OpenCloudOS-Kernel/Documentation/cpu-freq/cpu-drivers.rst

287 lines
11 KiB
ReStructuredText
Raw Normal View History

.. SPDX-License-Identifier: GPL-2.0
===============================================
How to Implement a new CPUFreq Processor Driver
===============================================
Authors:
- Dominik Brodowski <linux@brodo.de>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
.. Contents
1. What To Do?
1.1 Initialization
1.2 Per-CPU Initialization
1.3 verify
1.4 target/target_index or setpolicy?
1.5 target/target_index
1.6 setpolicy
1.7 get_intermediate and target_intermediate
2. Frequency Table Helpers
1. What To Do?
==============
So, you just got a brand-new CPU / chipset with datasheets and want to
add cpufreq support for this CPU / chipset? Great. Here are some hints
on what is necessary:
1.1 Initialization
------------------
First of all, in an __initcall level 7 (module_init()) or later
function check whether this kernel runs on the right CPU and the right
chipset. If so, register a struct cpufreq_driver with the CPUfreq core
using cpufreq_register_driver()
What shall this struct cpufreq_driver contain?
.name - The name of this driver.
.init - A pointer to the per-policy initialization function.
.verify - A pointer to a "verification" function.
.setpolicy _or_ .fast_switch _or_ .target _or_ .target_index - See
below on the differences.
And optionally
.flags - Hints for the cpufreq core.
.driver_data - cpufreq driver specific data.
.get_intermediate and target_intermediate - Used to switch to stable
frequency while changing CPU frequency.
.get - Returns current frequency of the CPU.
.bios_limit - Returns HW/BIOS max frequency limitations for the CPU.
.exit - A pointer to a per-policy cleanup function called during
CPU_POST_DEAD phase of cpu hotplug process.
.suspend - A pointer to a per-policy suspend function which is called
with interrupts disabled and _after_ the governor is stopped for the
policy.
.resume - A pointer to a per-policy resume function which is called
with interrupts disabled and _before_ the governor is started again.
.ready - A pointer to a per-policy ready function which is called after
the policy is fully initialized.
.attr - A pointer to a NULL-terminated list of "struct freq_attr" which
allow to export values to sysfs.
.boost_enabled - If set, boost frequencies are enabled.
.set_boost - A pointer to a per-policy function to enable/disable boost
frequencies.
cpufreq: add support for intermediate (stable) frequencies Douglas Anderson, recently pointed out an interesting problem due to which udelay() was expiring earlier than it should. While transitioning between frequencies few platforms may temporarily switch to a stable frequency, waiting for the main PLL to stabilize. For example: When we transition between very low frequencies on exynos, like between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz. No CPUFREQ notification is sent for that. That means there's a period of time when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz and 300MHz. And so udelay behaves badly. To get this fixed in a generic way, introduce another set of callbacks get_intermediate() and target_intermediate(), only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate() should return a stable intermediate frequency platform wants to switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). NOTE: ->target_index() should restore to policy->restore_freq in case of failures as core would send notifications for that. Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-03 01:19:28 +08:00
1.2 Per-CPU Initialization
--------------------------
Whenever a new CPU is registered with the device model, or after the
cpufreq driver registers itself, the per-policy initialization function
cpufreq_driver.init is called if no cpufreq policy existed for the CPU.
Note that the .init() and .exit() routines are called only once for the
policy and not for each CPU managed by the policy. It takes a ``struct
cpufreq_policy *policy`` as argument. What to do now?
If necessary, activate the CPUfreq support on your CPU.
