OpenCloudOS-Kernel/fs/ufs/util.h

601 lines
17 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/fs/ufs/util.h
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*/
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include "swab.h"
/*
* functions used for retyping
*/
static inline struct ufs_buffer_head *UCPI_UBH(struct ufs_cg_private_info *cpi)
{
return &cpi->c_ubh;
}
static inline struct ufs_buffer_head *USPI_UBH(struct ufs_sb_private_info *spi)
{
return &spi->s_ubh;
}
/*
* macros used for accessing structures
*/
static inline s32
ufs_get_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3)
{
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
if (fs32_to_cpu(sb, usb3->fs_postblformat) == UFS_42POSTBLFMT)
return fs32_to_cpu(sb, usb1->fs_u0.fs_sun.fs_state);
fallthrough; /* to UFS_ST_SUN */
case UFS_ST_SUN:
return fs32_to_cpu(sb, usb3->fs_un2.fs_sun.fs_state);
case UFS_ST_SUNx86:
return fs32_to_cpu(sb, usb1->fs_u1.fs_sunx86.fs_state);
case UFS_ST_44BSD:
default:
return fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_state);
}
}
static inline void
ufs_set_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3, s32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
if (fs32_to_cpu(sb, usb3->fs_postblformat) == UFS_42POSTBLFMT) {
usb1->fs_u0.fs_sun.fs_state = cpu_to_fs32(sb, value);
break;
}
fallthrough; /* to UFS_ST_SUN */
case UFS_ST_SUN:
usb3->fs_un2.fs_sun.fs_state = cpu_to_fs32(sb, value);
break;
case UFS_ST_SUNx86:
usb1->fs_u1.fs_sunx86.fs_state = cpu_to_fs32(sb, value);
break;
case UFS_ST_44BSD:
usb3->fs_un2.fs_44.fs_state = cpu_to_fs32(sb, value);
break;
}
}
static inline u32
ufs_get_fs_npsect(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3)
{
if ((UFS_SB(sb)->s_flags & UFS_ST_MASK) == UFS_ST_SUNx86)
return fs32_to_cpu(sb, usb3->fs_un2.fs_sunx86.fs_npsect);
else
return fs32_to_cpu(sb, usb1->fs_u1.fs_sun.fs_npsect);
}
static inline u64
ufs_get_fs_qbmask(struct super_block *sb, struct ufs_super_block_third *usb3)
{
__fs64 tmp;
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
case UFS_ST_SUN:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qbmask[1];
break;
case UFS_ST_SUNx86:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qbmask[1];
break;
case UFS_ST_44BSD:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qbmask[1];
break;
}
return fs64_to_cpu(sb, tmp);
}
static inline u64
ufs_get_fs_qfmask(struct super_block *sb, struct ufs_super_block_third *usb3)
{
__fs64 tmp;
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
case UFS_ST_SUN:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qfmask[1];
break;
case UFS_ST_SUNx86:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qfmask[1];
break;
case UFS_ST_44BSD:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qfmask[1];
break;
}
return fs64_to_cpu(sb, tmp);
}
static inline u16
ufs_get_de_namlen(struct super_block *sb, struct ufs_dir_entry *de)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD)
return fs16_to_cpu(sb, de->d_u.d_namlen);
else
return de->d_u.d_44.d_namlen; /* XXX this seems wrong */
}
static inline void
ufs_set_de_namlen(struct super_block *sb, struct ufs_dir_entry *de, u16 value)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD)
