OpenCloudOS-Kernel/drivers/usb/host/ohci-hcd.c

1292 lines
33 KiB
C
Raw Normal View History

/*
* Open Host Controller Interface (OHCI) driver for USB.
*
* Maintainer: Alan Stern <stern@rowland.harvard.edu>
*
* (C) Copyright 1999 Roman Weissgaerber <weissg@vienna.at>
* (C) Copyright 2000-2004 David Brownell <dbrownell@users.sourceforge.net>
*
* [ Initialisation is based on Linus' ]
* [ uhci code and gregs ohci fragments ]
* [ (C) Copyright 1999 Linus Torvalds ]
* [ (C) Copyright 1999 Gregory P. Smith]
*
*
* OHCI is the main "non-Intel/VIA" standard for USB 1.1 host controller
* interfaces (though some non-x86 Intel chips use it). It supports
* smarter hardware than UHCI. A download link for the spec available
* through the http://www.usb.org website.
*
* This file is licenced under the GPL.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
#include <linux/usb/hcd.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#define DRIVER_AUTHOR "Roman Weissgaerber, David Brownell"
#define DRIVER_DESC "USB 1.1 'Open' Host Controller (OHCI) Driver"
/*-------------------------------------------------------------------------*/
#undef OHCI_VERBOSE_DEBUG /* not always helpful */
/* For initializing controller (mask in an HCFS mode too) */
#define OHCI_CONTROL_INIT OHCI_CTRL_CBSR
#define OHCI_INTR_INIT \
(OHCI_INTR_MIE | OHCI_INTR_RHSC | OHCI_INTR_UE \
| OHCI_INTR_RD | OHCI_INTR_WDH)
#ifdef __hppa__
/* On PA-RISC, PDC can leave IR set incorrectly; ignore it there. */
#define IR_DISABLE
#endif
#ifdef CONFIG_ARCH_OMAP
/* OMAP doesn't support IR (no SMM; not needed) */
#define IR_DISABLE
#endif
/*-------------------------------------------------------------------------*/
static const char hcd_name [] = "ohci_hcd";
#define STATECHANGE_DELAY msecs_to_jiffies(300)
#include "ohci.h"
USB host: Move AMD PLL quirk to pci-quirks.c This patch moves the AMD PLL quirk code in OHCI/EHCI driver to pci-quirks.c, and exports the functions to be used by xHCI driver later. AMD PLL quirk disable the optional PM feature inside specific SB700/SB800/Hudson-2/3 platforms under the following conditions: 1. If an isochronous device is connected to OHCI/EHCI/xHCI port and is active; 2. Optional PM feature that powers down the internal Bus PLL when the link is in low power state is enabled. Without AMD PLL quirk, USB isochronous stream may stutter or have breaks occasionally, which greatly impair the performance of audio/video streams. Currently AMD PLL quirk is implemented in OHCI and EHCI driver, and will be added to xHCI driver too. They are doing similar things actually, so move the quirk code to pci-quirks.c, which has several advantages: 1. Remove duplicate defines and functions in OHCI/EHCI (and xHCI) driver and make them cleaner; 2. AMD chipset information will be probed only once and then stored. Currently they're probed during every OHCI/EHCI initialization, move the detect code to pci-quirks.c saves the repeat detect cost; 3. Build up synchronization among OHCI/EHCI/xHCI driver. In current code, every host controller enable/disable PLL only according to its own status, and may enable PLL while there is still isoc transfer on other HCs. Move the quirk to pci-quirks.c prevents this issue. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Alex He <alex.he@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-03-01 14:57:05 +08:00
#include "pci-quirks.h"
static void ohci_dump (struct ohci_hcd *ohci, int verbose);
static int ohci_init (struct ohci_hcd *ohci);
static void ohci_stop (struct usb_hcd *hcd);
#if defined(CONFIG_PM) || defined(CONFIG_PCI)
static int ohci_restart (struct ohci_hcd *ohci);
#endif
#ifdef CONFIG_PCI
static void sb800_prefetch(struct ohci_hcd *ohci, int on);
#else
static inline void sb800_prefetch(struct ohci_hcd *ohci, int on)
{
return;
}
#endif
#include "ohci-hub.c"
#include "ohci-dbg.c"
#include "ohci-mem.c"
#include "ohci-q.c"
/*
* On architectures with edge-triggered interrupts we must never return
* IRQ_NONE.
*/
#if defined(CONFIG_SA1111) /* ... or other edge-triggered systems */
#define IRQ_NOTMINE IRQ_HANDLED
#else
#define IRQ_NOTMINE IRQ_NONE
#endif
/* Some boards misreport power switching/overcurrent */
static bool distrust_firmware = 1;
module_param (distrust_firmware, bool, 0);
MODULE_PARM_DESC (distrust_firmware,
"true to distrust firmware power/overcurrent setup");
/* Some boards leave IR set wrongly, since they fail BIOS/SMM handshakes */
static bool no_handshake = 0;
module_param (no_handshake, bool, 0);
MODULE_PARM_DESC (no_handshake, "true (not default) disables BIOS handshake");
/*-------------------------------------------------------------------------*/
/*
* queue up an urb for anything except the root hub
*/
static int ohci_urb_enqueue (
struct usb_hcd *hcd,
struct urb *urb,
gfp_t mem_flags
) {
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
struct ed *ed;
urb_priv_t *urb_priv;
unsigned int pipe = urb->pipe;
int i, size = 0;
unsigned long flags;
int retval = 0;
#ifdef OHCI_VERBOSE_DEBUG
urb_print(urb, "SUB", usb_pipein(pipe), -EINPROGRESS);
#endif
/* every endpoint has a ed, locate and maybe (re)initialize it */
if (! (ed = ed_get (ohci, urb->ep, urb->dev, pipe, urb->interval)))
return -ENOMEM;
/* for the private part of the URB we need the number of TDs (size) */
switch (ed->type) {
case PIPE_CONTROL:
/* td_submit_urb() doesn't yet handle these */
if (urb->transfer_buffer_length > 4096)
return -EMSGSIZE;
/* 1 TD for setup, 1 for ACK, plus ... */
size = 2;
/* FALLTHROUGH */
// case PIPE_INTERRUPT:
// case PIPE_BULK:
default:
