OpenCloudOS-Kernel/arch/arm/crypto/Kconfig

125 lines
3.8 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
menuconfig ARM_CRYPTO
bool "ARM Accelerated Cryptographic Algorithms"
depends on ARM
help
Say Y here to choose from a selection of cryptographic algorithms
implemented using ARM specific CPU features or instructions.
if ARM_CRYPTO
config CRYPTO_SHA1_ARM
tristate "SHA1 digest algorithm (ARM-asm)"
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using optimized ARM assembler.
config CRYPTO_SHA1_ARM_NEON
tristate "SHA1 digest algorithm (ARM NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using optimized ARM NEON assembly, when NEON instructions are
available.
config CRYPTO_SHA1_ARM_CE
tristate "SHA1 digest algorithm (ARM v8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using special ARMv8 Crypto Extensions.
config CRYPTO_SHA2_ARM_CE
tristate "SHA-224/256 digest algorithm (ARM v8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA256_ARM
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using special ARMv8 Crypto Extensions.
config CRYPTO_SHA256_ARM
tristate "SHA-224/256 digest algorithm (ARM-asm and NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using optimized ARM assembler and NEON, when available.
config CRYPTO_SHA512_ARM
tristate "SHA-384/512 digest algorithm (ARM-asm and NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using optimized ARM assembler and NEON, when available.
config CRYPTO_AES_ARM
tristate "Scalar AES cipher for ARM"
select CRYPTO_ALGAPI
select CRYPTO_AES
help
Use optimized AES assembler routines for ARM platforms.
config CRYPTO_AES_ARM_BS
tristate "Bit sliced AES using NEON instructions"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_SIMD
select CRYPTO_AES
help
Use a faster and more secure NEON based implementation of AES in CBC,
CTR and XTS modes
Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
and for XTS mode encryption, CBC and XTS mode decryption speedup is
around 25%. (CBC encryption speed is not affected by this driver.)
This implementation does not rely on any lookup tables so it is
believed to be invulnerable to cache timing attacks.
config CRYPTO_AES_ARM_CE
tristate "Accelerated AES using ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_SIMD
help
Use an implementation of AES in CBC, CTR and XTS modes that uses
ARMv8 Crypto Extensions
config CRYPTO_GHASH_ARM_CE
tristate "PMULL-accelerated GHASH using NEON/ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_CRYPTD
help
Use an implementation of GHASH (used by the GCM AEAD chaining mode)
that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
that is part of the ARMv8 Crypto Extensions, or a slower variant that
uses the vmull.p8 instruction that is part of the basic NEON ISA.
config CRYPTO_CRCT10DIF_ARM_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
depends on KERNEL_MODE_NEON && CRC_T10DIF
select CRYPTO_HASH
config CRYPTO_CRC32_ARM_CE
tristate "CRC32(C) digest algorithm using CRC and/or PMULL instructions"
depends on KERNEL_MODE_NEON && CRC32
select CRYPTO_HASH
config CRYPTO_CHACHA20_NEON
tristate "NEON accelerated ChaCha20 symmetric cipher"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_CHACHA20
endif