de->d_u.d_namlen = cpu_to_fs16(sb, value);
else
de->d_u.d_44.d_namlen = value; /* XXX this seems wrong */
}
static inline void
ufs_set_de_type(struct super_block *sb, struct ufs_dir_entry *de, int mode)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) != UFS_DE_44BSD)
return;
/*
* TODO turn this into a table lookup
*/
switch (mode & S_IFMT) {
case S_IFSOCK:
de->d_u.d_44.d_type = DT_SOCK;
break;
case S_IFLNK:
de->d_u.d_44.d_type = DT_LNK;
break;
case S_IFREG:
de->d_u.d_44.d_type = DT_REG;
break;
case S_IFBLK:
de->d_u.d_44.d_type = DT_BLK;
break;
case S_IFDIR:
de->d_u.d_44.d_type = DT_DIR;
break;
case S_IFCHR:
de->d_u.d_44.d_type = DT_CHR;
break;
case S_IFIFO:
de->d_u.d_44.d_type = DT_FIFO;
break;
default:
de->d_u.d_44.d_type = DT_UNKNOWN;
}
}
static inline u32
ufs_get_inode_uid(struct super_block *sb, struct ufs_inode *inode)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_uid);
case UFS_UID_EFT:
if (inode->ui_u1.oldids.ui_suid == 0xFFFF)
return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_uid);
fallthrough;
default:
return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_suid);
}
}
static inline void
ufs_set_inode_uid(struct super_block *sb, struct ufs_inode *inode, u32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
inode->ui_u3.ui_44.ui_uid = cpu_to_fs32(sb, value);
inode->ui_u1.oldids.ui_suid = cpu_to_fs16(sb, value);
break;
case UFS_UID_EFT:
inode->ui_u3.ui_sun.ui_uid = cpu_to_fs32(sb, value);
if (value > 0xFFFF)
value = 0xFFFF;
fallthrough;
default:
inode->ui_u1.oldids.ui_suid = cpu_to_fs16(sb, value);
break;
}
}
static inline u32
ufs_get_inode_gid(struct super_block *sb, struct ufs_inode *inode)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_gid);
case UFS_UID_EFT:
if (inode->ui_u1.oldids.ui_sgid == 0xFFFF)
return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_gid);
fallthrough;
default:
return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_sgid);
}
}
static inline void
ufs_set_inode_gid(struct super_block *sb, struct ufs_inode *inode, u32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
inode->ui_u3.ui_44.ui_gid = cpu_to_fs32(sb, value);
inode->ui_u1.oldids.ui_sgid = cpu_to_fs16(sb, value);
break;
case UFS_UID_EFT:
inode->ui_u3.ui_sun.ui_gid = cpu_to_fs32(sb, value);
if (value > 0xFFFF)
value = 0xFFFF;
fallthrough;
default:
inode->ui_u1.oldids.ui_sgid = cpu_to_fs16(sb, value);
break;
}
}
extern dev_t ufs_get_inode_dev(struct super_block *, struct ufs_inode_info *);
extern void ufs_set_inode_dev(struct super_block *, struct ufs_inode_info *, dev_t);
extern int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len);
/*
* These functions manipulate ufs buffers
*/
#define ubh_bread(sb,fragment,size) _ubh_bread_(uspi,sb,fragment,size)
extern struct ufs_buffer_head * _ubh_bread_(struct ufs_sb_private_info *, struct super_block *, u64 , u64);
extern struct ufs_buffer_head * ubh_bread_uspi(struct ufs_sb_private_info *, struct super_block *, u64, u64);
extern void ubh_brelse (struct ufs_buffer_head *);
extern void ubh_brelse_uspi (struct ufs_sb_private_info *);
extern void ubh_mark_buffer_dirty (struct ufs_buffer_head *);
extern void ubh_mark_buffer_uptodate (struct ufs_buffer_head *, int);