/* one TD for every 4096 Bytes (can be up to 8K) */
size += urb->transfer_buffer_length / 4096;
/* ... and for any remaining bytes ... */
if ((urb->transfer_buffer_length % 4096) != 0)
size++;
/* ... and maybe a zero length packet to wrap it up */
if (size == 0)
size++;
else if ((urb->transfer_flags & URB_ZERO_PACKET) != 0
&& (urb->transfer_buffer_length
% usb_maxpacket (urb->dev, pipe,
usb_pipeout (pipe))) == 0)
size++;
break;
case PIPE_ISOCHRONOUS: /* number of packets from URB */
size = urb->number_of_packets;
break;
}
/* allocate the private part of the URB */
2007-07-19 16:49:03 +08:00
urb_priv = kzalloc (sizeof (urb_priv_t) + size * sizeof (struct td *),
mem_flags);
if (!urb_priv)
return -ENOMEM;
INIT_LIST_HEAD (&urb_priv->pending);
urb_priv->length = size;
urb_priv->ed = ed;
/* allocate the TDs (deferring hash chain updates) */
for (i = 0; i < size; i++) {
urb_priv->td [i] = td_alloc (ohci, mem_flags);
if (!urb_priv->td [i]) {
urb_priv->length = i;
urb_free_priv (ohci, urb_priv);
return -ENOMEM;
}
}
spin_lock_irqsave (&ohci->lock, flags);
/* don't submit to a dead HC */
if (!HCD_HW_ACCESSIBLE(hcd)) {
retval = -ENODEV;
goto fail;
}
if (ohci->rh_state != OHCI_RH_RUNNING) {
retval = -ENODEV;
goto fail;
}
retval = usb_hcd_link_urb_to_ep(hcd, urb);
if (retval)
goto fail;
/* schedule the ed if needed */
if (ed->state == ED_IDLE) {
retval = ed_schedule (ohci, ed);
if (retval < 0) {
usb_hcd_unlink_urb_from_ep(hcd, urb);
goto fail;
}
if (ed->type == PIPE_ISOCHRONOUS) {
u16 frame = ohci_frame_no(ohci);
/* delay a few frames before the first TD */
frame += max_t (u16, 8, ed->interval);
frame &= ~(ed->interval - 1);
frame |= ed->branch;
urb->start_frame = frame;
/* yes, only URB_ISO_ASAP is supported, and
* urb->start_frame is never used as input.
*/
}
} else if (ed->type == PIPE_ISOCHRONOUS)
urb->start_frame = ed->last_iso + ed->interval;
/* fill the TDs and link them to the ed; and
* enable that part of the schedule, if needed
* and update count of queued periodic urbs
*/
urb->hcpriv = urb_priv;
td_submit_urb (ohci, urb);
fail:
if (retval)
urb_free_priv (ohci, urb_priv);
spin_unlock_irqrestore (&ohci->lock, flags);
return retval;
}
/*
* decouple the URB from the HC queues (TDs, urb_priv).
* reporting is always done
* asynchronously, and we might be dealing with an urb that's
* partially transferred, or an ED with other urbs being unlinked.
*/
static int ohci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
unsigned long flags;
int rc;
#ifdef OHCI_VERBOSE_DEBUG
urb_print(urb, "UNLINK", 1, status);
#endif
spin_lock_irqsave (&ohci->lock, flags);
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (rc) {
; /* Do nothing */
} else if (ohci->rh_state == OHCI_RH_RUNNING) {
urb_priv_t *urb_priv;
/* Unless an IRQ completed the unlink while it was being
* handed to us, flag it for unlink and giveback, and force
* some upcoming INTR_SF to call finish_unlinks()
*/
urb_priv = urb->hcpriv;
if (urb_priv) {
if (urb_priv->ed->state == ED_OPER)
start_ed_unlink (ohci, urb_priv->ed);
}
} else {
/*
* with HC dead, we won't respect hc queue pointers
* any more ... just clean up every urb's memory.
*/
if (urb->hcpriv)
finish_urb(ohci, urb, status);
}
spin_unlock_irqrestore (&ohci->lock, flags);
return rc;
}
/*-------------------------------------------------------------------------*/
/* frees config/altsetting state for endpoints,
* including ED memory, dummy TD, and bulk/intr data toggle
*/
static void
ohci_endpoint_disable (struct usb_hcd *hcd, struct usb_host_endpoint *ep)
{
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
unsigned long flags;
struct ed *ed = ep->hcpriv;
unsigned limit = 1000;
/* ASSERT: any requests/urbs are being unlinked */
/* ASSERT: nobody can be submitting urbs for this any more */
if (!ed)
return;
rescan:
spin_lock_irqsave (&ohci->lock, flags);
if (ohci->rh_state != OHCI_RH_RUNNING) {
sanitize:
ed->state = ED_IDLE;
if (quirk_zfmicro(ohci) && ed->type == PIPE_INTERRUPT)
ohci->eds_scheduled--;
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
finish_unlinks (ohci, 0);
}
switch (ed->state) {
case ED_UNLINK: /* wait for hw to finish? */
/* major IRQ delivery trouble loses INTR_SF too... */
if (limit-- == 0) {
ohci_warn(ohci, "ED unlink timeout\n");
if (quirk_zfmicro(ohci)) {
ohci_warn(ohci, "Attempting ZF TD recovery\n");
ohci->ed_to_check = ed;
ohci->zf_delay = 2;
}
goto sanitize;
}
spin_unlock_irqrestore (&ohci->lock, flags);
schedule_timeout_uninterruptible(1);
goto rescan;
case ED_IDLE: /* fully unlinked */
if (list_empty (&ed->td_list)) {
td_free (ohci, ed->dummy);
ed_free (ohci, ed);
break;
}
/* else FALL THROUGH */
default:
/* caller was supposed to have unlinked any requests;
* that's not our job. can't recover; must leak ed.
*/
ohci_err (ohci, "leak ed %p (#%02x) state %d%s\n",
ed, ep->desc.bEndpointAddress, ed->state,
list_empty (&ed->td_list) ? "" : " (has tds)");
td_free (ohci, ed->dummy);
break;
}
ep->hcpriv = NULL;
spin_unlock_irqrestore (&ohci->lock, flags);
}
static int ohci_get_frame (struct usb_hcd *hcd)
{
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
return ohci_frame_no(ohci);
}
static void ohci_usb_reset (struct ohci_hcd *ohci)
{
ohci->hc_control = ohci_readl (ohci, &ohci->regs->control);
ohci->hc_control &= OHCI_CTRL_RWC;
ohci_writel (ohci, ohci->hc_control, &ohci->regs->control);
ohci->rh_state = OHCI_RH_HALTED;
}
/* ohci_shutdown forcibly disables IRQs and DMA, helping kexec and
* other cases where the next software may expect clean state from the
* "firmware". this is bus-neutral, unlike shutdown() methods.
