl,.Lsha512_block_data_order
sub $Ktbl,$Ktbl,.Lsha512_block_data_order-K512
vldmia $ctx,{$A-$H} @ load context
.Loop_neon:
___
for($i=0;$i<16;$i++) { &NEON_00_15($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
mov $cnt,#4
.L16_79_neon:
subs $cnt,#1
___
for(;$i<32;$i++) { &NEON_16_79($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
bne .L16_79_neon
vadd.i64 $A,d30 @ h+=Maj from the past
vldmia $ctx,{d24-d31} @ load context to temp
vadd.i64 q8,q12 @ vectorized accumulate
vadd.i64 q9,q13
vadd.i64 q10,q14
vadd.i64 q11,q15
vstmia $ctx,{$A-$H} @ save context
teq $inp,$len
sub $Ktbl,#640 @ rewind K512
bne .Loop_neon
VFP_ABI_POP
ret @ bx lr
.size sha512_block_data_order_neon,.-sha512_block_data_order_neon
#endif
___
}
$code.=<<___;
.asciz "SHA512 block transform for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.comm OPENSSL_armcap_P,4,4
#endif
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
$code =~ s/\bret\b/bx lr/gm;
open SELF,$0;
while(<SELF>) {
next if (/^#!/);
last if (!s/^#/@/ and !/^$/);
print;
}
close SELF;
print $code;
close STDOUT; # enforce flush