extern void ubh_sync_block(struct ufs_buffer_head *);
extern void ubh_bforget (struct ufs_buffer_head *);
extern int ubh_buffer_dirty (struct ufs_buffer_head *);
#define ubh_ubhcpymem(mem,ubh,size) _ubh_ubhcpymem_(uspi,mem,ubh,size)
extern void _ubh_ubhcpymem_(struct ufs_sb_private_info *, unsigned char *, struct ufs_buffer_head *, unsigned);
#define ubh_memcpyubh(ubh,mem,size) _ubh_memcpyubh_(uspi,ubh,mem,size)
extern void _ubh_memcpyubh_(struct ufs_sb_private_info *, struct ufs_buffer_head *, unsigned char *, unsigned);
/* This functions works with cache pages*/
extern struct page *ufs_get_locked_page(struct address_space *mapping,
pgoff_t index);
static inline void ufs_put_locked_page(struct page *page)
{
unlock_page(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(page);
}
/*
* macros and inline function to get important structures from ufs_sb_private_info
*/
static inline void *get_usb_offset(struct ufs_sb_private_info *uspi,
unsigned int offset)
{
unsigned int index;
index = offset >> uspi->s_fshift;
offset &= ~uspi->s_fmask;
return uspi->s_ubh.bh[index]->b_data + offset;
}
#define ubh_get_usb_first(uspi) \
((struct ufs_super_block_first *)get_usb_offset((uspi), 0))
#define ubh_get_usb_second(uspi) \
((struct ufs_super_block_second *)get_usb_offset((uspi), UFS_SECTOR_SIZE))
#define ubh_get_usb_third(uspi) \
((struct ufs_super_block_third *)get_usb_offset((uspi), 2*UFS_SECTOR_SIZE))
#define ubh_get_ucg(ubh) \
((struct ufs_cylinder_group *)((ubh)->bh[0]->b_data))
/*
* Extract byte from ufs_buffer_head
* Extract the bits for a block from a map inside ufs_buffer_head
*/
#define ubh_get_addr8(ubh,begin) \
((u8*)(ubh)->bh[(begin) >> uspi->s_fshift]->b_data + \
((begin) & ~uspi->s_fmask))
#define ubh_get_addr16(ubh,begin) \
(((__fs16*)((ubh)->bh[(begin) >> (uspi->s_fshift-1)]->b_data)) + \
((begin) & ((uspi->fsize>>1) - 1)))
#define ubh_get_addr32(ubh,begin) \
(((__fs32*)((ubh)->bh[(begin) >> (uspi->s_fshift-2)]->b_data)) + \
((begin) & ((uspi->s_fsize>>2) - 1)))
#define ubh_get_addr64(ubh,begin) \
(((__fs64*)((ubh)->bh[(begin) >> (uspi->s_fshift-3)]->b_data)) + \
((begin) & ((uspi->s_fsize>>3) - 1)))
#define ubh_get_addr ubh_get_addr8
static inline void *ubh_get_data_ptr(struct ufs_sb_private_info *uspi,
struct ufs_buffer_head *ubh,
u64 blk)
{
if (uspi->fs_magic == UFS2_MAGIC)
return ubh_get_addr64(ubh, blk);
else
return ubh_get_addr32(ubh, blk);
}
#define ubh_blkmap(ubh,begin,bit) \
((*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) >> ((bit) & 7)) & (0xff >> (UFS_MAXFRAG - uspi->s_fpb)))
static inline u64
ufs_freefrags(struct ufs_sb_private_info *uspi)
{
return ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
uspi->cs_total.cs_nffree;
}
/*
* Macros to access cylinder group array structures
*/
#define ubh_cg_blktot(ucpi,cylno) \
(*((__fs32*)ubh_get_addr(UCPI_UBH(ucpi), (ucpi)->c_btotoff + ((cylno) << 2))))
#define ubh_cg_blks(ucpi,cylno,rpos) \
(*((__fs16*)ubh_get_addr(UCPI_UBH(ucpi), \
(ucpi)->c_boff + (((cylno) * uspi->s_nrpos + (rpos)) << 1 ))))
/*
* Bitmap operations
* These functions work like classical bitmap operations.
* The difference is that we don't have the whole bitmap
* in one contiguous chunk of memory, but in several buffers.