*/
static void
ohci_shutdown (struct usb_hcd *hcd)
{
struct ohci_hcd *ohci;
ohci = hcd_to_ohci (hcd);
ohci_writel(ohci, (u32) ~0, &ohci->regs->intrdisable);
OHCI: work around for nVidia shutdown problem This patch (as1417) fixes a problem affecting some (or all) nVidia chipsets. When the computer is shut down, the OHCI controllers continue to power the USB buses and evidently they drive a Reset signal out all their ports. This prevents attached devices from going to low power. Mouse LEDs stay on, for example, which is disconcerting for users and a drain on laptop batteries. The fix involves leaving each OHCI controller in the OPERATIONAL state during system shutdown rather than putting it in the RESET state. Although this nominally means the controller is running, in fact it's not doing very much since all the schedules are all disabled. However there is ongoing DMA to the Host Controller Communications Area, so the patch also disables the bus-master capability of all PCI USB controllers after the shutdown routine runs. The fix is applied only to nVidia-based PCI OHCI controllers, so it shouldn't cause problems on systems using other hardware. As an added safety measure, in case the kernel encounters one of these running controllers during boot, the patch changes quirk_usb_handoff_ohci() (which runs early on during PCI discovery) to reset the controller before anything bad can happen. Reported-by: Pali Rohár <pali.rohar@gmail.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> CC: David Brownell <david-b@pacbell.net> Tested-by: Pali Rohár <pali.rohar@gmail.com> CC: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-09-11 04:37:05 +08:00
/* Software reset, after which the controller goes into SUSPEND */
ohci_writel(ohci, OHCI_HCR, &ohci->regs->cmdstatus);
ohci_readl(ohci, &ohci->regs->cmdstatus); /* flush the writes */
udelay(10);
OHCI: work around for nVidia shutdown problem This patch (as1417) fixes a problem affecting some (or all) nVidia chipsets. When the computer is shut down, the OHCI controllers continue to power the USB buses and evidently they drive a Reset signal out all their ports. This prevents attached devices from going to low power. Mouse LEDs stay on, for example, which is disconcerting for users and a drain on laptop batteries. The fix involves leaving each OHCI controller in the OPERATIONAL state during system shutdown rather than putting it in the RESET state. Although this nominally means the controller is running, in fact it's not doing very much since all the schedules are all disabled. However there is ongoing DMA to the Host Controller Communications Area, so the patch also disables the bus-master capability of all PCI USB controllers after the shutdown routine runs. The fix is applied only to nVidia-based PCI OHCI controllers, so it shouldn't cause problems on systems using other hardware. As an added safety measure, in case the kernel encounters one of these running controllers during boot, the patch changes quirk_usb_handoff_ohci() (which runs early on during PCI discovery) to reset the controller before anything bad can happen. Reported-by: Pali Rohár <pali.rohar@gmail.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> CC: David Brownell <david-b@pacbell.net> Tested-by: Pali Rohár <pali.rohar@gmail.com> CC: stable <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-09-11 04:37:05 +08:00
ohci_writel(ohci, ohci->fminterval, &ohci->regs->fminterval);
}
static int check_ed(struct ohci_hcd *ohci, struct ed *ed)
{
return (hc32_to_cpu(ohci, ed->hwINFO) & ED_IN) != 0
&& (hc32_to_cpu(ohci, ed->hwHeadP) & TD_MASK)
== (hc32_to_cpu(ohci, ed->hwTailP) & TD_MASK)
&& !list_empty(&ed->td_list);
}
/* ZF Micro watchdog timer callback. The ZF Micro chipset sometimes completes
* an interrupt TD but neglects to add it to the donelist. On systems with
* this chipset, we need to periodically check the state of the queues to look
* for such "lost" TDs.
*/
static void unlink_watchdog_func(unsigned long _ohci)
{
unsigned long flags;
unsigned max;
unsigned seen_count = 0;
unsigned i;
struct ed **seen = NULL;
struct ohci_hcd *ohci = (struct ohci_hcd *) _ohci;
spin_lock_irqsave(&ohci->lock, flags);
max = ohci->eds_scheduled;
if (!max)
goto done;
if (ohci->ed_to_check)
goto out;
seen = kcalloc(max, sizeof *seen, GFP_ATOMIC);
if (!seen)
goto out;
for (i = 0; i < NUM_INTS; i++) {
struct ed *ed = ohci->periodic[i];
while (ed) {
unsigned temp;
/* scan this branch of the periodic schedule tree */
for (temp = 0; temp < seen_count; temp++) {
if (seen[temp] == ed) {
/* we've checked it and what's after */
ed = NULL;
break;
}
}
if (!ed)
break;
seen[seen_count++] = ed;
if (!check_ed(ohci, ed)) {
ed = ed->ed_next;
continue;
}
/* HC's TD list is empty, but HCD sees at least one
* TD that's not been sent through the donelist.
*/
ohci->ed_to_check = ed;
ohci->zf_delay = 2;
/* The HC may wait until the next frame to report the
* TD as done through the donelist and INTR_WDH. (We
* just *assume* it's not a multi-TD interrupt URB;
* those could defer the IRQ more than one frame, using
* DI...) Check again after the next INTR_SF.
*/
ohci_writel(ohci, OHCI_INTR_SF,
&ohci->regs->intrstatus);
ohci_writel(ohci, OHCI_INTR_SF,
&ohci->regs->intrenable);
/* flush those writes */
(void) ohci_readl(ohci, &ohci->regs->control);
goto out;
}
}
out:
kfree(seen);
if (ohci->eds_scheduled)
mod_timer(&ohci->unlink_watchdog, round_jiffies(jiffies + HZ));
done:
spin_unlock_irqrestore(&ohci->lock, flags);
}
/*-------------------------------------------------------------------------*
* HC functions
*-------------------------------------------------------------------------*/
/* init memory, and kick BIOS/SMM off */
static int ohci_init (struct ohci_hcd *ohci)
{
int ret;
struct usb_hcd *hcd = ohci_to_hcd(ohci);
if (distrust_firmware)
ohci->flags |= OHCI_QUIRK_HUB_POWER;
ohci->rh_state = OHCI_RH_HALTED;
ohci->regs = hcd->regs;
/* REVISIT this BIOS handshake is now moved into PCI "quirks", and
* was never needed for most non-PCI systems ... remove the code?
