OpenCloudOS-Kernel/tools/testing/radix-tree/multiorder.c

327 lines
8.0 KiB
C
Raw Normal View History

/*
* multiorder.c: Multi-order radix tree entry testing
* Copyright (c) 2016 Intel Corporation
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/radix-tree.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "test.h"
#define for_each_index(i, base, order) \
for (i = base; i < base + (1 << order); i++)
static void __multiorder_tag_test(int index, int order)
{
RADIX_TREE(tree, GFP_KERNEL);
int base, err, i;
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
unsigned long first = 0;
/* our canonical entry */
base = index & ~((1 << order) - 1);
printf("Multiorder tag test with index %d, canonical entry %d\n",
index, base);
err = item_insert_order(&tree, index, order);
assert(!err);
/*
* Verify we get collisions for covered indices. We try and fail to
* insert an exceptional entry so we don't leak memory via
* item_insert_order().
*/
for_each_index(i, base, order) {
err = __radix_tree_insert(&tree, i, order,
(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
assert(err == -EEXIST);
}
for_each_index(i, base, order) {
assert(!radix_tree_tag_get(&tree, i, 0));
assert(!radix_tree_tag_get(&tree, i, 1));
}
assert(radix_tree_tag_set(&tree, index, 0));
for_each_index(i, base, order) {
assert(radix_tree_tag_get(&tree, i, 0));
assert(!radix_tree_tag_get(&tree, i, 1));
}
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
assert(radix_tree_range_tag_if_tagged(&tree, &first, ~0UL, 10, 0, 1) == 1);
assert(radix_tree_tag_clear(&tree, index, 0));
for_each_index(i, base, order) {
assert(!radix_tree_tag_get(&tree, i, 0));
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
assert(radix_tree_tag_get(&tree, i, 1));
}
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
assert(radix_tree_tag_clear(&tree, index, 1));
assert(!radix_tree_tagged(&tree, 0));
assert(!radix_tree_tagged(&tree, 1));
item_kill_tree(&tree);
}
static void multiorder_tag_tests(void)
{
/* test multi-order entry for indices 0-7 with no sibling pointers */
__multiorder_tag_test(0, 3);
__multiorder_tag_test(5, 3);
/* test multi-order entry for indices 8-15 with no sibling pointers */
__multiorder_tag_test(8, 3);
__multiorder_tag_test(15, 3);
/*
* Our order 5 entry covers indices 0-31 in a tree with height=2.
* This is broken up as follows:
* 0-7: canonical entry
* 8-15: sibling 1
* 16-23: sibling 2
* 24-31: sibling 3
*/
__multiorder_tag_test(0, 5);
__multiorder_tag_test(29, 5);
/* same test, but with indices 32-63 */
__multiorder_tag_test(32, 5);
__multiorder_tag_test(44, 5);
/*
* Our order 8 entry covers indices 0-255 in a tree with height=3.
* This is broken up as follows:
* 0-63: canonical entry
* 64-127: sibling 1
* 128-191: sibling 2
* 192-255: sibling 3
*/
__multiorder_tag_test(0, 8);
__multiorder_tag_test(190, 8);
/* same test, but with indices 256-511 */
__multiorder_tag_test(256, 8);
__multiorder_tag_test(300, 8);
__multiorder_tag_test(0x12345678UL, 8);
}
static void multiorder_check(unsigned long index, int order)
{
unsigned long i;
unsigned long min = index & ~((1UL << order) - 1);
unsigned long max = min + (1UL << order);
RADIX_TREE(tree, GFP_KERNEL);
printf("Multiorder index %ld, order %d\n", index, order);
assert(item_insert_order(&tree, index, order) == 0);
for (i = min; i < max; i++) {
struct item *item = item_lookup(&tree, i);
assert(item != 0);
assert(item->index == index);
}
for (i = 0; i < min; i++)
item_check_absent(&tree, i);
for (i = max; i < 2*max; i++)
item_check_absent(&tree, i);
for (i = min; i < max; i++) {
static void *entry = (void *)
(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY);
assert(radix_tree_insert(&tree, i, entry) == -EEXIST);
}
assert(item_delete(&tree, index) != 0);
for (i = 0; i < 2*max; i++)
item_check_absent(&tree, i);
}
radix-tree: fix several shrinking bugs with multiorder entries Setting the indirect bit on the user data entry used to be unambiguous because the tree walking code knew not to expect internal nodes in the last level of the tree. Multiorder entries can appear at any level of the tree, and a leaf with the indirect bit set is indistinguishable from a pointer to a node. Introduce a special entry (RADIX_TREE_RETRY) which is neither a valid user entry, nor a valid pointer to a node. The radix_tree_deref_retry() function continues to work the same way, but tree walking code can distinguish it from a pointer to a node. Also fix the condition for setting slot->parent to NULL; it does not matter what height the tree is, it only matters whether slot is an indirect pointer. Move this code above the comment which is referring to the assignment to root->rnode. Also fix the condition for preventing the tree from shrinking to a single entry if it's a multiorder entry. Add a test-case to the test suite that checks that the tree goes back down to its original height after an item is inserted & deleted from a higher index in the tree. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:17 +08:00
static void multiorder_shrink(unsigned long index, int order)
{
unsigned long i;
unsigned long max = 1 << order;
RADIX_TREE(tree, GFP_KERNEL);
struct radix_tree_node *node;
printf("Multiorder shrink index %ld, order %d\n", index, order);
assert(item_insert_order(&tree, 0, order) == 0);
node = tree.rnode;
assert(item_insert(&tree, index) == 0);
assert(node != tree.rnode);
assert(item_delete(&tree, index) != 0);
assert(node == tree.rnode);
for (i = 0; i < max; i++) {
struct item *item = item_lookup(&tree, i);
assert(item != 0);
assert(item->index == 0);
}
for (i = max; i < 2*max; i++)
item_check_absent(&tree, i);
if (!item_delete(&tree, 0)) {
printf("failed to delete index %ld (order %d)\n", index, order); abort();
}
for (i = 0; i < 2*max; i++)
item_check_absent(&tree, i);
}
static void multiorder_insert_bug(void)
{
RADIX_TREE(tree, GFP_KERNEL);
item_insert(&tree, 0);
radix_tree_tag_set(&tree, 0, 0);
item_insert_order(&tree, 3 << 6, 6);
item_kill_tree(&tree);
}
void multiorder_iteration(void)
{
RADIX_TREE(tree, GFP_KERNEL);
struct radix_tree_iter iter;
void **slot;
int i, err;
printf("Multiorder iteration test\n");
#define NUM_ENTRIES 11
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
for (i = 0; i < NUM_ENTRIES; i++) {
err = item_insert_order(&tree, index[i], order[i]);
assert(!err);
}
i = 0;
/* start from index 1 to verify we find the multi-order entry at 0 */
radix_tree_for_each_slot(slot, &tree, &iter, 1) {
int height = order[i] / RADIX_TREE_MAP_SHIFT;
int shift = height * RADIX_TREE_MAP_SHIFT;
assert(iter.index == index[i]);
assert(iter.shift == shift);
i++;
}
/*
* Now iterate through the tree starting at an elevated multi-order
* entry, beginning at an index in the middle of the range.
