OpenCloudOS-Kernel/drivers/clocksource/fsl_ftm_timer.c

367 lines
8.1 KiB
C
Raw Normal View History

/*
* Freescale FlexTimer Module (FTM) timer driver.
*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>
#define FTM_SC 0x00
#define FTM_SC_CLK_SHIFT 3
#define FTM_SC_CLK_MASK (0x3 << FTM_SC_CLK_SHIFT)
#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_SHIFT)
#define FTM_SC_PS_MASK 0x7
#define FTM_SC_TOIE BIT(6)
#define FTM_SC_TOF BIT(7)
#define FTM_CNT 0x04
#define FTM_MOD 0x08
#define FTM_CNTIN 0x4C
#define FTM_PS_MAX 7
struct ftm_clock_device {
void __iomem *clksrc_base;
void __iomem *clkevt_base;
unsigned long periodic_cyc;
unsigned long ps;
bool big_endian;
};
static struct ftm_clock_device *priv;
static inline u32 ftm_readl(void __iomem *addr)
{
if (priv->big_endian)
return ioread32be(addr);
else
return ioread32(addr);
}
static inline void ftm_writel(u32 val, void __iomem *addr)
{
if (priv->big_endian)
iowrite32be(val, addr);
else
iowrite32(val, addr);
}
static inline void ftm_counter_enable(void __iomem *base)
{
u32 val;
/* select and enable counter clock source */
val = ftm_readl(base + FTM_SC);
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
val |= priv->ps | FTM_SC_CLK(1);
ftm_writel(val, base + FTM_SC);
}
static inline void ftm_counter_disable(void __iomem *base)
{
u32 val;
/* disable counter clock source */
val = ftm_readl(base + FTM_SC);
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
ftm_writel(val, base + FTM_SC);
}
static inline void ftm_irq_acknowledge(void __iomem *base)
{
u32 val;
val = ftm_readl(base + FTM_SC);
val &= ~FTM_SC_TOF;
ftm_writel(val, base + FTM_SC);
}
static inline void ftm_irq_enable(void __iomem *base)
{
u32 val;
val = ftm_readl(base + FTM_SC);
val |= FTM_SC_TOIE;
ftm_writel(val, base + FTM_SC);
}
static inline void ftm_irq_disable(void __iomem *base)
{
u32 val;
val = ftm_readl(base + FTM_SC);
val &= ~FTM_SC_TOIE;
ftm_writel(val, base + FTM_SC);
}
static inline void ftm_reset_counter(void __iomem *base)
{
/*
* The CNT register contains the FTM counter value.
* Reset clears the CNT register. Writing any value to COUNT
* updates the counter with its initial value, CNTIN.
*/
ftm_writel(0x00, base + FTM_CNT);
}
static u64 notrace ftm_read_sched_clock(void)
{
return ftm_readl(priv->clksrc_base + FTM_CNT);
}
static int ftm_set_next_event(unsigned long delta,
struct clock_event_device *unused)
{
/*
* The CNNIN and MOD are all double buffer registers, writing
* to the MOD register latches the value into a buffer. The MOD
* register is updated with the value of its write buffer with
* the following scenario:
* a, the counter source clock is diabled.
*/
ftm_counter_disable(priv->clkevt_base);
/* Force the value of CNTIN to be loaded into the FTM counter */
ftm_reset_counter(priv->clkevt_base);
/*
* The counter increments until the value of MOD is reached,
* at which point the counter is reloaded with the value of CNTIN.
* The TOF (the overflow flag) bit is set when the FTM counter
* changes from MOD to CNTIN. So we should using the delta - 1.