*/
#ifndef IR_DISABLE
/* SMM owns the HC? not for long! */
if (!no_handshake && ohci_readl (ohci,
&ohci->regs->control) & OHCI_CTRL_IR) {
u32 temp;
ohci_dbg (ohci, "USB HC TakeOver from BIOS/SMM\n");
/* this timeout is arbitrary. we make it long, so systems
* depending on usb keyboards may be usable even if the
* BIOS/SMM code seems pretty broken.
*/
temp = 500; /* arbitrary: five seconds */
ohci_writel (ohci, OHCI_INTR_OC, &ohci->regs->intrenable);
ohci_writel (ohci, OHCI_OCR, &ohci->regs->cmdstatus);
while (ohci_readl (ohci, &ohci->regs->control) & OHCI_CTRL_IR) {
msleep (10);
if (--temp == 0) {
ohci_err (ohci, "USB HC takeover failed!"
" (BIOS/SMM bug)\n");
return -EBUSY;
}
}
ohci_usb_reset (ohci);
}
#endif
/* Disable HC interrupts */
ohci_writel (ohci, OHCI_INTR_MIE, &ohci->regs->intrdisable);
/* flush the writes, and save key bits like RWC */
if (ohci_readl (ohci, &ohci->regs->control) & OHCI_CTRL_RWC)
ohci->hc_control |= OHCI_CTRL_RWC;
/* Read the number of ports unless overridden */
if (ohci->num_ports == 0)
ohci->num_ports = roothub_a(ohci) & RH_A_NDP;
if (ohci->hcca)
return 0;
ohci->hcca = dma_alloc_coherent (hcd->self.controller,
sizeof *ohci->hcca, &ohci->hcca_dma, 0);
if (!ohci->hcca)
return -ENOMEM;
if ((ret = ohci_mem_init (ohci)) < 0)
ohci_stop (hcd);
else {
create_debug_files (ohci);
}
return ret;
}
/*-------------------------------------------------------------------------*/
/* Start an OHCI controller, set the BUS operational
* resets USB and controller
* enable interrupts
*/
static int ohci_run (struct ohci_hcd *ohci)
{
u32 mask, val;
int first = ohci->fminterval == 0;
struct usb_hcd *hcd = ohci_to_hcd(ohci);
ohci->rh_state = OHCI_RH_HALTED;
/* boot firmware should have set this up (5.1.1.3.1) */
if (first) {
val = ohci_readl (ohci, &ohci->regs->fminterval);
ohci->fminterval = val & 0x3fff;
if (ohci->fminterval != FI)
ohci_dbg (ohci, "fminterval delta %d\n",
ohci->fminterval - FI);
ohci->fminterval |= FSMP (ohci->fminterval) << 16;
/* also: power/overcurrent flags in roothub.a */
}
/* Reset USB nearly "by the book". RemoteWakeupConnected has
* to be checked in case boot firmware (BIOS/SMM/...) has set up
* wakeup in a way the bus isn't aware of (e.g., legacy PCI PM).
* If the bus glue detected wakeup capability then it should
* already be enabled; if so we'll just enable it again.
*/
if ((ohci->hc_control & OHCI_CTRL_RWC) != 0)
device_set_wakeup_capable(hcd->self.controller, 1);
switch (ohci->hc_control & OHCI_CTRL_HCFS) {
case OHCI_USB_OPER:
val = 0;
break;
case OHCI_USB_SUSPEND:
case OHCI_USB_RESUME:
ohci->hc_control &= OHCI_CTRL_RWC;
ohci->hc_control |= OHCI_USB_RESUME;
val = 10 /* msec wait */;
break;
// case OHCI_USB_RESET:
default:
ohci->hc_control &= OHCI_CTRL_RWC;
ohci->hc_control |= OHCI_USB_RESET;
val = 50 /* msec wait */;
break;
}
ohci_writel (ohci, ohci->hc_control, &ohci->regs->control);
// flush the writes
(void) ohci_readl (ohci, &ohci->regs->control);
msleep(val);
memset (ohci->hcca, 0, sizeof (struct ohci_hcca));
/* 2msec timelimit here means no irqs/preempt */
spin_lock_irq (&ohci->lock);
retry:
/* HC Reset requires max 10 us delay */
ohci_writel (ohci, OHCI_HCR, &ohci->regs->cmdstatus);
val = 30; /* ... allow extra time */
while ((ohci_readl (ohci, &ohci->regs->cmdstatus) & OHCI_HCR) != 0) {
if (--val == 0) {
spin_unlock_irq (&ohci->lock);
ohci_err (ohci, "USB HC reset timed out!\n");
return -1;
}
udelay (1);
}
/* now we're in the SUSPEND state ... must go OPERATIONAL
* within 2msec else HC enters RESUME
*
* ... but some hardware won't init fmInterval "by the book"
* (SiS, OPTi ...), so reset again instead. SiS doesn't need
* this if we write fmInterval after we're OPERATIONAL.
* Unclear about ALi, ServerWorks, and others ... this could
* easily be a longstanding bug in chip init on Linux.
*/
if (ohci->flags & OHCI_QUIRK_INITRESET) {
ohci_writel (ohci, ohci->hc_control, &ohci->regs->control);
// flush those writes
(void) ohci_readl (ohci, &ohci->regs->control);
}
/* Tell the controller where the control and bulk lists are
* The lists are empty now. */
ohci_writel (ohci, 0, &ohci->regs->ed_controlhead);
ohci_writel (ohci, 0, &ohci->regs->ed_bulkhead);
/* a reset clears this */
ohci_writel (ohci, (u32) ohci->hcca_dma, &ohci->regs->hcca);
periodic_reinit (ohci);
/* some OHCI implementations are finicky about how they init.
* bogus values here mean not even enumeration could work.