Then, the driver must fill in the following values:
+-----------------------------------+--------------------------------------+
|policy->cpuinfo.min_freq _and_ | |
|policy->cpuinfo.max_freq | the minimum and maximum frequency |
| | (in kHz) which is supported by |
| | this CPU |
+-----------------------------------+--------------------------------------+
|policy->cpuinfo.transition_latency | the time it takes on this CPU to |
| | switch between two frequencies in |
| | nanoseconds (if appropriate, else |
| | specify CPUFREQ_ETERNAL) |
+-----------------------------------+--------------------------------------+
|policy->cur | The current operating frequency of |
| | this CPU (if appropriate) |
+-----------------------------------+--------------------------------------+
|policy->min, | |
|policy->max, | |
|policy->policy and, if necessary, | |
|policy->governor | must contain the "default policy" for|
| | this CPU. A few moments later, |
| | cpufreq_driver.verify and either |
| | cpufreq_driver.setpolicy or |
| | cpufreq_driver.target/target_index is|
| | called with these values. |
+-----------------------------------+--------------------------------------+
|policy->cpus | Update this with the masks of the |
| | (online + offline) CPUs that do DVFS |
| | along with this CPU (i.e. that share|
| | clock/voltage rails with it). |
+-----------------------------------+--------------------------------------+
For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
frequency table helpers might be helpful. See the section 2 for more information
on them.
1.3 verify
----------
When the user decides a new policy (consisting of
"policy,governor,min,max") shall be set, this policy must be validated
so that incompatible values can be corrected. For verifying these
values cpufreq_verify_within_limits(``struct cpufreq_policy *policy``,
``unsigned int min_freq``, ``unsigned int max_freq``) function might be helpful.
See section 2 for details on frequency table helpers.
You need to make sure that at least one valid frequency (or operating
range) is within policy->min and policy->max. If necessary, increase
policy->max first, and only if this is no solution, decrease policy->min.
1.4 target or target_index or setpolicy or fast_switch?
-------------------------------------------------------
Most cpufreq drivers or even most cpu frequency scaling algorithms
only allow the CPU frequency to be set to predefined fixed values. For
these, you use the ->target(), ->target_index() or ->fast_switch()
callbacks.
Some cpufreq capable processors switch the frequency between certain
limits on their own. These shall use the ->setpolicy() callback.
cpufreq: add support for intermediate (stable) frequencies Douglas Anderson, recently pointed out an interesting problem due to which udelay() was expiring earlier than it should. While transitioning between frequencies few platforms may temporarily switch to a stable frequency, waiting for the main PLL to stabilize. For example: When we transition between very low frequencies on exynos, like between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz. No CPUFREQ notification is sent for that. That means there's a period of time when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz and 300MHz. And so udelay behaves badly. To get this fixed in a generic way, introduce another set of callbacks get_intermediate() and target_intermediate(), only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate() should return a stable intermediate frequency platform wants to switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). NOTE: ->target_index() should restore to policy->restore_freq in case of failures as core would send notifications for that. Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-03 01:19:28 +08:00
1.5. target/target_index
------------------------
The target_index call has two arguments: ``struct cpufreq_policy *policy``,
and ``unsigned int`` index (into the exposed frequency table).
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined by freq_table[index].frequency.
cpufreq: add support for intermediate (stable) frequencies Douglas Anderson, recently pointed out an interesting problem due to which udelay() was expiring earlier than it should. While transitioning between frequencies few platforms may temporarily switch to a stable frequency, waiting for the main PLL to stabilize. For example: When we transition between very low frequencies on exynos, like between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz. No CPUFREQ notification is sent for that. That means there's a period of time when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz and 300MHz. And so udelay behaves badly. To get this fixed in a generic way, introduce another set of callbacks get_intermediate() and target_intermediate(), only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate() should return a stable intermediate frequency platform wants to switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). NOTE: ->target_index() should restore to policy->restore_freq in case of failures as core would send notifications for that. Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-03 01:19:28 +08:00
It should always restore to earlier frequency (i.e. policy->restore_freq) in
case of errors, even if we switched to intermediate frequency earlier.
