OpenCloudOS-Kernel/drivers/spi/xilinx_spi.c

438 lines
12 KiB
C
Raw Normal View History

/*
* xilinx_spi.c
*
* Xilinx SPI controller driver (master mode only)
*
* Author: MontaVista Software, Inc.
* source@mvista.com
*
* 2002-2007 (c) MontaVista Software, Inc. This file is licensed under the
* terms of the GNU General Public License version 2. This program is licensed
* "as is" without any warranty of any kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/io.h>
#include <syslib/virtex_devices.h>
#define XILINX_SPI_NAME "xilinx_spi"
/* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
* Product Specification", DS464
*/
#define XSPI_CR_OFFSET 0x62 /* 16-bit Control Register */
#define XSPI_CR_ENABLE 0x02
#define XSPI_CR_MASTER_MODE 0x04
#define XSPI_CR_CPOL 0x08
#define XSPI_CR_CPHA 0x10
#define XSPI_CR_MODE_MASK (XSPI_CR_CPHA | XSPI_CR_CPOL)
#define XSPI_CR_TXFIFO_RESET 0x20
#define XSPI_CR_RXFIFO_RESET 0x40
#define XSPI_CR_MANUAL_SSELECT 0x80
#define XSPI_CR_TRANS_INHIBIT 0x100
#define XSPI_SR_OFFSET 0x67 /* 8-bit Status Register */
#define XSPI_SR_RX_EMPTY_MASK 0x01 /* Receive FIFO is empty */
#define XSPI_SR_RX_FULL_MASK 0x02 /* Receive FIFO is full */
#define XSPI_SR_TX_EMPTY_MASK 0x04 /* Transmit FIFO is empty */
#define XSPI_SR_TX_FULL_MASK 0x08 /* Transmit FIFO is full */
#define XSPI_SR_MODE_FAULT_MASK 0x10 /* Mode fault error */
#define XSPI_TXD_OFFSET 0x6b /* 8-bit Data Transmit Register */
#define XSPI_RXD_OFFSET 0x6f /* 8-bit Data Receive Register */
#define XSPI_SSR_OFFSET 0x70 /* 32-bit Slave Select Register */
/* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
* IPIF registers are 32 bit
*/
#define XIPIF_V123B_DGIER_OFFSET 0x1c /* IPIF global int enable reg */
#define XIPIF_V123B_GINTR_ENABLE 0x80000000
#define XIPIF_V123B_IISR_OFFSET 0x20 /* IPIF interrupt status reg */
#define XIPIF_V123B_IIER_OFFSET 0x28 /* IPIF interrupt enable reg */
#define XSPI_INTR_MODE_FAULT 0x01 /* Mode fault error */
#define XSPI_INTR_SLAVE_MODE_FAULT 0x02 /* Selected as slave while
* disabled */
#define XSPI_INTR_TX_EMPTY 0x04 /* TxFIFO is empty */
#define XSPI_INTR_TX_UNDERRUN 0x08 /* TxFIFO was underrun */
#define XSPI_INTR_RX_FULL 0x10 /* RxFIFO is full */
#define XSPI_INTR_RX_OVERRUN 0x20 /* RxFIFO was overrun */
#define XIPIF_V123B_RESETR_OFFSET 0x40 /* IPIF reset register */
#define XIPIF_V123B_RESET_MASK 0x0a /* the value to write */
struct xilinx_spi {
/* bitbang has to be first */
struct spi_bitbang bitbang;
struct completion done;
void __iomem *regs; /* virt. address of the control registers */
u32 irq;
u32 speed_hz; /* SCK has a fixed frequency of speed_hz Hz */
u8 *rx_ptr; /* pointer in the Tx buffer */
const u8 *tx_ptr; /* pointer in the Rx buffer */
int remaining_bytes; /* the number of bytes left to transfer */
};
static void xspi_init_hw(void __iomem *regs_base)
{
/* Reset the SPI device */
out_be32(regs_base + XIPIF_V123B_RESETR_OFFSET,
XIPIF_V123B_RESET_MASK);
/* Disable all the interrupts just in case */
out_be32(regs_base + XIPIF_V123B_IIER_OFFSET, 0);
/* Enable the global IPIF interrupt */
out_be32(regs_base + XIPIF_V123B_DGIER_OFFSET,
XIPIF_V123B_GINTR_ENABLE);
/* Deselect the slave on the SPI bus */
out_be32(regs_base + XSPI_SSR_OFFSET, 0xffff);
/* Disable the transmitter, enable Manual Slave Select Assertion,
* put SPI controller into master mode, and enable it */
out_be16(regs_base + XSPI_CR_OFFSET,
XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT
| XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE);
}
static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
{
struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
if (is_on == BITBANG_CS_INACTIVE) {
/* Deselect the slave on the SPI bus */
out_be32(xspi->regs + XSPI_SSR_OFFSET, 0xffff);
} else if (is_on == BITBANG_CS_ACTIVE) {
/* Set the SPI clock phase and polarity */
u16 cr = in_be16(xspi->regs + XSPI_CR_OFFSET)
& ~XSPI_CR_MODE_MASK;
if (spi->mode & SPI_CPHA)
cr |= XSPI_CR_CPHA;
if (spi->mode & SPI_CPOL)
cr |= XSPI_CR_CPOL;
out_be16(xspi->regs + XSPI_CR_OFFSET, cr);
/* We do not check spi->max_speed_hz here as the SPI clock
* frequency is not software programmable (the IP block design
* parameter)
*/
/* Activate the chip select */
out_be32(xspi->regs + XSPI_SSR_OFFSET,
~(0x0001 << spi->chip_select));
}
}
/* spi_bitbang requires custom setup_transfer() to be defined if there is a
* custom txrx_bufs(). We have nothing to setup here as the SPI IP block
* supports just 8 bits per word, and SPI clock can't be changed in software.