*/
if ((ohci_readl (ohci, &ohci->regs->fminterval) & 0x3fff0000) == 0
|| !ohci_readl (ohci, &ohci->regs->periodicstart)) {
if (!(ohci->flags & OHCI_QUIRK_INITRESET)) {
ohci->flags |= OHCI_QUIRK_INITRESET;
ohci_dbg (ohci, "enabling initreset quirk\n");
goto retry;
}
spin_unlock_irq (&ohci->lock);
ohci_err (ohci, "init err (%08x %04x)\n",
ohci_readl (ohci, &ohci->regs->fminterval),
ohci_readl (ohci, &ohci->regs->periodicstart));
return -EOVERFLOW;
}
/* use rhsc irqs after khubd is fully initialized */
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
hcd->uses_new_polling = 1;
/* start controller operations */
ohci->hc_control &= OHCI_CTRL_RWC;
ohci->hc_control |= OHCI_CONTROL_INIT | OHCI_USB_OPER;
ohci_writel (ohci, ohci->hc_control, &ohci->regs->control);
ohci->rh_state = OHCI_RH_RUNNING;
/* wake on ConnectStatusChange, matching external hubs */
ohci_writel (ohci, RH_HS_DRWE, &ohci->regs->roothub.status);
/* Choose the interrupts we care about now, others later on demand */
mask = OHCI_INTR_INIT;
ohci_writel (ohci, ~0, &ohci->regs->intrstatus);
ohci_writel (ohci, mask, &ohci->regs->intrenable);
/* handle root hub init quirks ... */
val = roothub_a (ohci);
val &= ~(RH_A_PSM | RH_A_OCPM);
if (ohci->flags & OHCI_QUIRK_SUPERIO) {
/* NSC 87560 and maybe others */
val |= RH_A_NOCP;
val &= ~(RH_A_POTPGT | RH_A_NPS);
ohci_writel (ohci, val, &ohci->regs->roothub.a);
} else if ((ohci->flags & OHCI_QUIRK_AMD756) ||
(ohci->flags & OHCI_QUIRK_HUB_POWER)) {
/* hub power always on; required for AMD-756 and some
* Mac platforms. ganged overcurrent reporting, if any.
*/
val |= RH_A_NPS;
ohci_writel (ohci, val, &ohci->regs->roothub.a);
}
ohci_writel (ohci, RH_HS_LPSC, &ohci->regs->roothub.status);
ohci_writel (ohci, (val & RH_A_NPS) ? 0 : RH_B_PPCM,
&ohci->regs->roothub.b);
// flush those writes
(void) ohci_readl (ohci, &ohci->regs->control);
ohci->next_statechange = jiffies + STATECHANGE_DELAY;
spin_unlock_irq (&ohci->lock);
// POTPGT delay is bits 24-31, in 2 ms units.
mdelay ((val >> 23) & 0x1fe);
if (quirk_zfmicro(ohci)) {
/* Create timer to watch for bad queue state on ZF Micro */
setup_timer(&ohci->unlink_watchdog, unlink_watchdog_func,
(unsigned long) ohci);
ohci->eds_scheduled = 0;
ohci->ed_to_check = NULL;
}
ohci_dump (ohci, 1);
return 0;
}
/*-------------------------------------------------------------------------*/
/* an interrupt happens */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t ohci_irq (struct usb_hcd *hcd)
{
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
struct ohci_regs __iomem *regs = ohci->regs;
int ints;
/* Read interrupt status (and flush pending writes). We ignore the
* optimization of checking the LSB of hcca->done_head; it doesn't
* work on all systems (edge triggering for OHCI can be a factor).
*/
ints = ohci_readl(ohci, &regs->intrstatus);
/* Check for an all 1's result which is a typical consequence
* of dead, unclocked, or unplugged (CardBus...) devices
*/
if (ints == ~(u32)0) {
ohci->rh_state = OHCI_RH_HALTED;
ohci_dbg (ohci, "device removed!\n");
USB: remove remaining usages of hcd->state from usbcore and fix regression This patch (as1467) removes the last usages of hcd->state from usbcore. We no longer check to see if an interrupt handler finds that a controller has died; instead we rely on host controller drivers to make an explicit call to usb_hc_died(). This fixes a regression introduced by commit 9b37596a2e860404503a3f2a6513db60c296bfdc (USB: move usbcore away from hcd->state). It used to be that when a controller shared an IRQ with another device and an interrupt arrived while hcd->state was set to HC_STATE_HALT, the interrupt handler would be skipped. The commit removed that test; as a result the current code doesn't skip calling the handler and ends up believing the controller has died, even though it's only temporarily stopped. The solution is to ignore HC_STATE_HALT following the handler's return. As a consequence of this change, several of the host controller drivers need to be modified. They can no longer implicitly rely on usbcore realizing that a controller has died because of hcd->state. The patch adds calls to usb_hc_died() in the appropriate places. The patch also changes a few of the interrupt handlers. They don't expect to be called when hcd->state is equal to HC_STATE_HALT, even if the controller is still alive. Early returns were added to avoid any confusion. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Tested-by: Manuel Lauss <manuel.lauss@googlemail.com> CC: Rodolfo Giometti <giometti@linux.it> CC: Olav Kongas <ok@artecdesign.ee> CC: <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-18 05:27:12 +08:00
usb_hc_died(hcd);
return IRQ_HANDLED;
}
/* We only care about interrupts that are enabled */
ints &= ohci_readl(ohci, &regs->intrenable);
/* interrupt for some other device? */
if (ints == 0 || unlikely(ohci->rh_state == OHCI_RH_HALTED))
return IRQ_NOTMINE;
if (ints & OHCI_INTR_UE) {
// e.g. due to PCI Master/Target Abort
if (quirk_nec(ohci)) {
/* Workaround for a silicon bug in some NEC chips used
* in Apple's PowerBooks. Adapted from Darwin code.