*/
ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
ftm_counter_enable(priv->clkevt_base);
ftm_irq_enable(priv->clkevt_base);
return 0;
}
static int ftm_set_oneshot(struct clock_event_device *evt)
{
ftm_counter_disable(priv->clkevt_base);
return 0;
}
static int ftm_set_periodic(struct clock_event_device *evt)
{
ftm_set_next_event(priv->periodic_cyc, evt);
return 0;
}
static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
ftm_irq_acknowledge(priv->clkevt_base);
if (likely(clockevent_state_oneshot(evt))) {
ftm_irq_disable(priv->clkevt_base);
ftm_counter_disable(priv->clkevt_base);
}
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct clock_event_device ftm_clockevent = {
.name = "Freescale ftm timer",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.set_state_periodic = ftm_set_periodic,
.set_state_oneshot = ftm_set_oneshot,
.set_next_event = ftm_set_next_event,
.rating = 300,
};
static struct irqaction ftm_timer_irq = {
.name = "Freescale ftm timer",
.flags = IRQF_TIMER | IRQF_IRQPOLL,
.handler = ftm_evt_interrupt,
.dev_id = &ftm_clockevent,
};
static int __init ftm_clockevent_init(unsigned long freq, int irq)
{
int err;
ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
ftm_reset_counter(priv->clkevt_base);
err = setup_irq(irq, &ftm_timer_irq);
if (err) {
pr_err("ftm: setup irq failed: %d\n", err);
return err;
}
ftm_clockevent.cpumask = cpumask_of(0);
ftm_clockevent.irq = irq;
clockevents_config_and_register(&ftm_clockevent,
freq / (1 << priv->ps),
1, 0xffff);
ftm_counter_enable(priv->clkevt_base);
return 0;
}
static int __init ftm_clocksource_init(unsigned long freq)
{
int err;
ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
ftm_reset_counter(priv->clksrc_base);
sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
freq / (1 << priv->ps), 300, 16,
clocksource_mmio_readl_up);
if (err) {
pr_err("ftm: init clock source mmio failed: %d\n", err);
return err;
}
ftm_counter_enable(priv->clksrc_base);
return 0;
}
static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
char *ftm_name)
{
struct clk *clk;
int err;
clk = of_clk_get_by_name(np, cnt_name);
if (IS_ERR(clk)) {
pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
return PTR_ERR(clk);
}
err = clk_prepare_enable(clk);
if (err) {
pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
cnt_name, err);
return err;
}
clk = of_clk_get_by_name(np, ftm_name);
if (IS_ERR(clk)) {
pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
return PTR_ERR(clk);
}
err = clk_prepare_enable(clk);
if (err)
pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
ftm_name, err);
return clk_get_rate(clk);
}
static unsigned long __init ftm_clk_init(struct device_node *np)
{
unsigned long freq;
freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
if (freq <= 0)
return 0;
freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
if (freq <= 0)
return 0;
return freq;
}
static int __init ftm_calc_closest_round_cyc(unsigned long freq)
{
priv->ps = 0;
/* The counter register is only using the lower 16 bits, and
* if the 'freq' value is to big here, then the periodic_cyc
* may exceed 0xFFFF.
*/
do {
priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
HZ * (1 << priv->ps++));
} while (priv->periodic_cyc > 0xFFFF);
if (priv->ps > FTM_PS_MAX) {
pr_err("ftm: the prescaler is %lu > %d\n",
priv->ps, FTM_PS_MAX);
return -EINVAL;
}
return 0;
}
static void __init ftm_timer_init(struct device_node *np)
{
unsigned long freq;
int irq;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return;
priv->clkevt_base = of_iomap(np, 0);
if (!priv->clkevt_base) {
pr_err("ftm: unable to map event timer registers\n");
goto err;
}
priv->clksrc_base = of_iomap(np, 1);
if (!priv->clksrc_base) {
pr_err("ftm: unable to map source timer registers\n");
goto err;
}
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
goto err;
}
priv->big_endian = of_property_read_bool(np, "big-endian");
freq = ftm_clk_init(np);
if (!freq)
goto err;
if (ftm_calc_closest_round_cyc(freq))
goto err;
if (ftm_clocksource_init(freq))
goto err;
if (ftm_clockevent_init(freq, irq))
goto err;
return;
err:
kfree(priv);
}
CLOCKSOURCE_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);