* The parameters of each function are super_block, ufs_buffer_head and
* position of the beginning of the bitmap.
*/
#define ubh_setbit(ubh,begin,bit) \
(*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) |= (1 << ((bit) & 7)))
#define ubh_clrbit(ubh,begin,bit) \
(*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) &= ~(1 << ((bit) & 7)))
#define ubh_isset(ubh,begin,bit) \
(*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) & (1 << ((bit) & 7)))
#define ubh_isclr(ubh,begin,bit) (!ubh_isset(ubh,begin,bit))
#define ubh_find_first_zero_bit(ubh,begin,size) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,0)
#define ubh_find_next_zero_bit(ubh,begin,size,offset) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,offset)
static inline unsigned _ubh_find_next_zero_bit_(
struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh,
unsigned begin, unsigned size, unsigned offset)
{
unsigned base, count, pos;
size -= offset;
begin <<= 3;
offset += begin;
base = offset >> uspi->s_bpfshift;
offset &= uspi->s_bpfmask;
for (;;) {
count = min_t(unsigned int, size + offset, uspi->s_bpf);
size -= count - offset;
pos = find_next_zero_bit_le(ubh->bh[base]->b_data, count, offset);
if (pos < count || !size)
break;
base++;
offset = 0;
}
return (base << uspi->s_bpfshift) + pos - begin;
}
static inline unsigned find_last_zero_bit (unsigned char * bitmap,
unsigned size, unsigned offset)
{
unsigned bit, i;
unsigned char * mapp;
unsigned char map;
mapp = bitmap + (size >> 3);
map = *mapp--;
bit = 1 << (size & 7);
for (i = size; i > offset; i--) {
if ((map & bit) == 0)
break;
if ((i & 7) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1 << 7;
}
}
return i;
}
#define ubh_find_last_zero_bit(ubh,begin,size,offset) _ubh_find_last_zero_bit_(uspi,ubh,begin,size,offset)
static inline unsigned _ubh_find_last_zero_bit_(
struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh,
unsigned begin, unsigned start, unsigned end)
{
unsigned base, count, pos, size;
size = start - end;
begin <<= 3;
start += begin;
base = start >> uspi->s_bpfshift;
start &= uspi->s_bpfmask;
for (;;) {
count = min_t(unsigned int,
size + (uspi->s_bpf - start), uspi->s_bpf)
- (uspi->s_bpf - start);
size -= count;
pos = find_last_zero_bit (ubh->bh[base]->b_data,
start, start - count);
if (pos > start - count || !size)
break;
base--;
start = uspi->s_bpf;
}
return (base << uspi->s_bpfshift) + pos - begin;
}
#define ubh_isblockclear(ubh,begin,block) (!_ubh_isblockset_(uspi,ubh,begin,block))
#define ubh_isblockset(ubh,begin,block) _ubh_isblockset_(uspi,ubh,begin,block)
static inline int _ubh_isblockset_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
u8 mask;
switch (uspi->s_fpb) {
case 8:
return (*ubh_get_addr (ubh, begin + block) == 0xff);
case 4:
mask = 0x0f << ((block & 0x01) << 2);
return (*ubh_get_addr (ubh, begin + (block >> 1)) & mask) == mask;
case 2:
mask = 0x03 << ((block & 0x03) << 1);
return (*ubh_get_addr (ubh, begin + (block >> 2)) & mask) == mask;
case 1:
mask = 0x01 << (block & 0x07);
return (*ubh_get_addr (ubh, begin + (block >> 3)) & mask) == mask;