*/
ohci_err (ohci, "OHCI Unrecoverable Error, scheduling NEC chip restart\n");
ohci_writel (ohci, OHCI_INTR_UE, &regs->intrdisable);
schedule_work (&ohci->nec_work);
} else {
ohci_err (ohci, "OHCI Unrecoverable Error, disabled\n");
ohci->rh_state = OHCI_RH_HALTED;
USB: remove remaining usages of hcd->state from usbcore and fix regression This patch (as1467) removes the last usages of hcd->state from usbcore. We no longer check to see if an interrupt handler finds that a controller has died; instead we rely on host controller drivers to make an explicit call to usb_hc_died(). This fixes a regression introduced by commit 9b37596a2e860404503a3f2a6513db60c296bfdc (USB: move usbcore away from hcd->state). It used to be that when a controller shared an IRQ with another device and an interrupt arrived while hcd->state was set to HC_STATE_HALT, the interrupt handler would be skipped. The commit removed that test; as a result the current code doesn't skip calling the handler and ends up believing the controller has died, even though it's only temporarily stopped. The solution is to ignore HC_STATE_HALT following the handler's return. As a consequence of this change, several of the host controller drivers need to be modified. They can no longer implicitly rely on usbcore realizing that a controller has died because of hcd->state. The patch adds calls to usb_hc_died() in the appropriate places. The patch also changes a few of the interrupt handlers. They don't expect to be called when hcd->state is equal to HC_STATE_HALT, even if the controller is still alive. Early returns were added to avoid any confusion. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Tested-by: Manuel Lauss <manuel.lauss@googlemail.com> CC: Rodolfo Giometti <giometti@linux.it> CC: Olav Kongas <ok@artecdesign.ee> CC: <stable@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-18 05:27:12 +08:00
usb_hc_died(hcd);
}
ohci_dump (ohci, 1);
ohci_usb_reset (ohci);
}
if (ints & OHCI_INTR_RHSC) {
ohci_vdbg(ohci, "rhsc\n");
ohci->next_statechange = jiffies + STATECHANGE_DELAY;
ohci_writel(ohci, OHCI_INTR_RD | OHCI_INTR_RHSC,
&regs->intrstatus);
/* NOTE: Vendors didn't always make the same implementation
* choices for RHSC. Many followed the spec; RHSC triggers
* on an edge, like setting and maybe clearing a port status
* change bit. With others it's level-triggered, active
* until khubd clears all the port status change bits. We'll
* always disable it here and rely on polling until khubd
* re-enables it.
*/
ohci_writel(ohci, OHCI_INTR_RHSC, &regs->intrdisable);
usb_hcd_poll_rh_status(hcd);
}
/* For connect and disconnect events, we expect the controller
* to turn on RHSC along with RD. But for remote wakeup events
* this might not happen.
*/
else if (ints & OHCI_INTR_RD) {
ohci_vdbg(ohci, "resume detect\n");
ohci_writel(ohci, OHCI_INTR_RD, &regs->intrstatus);
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
if (ohci->autostop) {
spin_lock (&ohci->lock);
ohci_rh_resume (ohci);
spin_unlock (&ohci->lock);
} else
usb_hcd_resume_root_hub(hcd);
}
if (ints & OHCI_INTR_WDH) {
spin_lock (&ohci->lock);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
dl_done_list (ohci);
spin_unlock (&ohci->lock);
}
if (quirk_zfmicro(ohci) && (ints & OHCI_INTR_SF)) {
spin_lock(&ohci->lock);
if (ohci->ed_to_check) {
struct ed *ed = ohci->ed_to_check;
if (check_ed(ohci, ed)) {
/* HC thinks the TD list is empty; HCD knows
* at least one TD is outstanding
*/
if (--ohci->zf_delay == 0) {
struct td *td = list_entry(
ed->td_list.next,
struct td, td_list);
ohci_warn(ohci,
"Reclaiming orphan TD %p\n",
td);
takeback_td(ohci, td);
ohci->ed_to_check = NULL;
}
} else
ohci->ed_to_check = NULL;
}
spin_unlock(&ohci->lock);
}
/* could track INTR_SO to reduce available PCI/... bandwidth */
/* handle any pending URB/ED unlinks, leaving INTR_SF enabled
* when there's still unlinking to be done (next frame).
*/
spin_lock (&ohci->lock);
if (ohci->ed_rm_list)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
finish_unlinks (ohci, ohci_frame_no(ohci));
if ((ints & OHCI_INTR_SF) != 0
&& !ohci->ed_rm_list
&& !ohci->ed_to_check
&& ohci->rh_state == OHCI_RH_RUNNING)
ohci_writel (ohci, OHCI_INTR_SF, &regs->intrdisable);
spin_unlock (&ohci->lock);
if (ohci->rh_state == OHCI_RH_RUNNING) {
ohci_writel (ohci, ints, &regs->intrstatus);
ohci_writel (ohci, OHCI_INTR_MIE, &regs->intrenable);
// flush those writes
(void) ohci_readl (ohci, &ohci->regs->control);
}
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static void ohci_stop (struct usb_hcd *hcd)
{
struct ohci_hcd *ohci = hcd_to_ohci (hcd);
ohci_dump (ohci, 1);
if (quirk_nec(ohci))
flush_work_sync(&ohci->nec_work);
ohci_usb_reset (ohci);
ohci_writel (ohci, OHCI_INTR_MIE, &ohci->regs->intrdisable);
free_irq(hcd->irq, hcd);
hcd->irq = 0;
if (quirk_zfmicro(ohci))
del_timer(&ohci->unlink_watchdog);
if (quirk_amdiso(ohci))