* Check for 8 bits per word. Chip select delay calculations could be
* added here as soon as bitbang_work() can be made aware of the delay value.
*/
static int xilinx_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
u8 bits_per_word;
u32 hz;
struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
hz = (t) ? t->speed_hz : spi->max_speed_hz;
if (bits_per_word != 8) {
dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
__func__, bits_per_word);
return -EINVAL;
}
if (hz && xspi->speed_hz > hz) {
dev_err(&spi->dev, "%s, unsupported clock rate %uHz\n",
__func__, hz);
return -EINVAL;
}
return 0;
}
/* the spi->mode bits understood by this driver: */
#define MODEBITS (SPI_CPOL | SPI_CPHA)
static int xilinx_spi_setup(struct spi_device *spi)
{
struct spi_bitbang *bitbang;
struct xilinx_spi *xspi;
int retval;
xspi = spi_master_get_devdata(spi->master);
bitbang = &xspi->bitbang;
if (!spi->bits_per_word)
spi->bits_per_word = 8;
if (spi->mode & ~MODEBITS) {
dev_err(&spi->dev, "%s, unsupported mode bits %x\n",
__func__, spi->mode & ~MODEBITS);
return -EINVAL;
}
retval = xilinx_spi_setup_transfer(spi, NULL);
if (retval < 0)
return retval;
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
__func__, spi->mode & MODEBITS, spi->bits_per_word, 0);
return 0;
}
static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
{
u8 sr;
/* Fill the Tx FIFO with as many bytes as possible */
sr = in_8(xspi->regs + XSPI_SR_OFFSET);
while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
if (xspi->tx_ptr) {
out_8(xspi->regs + XSPI_TXD_OFFSET, *xspi->tx_ptr++);
} else {
out_8(xspi->regs + XSPI_TXD_OFFSET, 0);
}
xspi->remaining_bytes--;
sr = in_8(xspi->regs + XSPI_SR_OFFSET);
}
}
static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
u32 ipif_ier;
u16 cr;
/* We get here with transmitter inhibited */
xspi->tx_ptr = t->tx_buf;
xspi->rx_ptr = t->rx_buf;
xspi->remaining_bytes = t->len;
INIT_COMPLETION(xspi->done);
xilinx_spi_fill_tx_fifo(xspi);
/* Enable the transmit empty interrupt, which we use to determine
* progress on the transmission.
*/
ipif_ier = in_be32(xspi->regs + XIPIF_V123B_IIER_OFFSET);
out_be32(xspi->regs + XIPIF_V123B_IIER_OFFSET,
ipif_ier | XSPI_INTR_TX_EMPTY);
/* Start the transfer by not inhibiting the transmitter any longer */
cr = in_be16(xspi->regs + XSPI_CR_OFFSET) & ~XSPI_CR_TRANS_INHIBIT;
out_be16(xspi->regs + XSPI_CR_OFFSET, cr);
wait_for_completion(&xspi->done);
/* Disable the transmit empty interrupt */
out_be32(xspi->regs + XIPIF_V123B_IIER_OFFSET, ipif_ier);
return t->len - xspi->remaining_bytes;
}
/* This driver supports single master mode only. Hence Tx FIFO Empty
* is the only interrupt we care about.
* Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
* Fault are not to happen.