}
return 0;
}
#define ubh_clrblock(ubh,begin,block) _ubh_clrblock_(uspi,ubh,begin,block)
static inline void _ubh_clrblock_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
switch (uspi->s_fpb) {
case 8:
*ubh_get_addr (ubh, begin + block) = 0x00;
return;
case 4:
*ubh_get_addr (ubh, begin + (block >> 1)) &= ~(0x0f << ((block & 0x01) << 2));
return;
case 2:
*ubh_get_addr (ubh, begin + (block >> 2)) &= ~(0x03 << ((block & 0x03) << 1));
return;
case 1:
*ubh_get_addr (ubh, begin + (block >> 3)) &= ~(0x01 << ((block & 0x07)));
return;
}
}
#define ubh_setblock(ubh,begin,block) _ubh_setblock_(uspi,ubh,begin,block)
static inline void _ubh_setblock_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
switch (uspi->s_fpb) {
case 8:
*ubh_get_addr(ubh, begin + block) = 0xff;
return;
case 4:
*ubh_get_addr(ubh, begin + (block >> 1)) |= (0x0f << ((block & 0x01) << 2));
return;
case 2:
*ubh_get_addr(ubh, begin + (block >> 2)) |= (0x03 << ((block & 0x03) << 1));
return;
case 1:
*ubh_get_addr(ubh, begin + (block >> 3)) |= (0x01 << ((block & 0x07)));
return;
}
}
static inline void ufs_fragacct (struct super_block * sb, unsigned blockmap,
__fs32 * fraglist, int cnt)
{
struct ufs_sb_private_info * uspi;
unsigned fragsize, pos;
uspi = UFS_SB(sb)->s_uspi;
fragsize = 0;
for (pos = 0; pos < uspi->s_fpb; pos++) {
if (blockmap & (1 << pos)) {
fragsize++;
}
else if (fragsize > 0) {
fs32_add(sb, &fraglist[fragsize], cnt);
fragsize = 0;
}
}
if (fragsize > 0 && fragsize < uspi->s_fpb)
fs32_add(sb, &fraglist[fragsize], cnt);
}
static inline void *ufs_get_direct_data_ptr(struct ufs_sb_private_info *uspi,
struct ufs_inode_info *ufsi,
unsigned blk)
{
BUG_ON(blk > UFS_TIND_BLOCK);
return uspi->fs_magic == UFS2_MAGIC ?
(void *)&ufsi->i_u1.u2_i_data[blk] :
(void *)&ufsi->i_u1.i_data[blk];
}
static inline u64 ufs_data_ptr_to_cpu(struct super_block *sb, void *p)
{
return UFS_SB(sb)->s_uspi->fs_magic == UFS2_MAGIC ?
fs64_to_cpu(sb, *(__fs64 *)p) :
fs32_to_cpu(sb, *(__fs32 *)p);
}
static inline void ufs_cpu_to_data_ptr(struct super_block *sb, void *p, u64 val)
{
if (UFS_SB(sb)->s_uspi->fs_magic == UFS2_MAGIC)
*(__fs64 *)p = cpu_to_fs64(sb, val);
else
*(__fs32 *)p = cpu_to_fs32(sb, val);
}
static inline void ufs_data_ptr_clear(struct ufs_sb_private_info *uspi,
void *p)
{
if (uspi->fs_magic == UFS2_MAGIC)
*(__fs64 *)p = 0;
else
*(__fs32 *)p = 0;
}
static inline int ufs_is_data_ptr_zero(struct ufs_sb_private_info *uspi,
void *p)
{
if (uspi->fs_magic == UFS2_MAGIC)
return *(__fs64 *)p == 0;
else
return *(__fs32 *)p == 0;
}
static inline __fs32 ufs_get_seconds(struct super_block *sbp)
{
time64_t now = ktime_get_real_seconds();
/* Signed 32-bit interpretation wraps around in 2038, which
* happens in ufs1 inode stamps but not ufs2 using 64-bits
* stamps. For superblock and blockgroup, let's assume
* unsigned 32-bit stamps, which are good until y2106.
* Wrap around rather than clamp here to make the dirty
* file system detection work in the superblock stamp.
*/
return cpu_to_fs32(sbp, lower_32_bits(now));
}