USB host: Move AMD PLL quirk to pci-quirks.c This patch moves the AMD PLL quirk code in OHCI/EHCI driver to pci-quirks.c, and exports the functions to be used by xHCI driver later. AMD PLL quirk disable the optional PM feature inside specific SB700/SB800/Hudson-2/3 platforms under the following conditions: 1. If an isochronous device is connected to OHCI/EHCI/xHCI port and is active; 2. Optional PM feature that powers down the internal Bus PLL when the link is in low power state is enabled. Without AMD PLL quirk, USB isochronous stream may stutter or have breaks occasionally, which greatly impair the performance of audio/video streams. Currently AMD PLL quirk is implemented in OHCI and EHCI driver, and will be added to xHCI driver too. They are doing similar things actually, so move the quirk code to pci-quirks.c, which has several advantages: 1. Remove duplicate defines and functions in OHCI/EHCI (and xHCI) driver and make them cleaner; 2. AMD chipset information will be probed only once and then stored. Currently they're probed during every OHCI/EHCI initialization, move the detect code to pci-quirks.c saves the repeat detect cost; 3. Build up synchronization among OHCI/EHCI/xHCI driver. In current code, every host controller enable/disable PLL only according to its own status, and may enable PLL while there is still isoc transfer on other HCs. Move the quirk to pci-quirks.c prevents this issue. Signed-off-by: Andiry Xu <andiry.xu@amd.com> Cc: David Brownell <dbrownell@users.sourceforge.net> Cc: Alex He <alex.he@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-03-01 14:57:05 +08:00
usb_amd_dev_put();
remove_debug_files (ohci);
ohci_mem_cleanup (ohci);
if (ohci->hcca) {
dma_free_coherent (hcd->self.controller,
sizeof *ohci->hcca,
ohci->hcca, ohci->hcca_dma);
ohci->hcca = NULL;
ohci->hcca_dma = 0;
}
}
/*-------------------------------------------------------------------------*/
#if defined(CONFIG_PM) || defined(CONFIG_PCI)
/* must not be called from interrupt context */
static int ohci_restart (struct ohci_hcd *ohci)
{
int temp;
int i;
struct urb_priv *priv;
spin_lock_irq(&ohci->lock);
ohci->rh_state = OHCI_RH_HALTED;
/* Recycle any "live" eds/tds (and urbs). */
if (!list_empty (&ohci->pending))
ohci_dbg(ohci, "abort schedule...\n");
list_for_each_entry (priv, &ohci->pending, pending) {
struct urb *urb = priv->td[0]->urb;
struct ed *ed = priv->ed;
switch (ed->state) {
case ED_OPER:
ed->state = ED_UNLINK;
ed->hwINFO |= cpu_to_hc32(ohci, ED_DEQUEUE);
ed_deschedule (ohci, ed);
ed->ed_next = ohci->ed_rm_list;
ed->ed_prev = NULL;
ohci->ed_rm_list = ed;
/* FALLTHROUGH */
case ED_UNLINK:
break;
default:
ohci_dbg(ohci, "bogus ed %p state %d\n",
ed, ed->state);
}
if (!urb->unlinked)
urb->unlinked = -ESHUTDOWN;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
finish_unlinks (ohci, 0);
spin_unlock_irq(&ohci->lock);
/* paranoia, in case that didn't work: */
/* empty the interrupt branches */
for (i = 0; i < NUM_INTS; i++) ohci->load [i] = 0;
for (i = 0; i < NUM_INTS; i++) ohci->hcca->int_table [i] = 0;
/* no EDs to remove */
ohci->ed_rm_list = NULL;
/* empty control and bulk lists */
ohci->ed_controltail = NULL;
ohci->ed_bulktail = NULL;
if ((temp = ohci_run (ohci)) < 0) {
ohci_err (ohci, "can't restart, %d\n", temp);
return temp;
}
ohci_dbg(ohci, "restart complete\n");
return 0;
}
#endif
/*-------------------------------------------------------------------------*/
MODULE_AUTHOR (DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE ("GPL");
#ifdef CONFIG_PCI
#include "ohci-pci.c"
#define PCI_DRIVER ohci_pci_driver
#endif
#if defined(CONFIG_ARCH_SA1100) && defined(CONFIG_SA1111)
#include "ohci-sa1111.c"
#define SA1111_DRIVER ohci_hcd_sa1111_driver
#endif
#if defined(CONFIG_ARCH_S3C24XX) || defined(CONFIG_ARCH_S3C64XX)
#include "ohci-s3c2410.c"
#define PLATFORM_DRIVER ohci_hcd_s3c2410_driver
#endif
#ifdef CONFIG_USB_OHCI_EXYNOS
#include "ohci-exynos.c"
#define PLATFORM_DRIVER exynos_ohci_driver
#endif
#ifdef CONFIG_USB_OHCI_HCD_OMAP1
#include "ohci-omap.c"
#define OMAP1_PLATFORM_DRIVER ohci_hcd_omap_driver
#endif
#ifdef CONFIG_USB_OHCI_HCD_OMAP3
#include "ohci-omap3.c"
#define OMAP3_PLATFORM_DRIVER ohci_hcd_omap3_driver
#endif
#if defined(CONFIG_PXA27x) || defined(CONFIG_PXA3xx)
#include "ohci-pxa27x.c"
#define PLATFORM_DRIVER ohci_hcd_pxa27x_driver
#endif
#ifdef CONFIG_ARCH_EP93XX
#include "ohci-ep93xx.c"
#define PLATFORM_DRIVER ohci_hcd_ep93xx_driver
#endif
#ifdef CONFIG_MIPS_ALCHEMY
#include "ohci-au1xxx.c"
#define PLATFORM_DRIVER ohci_hcd_au1xxx_driver
#endif
#ifdef CONFIG_PNX8550
#include "ohci-pnx8550.c"
#define PLATFORM_DRIVER ohci_hcd_pnx8550_driver
#endif
#ifdef CONFIG_USB_OHCI_HCD_PPC_SOC
#include "ohci-ppc-soc.c"
#define PLATFORM_DRIVER ohci_hcd_ppc_soc_driver
#endif
#ifdef CONFIG_ARCH_AT91
#include "ohci-at91.c"
#define PLATFORM_DRIVER ohci_hcd_at91_driver
#endif
#if defined(CONFIG_ARCH_PNX4008) || defined(CONFIG_ARCH_LPC32XX)
#include "ohci-nxp.c"
#define PLATFORM_DRIVER usb_hcd_nxp_driver
#endif
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#include "ohci-da8xx.c"
#define PLATFORM_DRIVER ohci_hcd_da8xx_driver
