OpenCloudOS-Kernel/include/linux/posix_acl.h

125 lines
3.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
File: linux/posix_acl.h
(C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
*/
#ifndef __LINUX_POSIX_ACL_H
#define __LINUX_POSIX_ACL_H
#include <linux/bug.h>
#include <linux/slab.h>
#include <linux/rcupdate.h>
posix_acl: convert posix_acl.a_refcount from atomic_t to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable posix_acl.a_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. **Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the posix_acl.a_refcount it might make a difference in following places: - get_cached_acl(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart. However this operation is performed under rcu_read_lock(), so this should be fine. - posix_acl_release(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-11-29 19:19:31 +08:00
#include <linux/refcount.h>
#include <uapi/linux/posix_acl.h>
struct posix_acl_entry {
short e_tag;
unsigned short e_perm;
2012-02-08 10:52:57 +08:00
union {
kuid_t e_uid;
kgid_t e_gid;
};
};
struct posix_acl {
posix_acl: convert posix_acl.a_refcount from atomic_t to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable posix_acl.a_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. **Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the posix_acl.a_refcount it might make a difference in following places: - get_cached_acl(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart. However this operation is performed under rcu_read_lock(), so this should be fine. - posix_acl_release(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-11-29 19:19:31 +08:00
refcount_t a_refcount;
struct rcu_head a_rcu;
unsigned int a_count;
struct posix_acl_entry a_entries[0];
};
#define FOREACH_ACL_ENTRY(pa, acl, pe) \
for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++)
/*
* Duplicate an ACL handle.
*/
static inline struct posix_acl *
posix_acl_dup(struct posix_acl *acl)
{
if (acl)
posix_acl: convert posix_acl.a_refcount from atomic_t to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable posix_acl.a_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. **Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the posix_acl.a_refcount it might make a difference in following places: - get_cached_acl(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart. However this operation is performed under rcu_read_lock(), so this should be fine. - posix_acl_release(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-11-29 19:19:31 +08:00
refcount_inc(&acl->a_refcount);
return acl;
}
/*
* Free an ACL handle.
*/
static inline void
posix_acl_release(struct posix_acl *acl)
{
posix_acl: convert posix_acl.a_refcount from atomic_t to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable posix_acl.a_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. **Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the posix_acl.a_refcount it might make a difference in following places: - get_cached_acl(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart. However this operation is performed under rcu_read_lock(), so this should be fine. - posix_acl_release(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-11-29 19:19:31 +08:00
if (acl && refcount_dec_and_test(&acl->a_refcount))
kfree_rcu(acl, a_rcu);
}
/* posix_acl.c */
extern void posix_acl_init(struct posix_acl *, int);
extern struct posix_acl *posix_acl_alloc(int, gfp_t);
extern int posix_acl_valid(struct user_namespace *, const struct posix_acl *);
extern int posix_acl_permission(struct inode *, const struct posix_acl *, int);
extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t);
extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *);
extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *);
extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t);
extern struct posix_acl *get_posix_acl(struct inode *, int);
extern int set_posix_acl(struct inode *, int, struct posix_acl *);
#ifdef CONFIG_FS_POSIX_ACL
extern int posix_acl_chmod(struct inode *, umode_t);
extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **,
struct posix_acl **);
extern int posix_acl_update_mode(struct inode *, umode_t *, struct posix_acl **);
extern int simple_set_acl(struct inode *, struct posix_acl *, int);
extern int simple_acl_create(struct inode *, struct inode *);
struct posix_acl *get_cached_acl(struct inode *inode, int type);
struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type);
void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl);
void forget_cached_acl(struct inode *inode, int type);
void forget_all_cached_acls(struct inode *inode);
static inline void cache_no_acl(struct inode *inode)
{
inode->i_acl = NULL;
inode->i_default_acl = NULL;
}
#else
static inline int posix_acl_chmod(struct inode *inode, umode_t mode)
{
return 0;
}
#define simple_set_acl NULL
static inline int simple_acl_create(struct inode *dir, struct inode *inode)
{
return 0;
}
static inline void cache_no_acl(struct inode *inode)
{
}
static inline int posix_acl_create(struct inode *inode, umode_t *mode,
struct posix_acl **default_acl, struct posix_acl **acl)
{
*default_acl = *acl = NULL;
return 0;
}
static inline void forget_all_cached_acls(struct inode *inode)
{
}
#endif /* CONFIG_FS_POSIX_ACL */
struct posix_acl *get_acl(struct inode *inode, int type);
#endif /* __LINUX_POSIX_ACL_H */