*/
i = 8;
radix_tree_for_each_slot(slot, &tree, &iter, 70) {
int height = order[i] / RADIX_TREE_MAP_SHIFT;
int shift = height * RADIX_TREE_MAP_SHIFT;
assert(iter.index == index[i]);
assert(iter.shift == shift);
i++;
}
item_kill_tree(&tree);
}
void multiorder_tagged_iteration(void)
{
RADIX_TREE(tree, GFP_KERNEL);
struct radix_tree_iter iter;
void **slot;
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
unsigned long first = 0;
int i;
printf("Multiorder tagged iteration test\n");
#define MT_NUM_ENTRIES 9
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
#define TAG_ENTRIES 7
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
for (i = 0; i < MT_NUM_ENTRIES; i++)
assert(!item_insert_order(&tree, index[i], order[i]));
assert(!radix_tree_tagged(&tree, 1));
for (i = 0; i < TAG_ENTRIES; i++)
assert(radix_tree_tag_set(&tree, tag_index[i], 1));
i = 0;
/* start from index 1 to verify we find the multi-order entry at 0 */
radix_tree_for_each_tagged(slot, &tree, &iter, 1, 1) {
assert(iter.index == tag_index[i]);
i++;
}
/*
* Now iterate through the tree starting at an elevated multi-order
* entry, beginning at an index in the middle of the range.
*/
i = 4;
radix_tree_for_each_slot(slot, &tree, &iter, 70) {
assert(iter.index == tag_index[i]);
i++;
}
radix-tree: fix radix_tree_range_tag_if_tagged() for multiorder entries I had previously decided that tagging a single multiorder entry would count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now believe that decision to be a mistake, and it should count as a single entry. That's more likely to be what callers expect. When walking back up the tree from a newly-tagged entry, the current code assumed we were starting from the lowest level of the tree; if we have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in size then we need to shift the index by 'shift' before we start walking back up the tree, or we will end up not setting tags on higher entries, and then mistakenly thinking that entries below a certain point in the tree are not tagged. If the first index we examine is a sibling entry of a tagged multiorder entry, we were not tagging it. We need to examine the canonical entry, and the easiest way to do that is to use radix_tree_descend(). We then have to skip over sibling slots when looking for the next entry in the tree or we will end up walking back to the canonical entry. Add several tests for radix_tree_range_tag_if_tagged(). Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:52 +08:00
radix_tree_range_tag_if_tagged(&tree, &first, ~0UL,
MT_NUM_ENTRIES, 1, 2);
i = 0;
radix_tree_for_each_tagged(slot, &tree, &iter, 1, 2) {
assert(iter.index == tag_index[i]);
i++;
}
first = 1;
radix_tree_range_tag_if_tagged(&tree, &first, ~0UL,
MT_NUM_ENTRIES, 1, 0);
i = 0;
radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
assert(iter.index == tag_index[i]);
i++;
}
item_kill_tree(&tree);
}
void multiorder_checks(void)
{
int i;
for (i = 0; i < 20; i++) {
multiorder_check(200, i);
multiorder_check(0, i);
multiorder_check((1UL << i) + 1, i);
}
radix-tree: fix several shrinking bugs with multiorder entries Setting the indirect bit on the user data entry used to be unambiguous because the tree walking code knew not to expect internal nodes in the last level of the tree. Multiorder entries can appear at any level of the tree, and a leaf with the indirect bit set is indistinguishable from a pointer to a node. Introduce a special entry (RADIX_TREE_RETRY) which is neither a valid user entry, nor a valid pointer to a node. The radix_tree_deref_retry() function continues to work the same way, but tree walking code can distinguish it from a pointer to a node. Also fix the condition for setting slot->parent to NULL; it does not matter what height the tree is, it only matters whether slot is an indirect pointer. Move this code above the comment which is referring to the assignment to root->rnode. Also fix the condition for preventing the tree from shrinking to a single entry if it's a multiorder entry. Add a test-case to the test suite that checks that the tree goes back down to its original height after an item is inserted & deleted from a higher index in the tree. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 08:02:17 +08:00
for (i = 0; i < 15; i++)
multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
multiorder_insert_bug();
multiorder_tag_tests();
multiorder_iteration();
multiorder_tagged_iteration();
}