#endif
#ifdef CONFIG_USB_OHCI_SH
#include "ohci-sh.c"
#define PLATFORM_DRIVER ohci_hcd_sh_driver
#endif
#ifdef CONFIG_USB_OHCI_HCD_PPC_OF
#include "ohci-ppc-of.c"
#define OF_PLATFORM_DRIVER ohci_hcd_ppc_of_driver
#endif
#ifdef CONFIG_PLAT_SPEAR
#include "ohci-spear.c"
#define PLATFORM_DRIVER spear_ohci_hcd_driver
#endif
#ifdef CONFIG_PPC_PS3
#include "ohci-ps3.c"
#define PS3_SYSTEM_BUS_DRIVER ps3_ohci_driver
#endif
#ifdef CONFIG_MFD_SM501
#include "ohci-sm501.c"
#define SM501_OHCI_DRIVER ohci_hcd_sm501_driver
#endif
#ifdef CONFIG_MFD_TC6393XB
#include "ohci-tmio.c"
#define TMIO_OHCI_DRIVER ohci_hcd_tmio_driver
#endif
#ifdef CONFIG_MACH_JZ4740
#include "ohci-jz4740.c"
#define PLATFORM_DRIVER ohci_hcd_jz4740_driver
#endif
#ifdef CONFIG_USB_OCTEON_OHCI
#include "ohci-octeon.c"
#define PLATFORM_DRIVER ohci_octeon_driver
#endif
#ifdef CONFIG_TILE_USB
#include "ohci-tilegx.c"
#define PLATFORM_DRIVER ohci_hcd_tilegx_driver
#endif
#ifdef CONFIG_USB_CNS3XXX_OHCI
#include "ohci-cns3xxx.c"
#define PLATFORM_DRIVER ohci_hcd_cns3xxx_driver
#endif
#ifdef CONFIG_CPU_XLR
#include "ohci-xls.c"
#define PLATFORM_DRIVER ohci_xls_driver
#endif
#ifdef CONFIG_USB_OHCI_HCD_PLATFORM
#include "ohci-platform.c"
#define PLATFORM_DRIVER ohci_platform_driver
#endif
#if !defined(PCI_DRIVER) && \
!defined(PLATFORM_DRIVER) && \
!defined(OMAP1_PLATFORM_DRIVER) && \
!defined(OMAP3_PLATFORM_DRIVER) && \
!defined(OF_PLATFORM_DRIVER) && \
!defined(SA1111_DRIVER) && \
!defined(PS3_SYSTEM_BUS_DRIVER) && \
!defined(SM501_OHCI_DRIVER) && \
!defined(TMIO_OHCI_DRIVER)
#error "missing bus glue for ohci-hcd"
#endif
static int __init ohci_hcd_mod_init(void)
{
int retval = 0;
if (usb_disabled())
return -ENODEV;
printk(KERN_INFO "%s: " DRIVER_DESC "\n", hcd_name);
pr_debug ("%s: block sizes: ed %Zd td %Zd\n", hcd_name,
sizeof (struct ed), sizeof (struct td));
set_bit(USB_OHCI_LOADED, &usb_hcds_loaded);
#ifdef DEBUG
ohci_debug_root = debugfs_create_dir("ohci", usb_debug_root);
if (!ohci_debug_root) {
retval = -ENOENT;
goto error_debug;
}
#endif
#ifdef PS3_SYSTEM_BUS_DRIVER
retval = ps3_ohci_driver_register(&PS3_SYSTEM_BUS_DRIVER);
if (retval < 0)
goto error_ps3;
#endif
#ifdef PLATFORM_DRIVER
retval = platform_driver_register(&PLATFORM_DRIVER);
if (retval < 0)
goto error_platform;
#endif
#ifdef OMAP1_PLATFORM_DRIVER
retval = platform_driver_register(&OMAP1_PLATFORM_DRIVER);
if (retval < 0)
goto error_omap1_platform;
#endif
#ifdef OMAP3_PLATFORM_DRIVER
retval = platform_driver_register(&OMAP3_PLATFORM_DRIVER);
if (retval < 0)
goto error_omap3_platform;
#endif
#ifdef OF_PLATFORM_DRIVER
retval = platform_driver_register(&OF_PLATFORM_DRIVER);
if (retval < 0)
goto error_of_platform;
#endif
#ifdef SA1111_DRIVER
retval = sa1111_driver_register(&SA1111_DRIVER);
if (retval < 0)
goto error_sa1111;
#endif
#ifdef PCI_DRIVER
retval = pci_register_driver(&PCI_DRIVER);
if (retval < 0)
goto error_pci;
#endif
#ifdef SM501_OHCI_DRIVER
retval = platform_driver_register(&SM501_OHCI_DRIVER);
if (retval < 0)
goto error_sm501;
#endif
#ifdef TMIO_OHCI_DRIVER
retval = platform_driver_register(&TMIO_OHCI_DRIVER);
if (retval < 0)
goto error_tmio;
#endif
return retval;
/* Error path */
#ifdef TMIO_OHCI_DRIVER
platform_driver_unregister(&TMIO_OHCI_DRIVER);
error_tmio:
#endif
#ifdef SM501_OHCI_DRIVER
platform_driver_unregister(&SM501_OHCI_DRIVER);
error_sm501:
#endif
#ifdef PCI_DRIVER
pci_unregister_driver(&PCI_DRIVER);
error_pci:
#endif
#ifdef SA1111_DRIVER
sa1111_driver_unregister(&SA1111_DRIVER);
error_sa1111:
#endif
#ifdef OF_PLATFORM_DRIVER
platform_driver_unregister(&OF_PLATFORM_DRIVER);
error_of_platform:
#endif
#ifdef PLATFORM_DRIVER
platform_driver_unregister(&PLATFORM_DRIVER);
error_platform:
#endif
#ifdef OMAP1_PLATFORM_DRIVER
platform_driver_unregister(&OMAP1_PLATFORM_DRIVER);
error_omap1_platform:
#endif
#ifdef OMAP3_PLATFORM_DRIVER
platform_driver_unregister(&OMAP3_PLATFORM_DRIVER);
error_omap3_platform:
#endif
#ifdef PS3_SYSTEM_BUS_DRIVER
ps3_ohci_driver_unregister(&PS3_SYSTEM_BUS_DRIVER);
error_ps3:
#endif
#ifdef DEBUG
debugfs_remove(ohci_debug_root);
ohci_debug_root = NULL;
error_debug:
#endif
clear_bit(USB_OHCI_LOADED, &usb_hcds_loaded);
return retval;
}
module_init(ohci_hcd_mod_init);
static void __exit ohci_hcd_mod_exit(void)
{
#ifdef TMIO_OHCI_DRIVER
platform_driver_unregister(&TMIO_OHCI_DRIVER);
#endif
#ifdef SM501_OHCI_DRIVER
platform_driver_unregister(&SM501_OHCI_DRIVER);
#endif
#ifdef PCI_DRIVER
pci_unregister_driver(&PCI_DRIVER);
#endif
#ifdef SA1111_DRIVER
sa1111_driver_unregister(&SA1111_DRIVER);
#endif
#ifdef OF_PLATFORM_DRIVER
platform_driver_unregister(&OF_PLATFORM_DRIVER);
#endif
#ifdef PLATFORM_DRIVER
platform_driver_unregister(&PLATFORM_DRIVER);
#endif
#ifdef OMAP3_PLATFORM_DRIVER
platform_driver_unregister(&OMAP3_PLATFORM_DRIVER);
#endif
#ifdef PS3_SYSTEM_BUS_DRIVER
ps3_ohci_driver_unregister(&PS3_SYSTEM_BUS_DRIVER);
#endif
#ifdef DEBUG
debugfs_remove(ohci_debug_root);
#endif
clear_bit(USB_OHCI_LOADED, &usb_hcds_loaded);
}
module_exit(ohci_hcd_mod_exit);