*/
static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
{
struct xilinx_spi *xspi = dev_id;
u32 ipif_isr;
/* Get the IPIF interrupts, and clear them immediately */
ipif_isr = in_be32(xspi->regs + XIPIF_V123B_IISR_OFFSET);
out_be32(xspi->regs + XIPIF_V123B_IISR_OFFSET, ipif_isr);
if (ipif_isr & XSPI_INTR_TX_EMPTY) { /* Transmission completed */
u16 cr;
u8 sr;
/* A transmit has just completed. Process received data and
* check for more data to transmit. Always inhibit the
* transmitter while the Isr refills the transmit register/FIFO,
* or make sure it is stopped if we're done.
*/
cr = in_be16(xspi->regs + XSPI_CR_OFFSET);
out_be16(xspi->regs + XSPI_CR_OFFSET,
cr | XSPI_CR_TRANS_INHIBIT);
/* Read out all the data from the Rx FIFO */
sr = in_8(xspi->regs + XSPI_SR_OFFSET);
while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
u8 data;
data = in_8(xspi->regs + XSPI_RXD_OFFSET);
if (xspi->rx_ptr) {
*xspi->rx_ptr++ = data;
}
sr = in_8(xspi->regs + XSPI_SR_OFFSET);
}
/* See if there is more data to send */
if (xspi->remaining_bytes > 0) {
xilinx_spi_fill_tx_fifo(xspi);
/* Start the transfer by not inhibiting the
* transmitter any longer
*/
out_be16(xspi->regs + XSPI_CR_OFFSET, cr);
} else {
/* No more data to send.
* Indicate the transfer is completed.
*/
complete(&xspi->done);
}
}
return IRQ_HANDLED;
}
static int __init xilinx_spi_probe(struct platform_device *dev)
{
int ret = 0;
struct spi_master *master;
struct xilinx_spi *xspi;
struct xspi_platform_data *pdata;
struct resource *r;
/* Get resources(memory, IRQ) associated with the device */
master = spi_alloc_master(&dev->dev, sizeof(struct xilinx_spi));
if (master == NULL) {
return -ENOMEM;
}
platform_set_drvdata(dev, master);
pdata = dev->dev.platform_data;
if (pdata == NULL) {
ret = -ENODEV;
goto put_master;
}
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
if (r == NULL) {
ret = -ENODEV;
goto put_master;
}
xspi = spi_master_get_devdata(master);
xspi->bitbang.master = spi_master_get(master);
xspi->bitbang.chipselect = xilinx_spi_chipselect;
xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
xspi->bitbang.master->setup = xilinx_spi_setup;
init_completion(&xspi->done);
if (!request_mem_region(r->start,
r->end - r->start + 1, XILINX_SPI_NAME)) {
ret = -ENXIO;
goto put_master;
}
xspi->regs = ioremap(r->start, r->end - r->start + 1);
if (xspi->regs == NULL) {
ret = -ENOMEM;
goto put_master;
}
xspi->irq = platform_get_irq(dev, 0);
if (xspi->irq < 0) {
ret = -ENXIO;
goto unmap_io;
}
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->num_chipselect;
xspi->speed_hz = pdata->speed_hz;
/* SPI controller initializations */
xspi_init_hw(xspi->regs);
/* Register for SPI Interrupt */
ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
if (ret != 0)
goto unmap_io;
ret = spi_bitbang_start(&xspi->bitbang);
if (ret != 0) {
dev_err(&dev->dev, "spi_bitbang_start FAILED\n");
goto free_irq;
}
dev_info(&dev->dev, "at 0x%08X mapped to 0x%08X, irq=%d\n",
r->start, (u32)xspi->regs, xspi->irq);
return ret;
free_irq:
free_irq(xspi->irq, xspi);
unmap_io:
iounmap(xspi->regs);
put_master:
spi_master_put(master);
return ret;
}
static int __devexit xilinx_spi_remove(struct platform_device *dev)
{
struct xilinx_spi *xspi;
struct spi_master *master;
master = platform_get_drvdata(dev);
xspi = spi_master_get_devdata(master);
spi_bitbang_stop(&xspi->bitbang);
free_irq(xspi->irq, xspi);
iounmap(xspi->regs);
platform_set_drvdata(dev, 0);
spi_master_put(xspi->bitbang.master);
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:" XILINX_SPI_NAME);
static struct platform_driver xilinx_spi_driver = {
.probe = xilinx_spi_probe,
.remove = __devexit_p(xilinx_spi_remove),
.driver = {
.name = XILINX_SPI_NAME,
.owner = THIS_MODULE,
},
};
static int __init xilinx_spi_init(void)
{
return platform_driver_register(&xilinx_spi_driver);
}
module_init(xilinx_spi_init);
static void __exit xilinx_spi_exit(void)
{
platform_driver_unregister(&xilinx_spi_driver);
}
module_exit(xilinx_spi_exit);
MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
MODULE_DESCRIPTION("Xilinx SPI driver");
MODULE_LICENSE("GPL");