Deprecated
cpufreq: Implement light weight ->target_index() routine Currently, the prototype of cpufreq_drivers target routines is: int target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); And most of the drivers call cpufreq_frequency_table_target() to get a valid index of their frequency table which is closest to the target_freq. And they don't use target_freq and relation after that. So, it makes sense to just do this work in cpufreq core before calling cpufreq_frequency_table_target() and simply pass index instead. But this can be done only with drivers which expose their frequency table with cpufreq core. For others we need to stick with the old prototype of target() until those drivers are converted to expose frequency tables. This patch implements the new light weight prototype for target_index() routine. It looks like this: int target_index(struct cpufreq_policy *policy, unsigned int index); CPUFreq core will call cpufreq_frequency_table_target() before calling this routine and pass index to it. Because CPUFreq core now requires to call routines present in freq_table.c CONFIG_CPU_FREQ_TABLE must be enabled all the time. This also marks target() interface as deprecated. So, that new drivers avoid using it. And Documentation is updated accordingly. It also converts existing .target() to newly defined light weight .target_index() routine for many driver. Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Russell King <linux@arm.linux.org.uk> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rjw@rjwysocki.net>
2013-10-25 22:15:48 +08:00
----------
The target call has three arguments: ``struct cpufreq_policy *policy``,
unsigned int target_frequency, unsigned int relation.
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined using the following rules:
- keep close to "target_freq"
- policy->min <= new_freq <= policy->max (THIS MUST BE VALID!!!)
- if relation==CPUFREQ_REL_L, try to select a new_freq higher than or equal
target_freq. ("L for lowest, but no lower than")
- if relation==CPUFREQ_REL_H, try to select a new_freq lower than or equal
target_freq. ("H for highest, but no higher than")
Here again the frequency table helper might assist you - see section 2
for details.
1.6. fast_switch
----------------
This function is used for frequency switching from scheduler's context.
Not all drivers are expected to implement it, as sleeping from within
this callback isn't allowed. This callback must be highly optimized to
do switching as fast as possible.
This function has two arguments: ``struct cpufreq_policy *policy`` and
``unsigned int target_frequency``.
1.7 setpolicy
-------------
The setpolicy call only takes a ``struct cpufreq_policy *policy`` as
argument. You need to set the lower limit of the in-processor or
in-chipset dynamic frequency switching to policy->min, the upper limit
to policy->max, and -if supported- select a performance-oriented
setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
the reference implementation in drivers/cpufreq/longrun.c
1.8 get_intermediate and target_intermediate
cpufreq: add support for intermediate (stable) frequencies Douglas Anderson, recently pointed out an interesting problem due to which udelay() was expiring earlier than it should. While transitioning between frequencies few platforms may temporarily switch to a stable frequency, waiting for the main PLL to stabilize. For example: When we transition between very low frequencies on exynos, like between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz. No CPUFREQ notification is sent for that. That means there's a period of time when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz and 300MHz. And so udelay behaves badly. To get this fixed in a generic way, introduce another set of callbacks get_intermediate() and target_intermediate(), only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate() should return a stable intermediate frequency platform wants to switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). NOTE: ->target_index() should restore to policy->restore_freq in case of failures as core would send notifications for that. Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-03 01:19:28 +08:00
--------------------------------------------
Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
get_intermediate should return a stable intermediate frequency platform wants to
switch to, and target_intermediate() should set CPU to that frequency, before
cpufreq: add support for intermediate (stable) frequencies Douglas Anderson, recently pointed out an interesting problem due to which udelay() was expiring earlier than it should. While transitioning between frequencies few platforms may temporarily switch to a stable frequency, waiting for the main PLL to stabilize. For example: When we transition between very low frequencies on exynos, like between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz. No CPUFREQ notification is sent for that. That means there's a period of time when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz and 300MHz. And so udelay behaves badly. To get this fixed in a generic way, introduce another set of callbacks get_intermediate() and target_intermediate(), only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate() should return a stable intermediate frequency platform wants to switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). NOTE: ->target_index() should restore to policy->restore_freq in case of failures as core would send notifications for that. Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-06-03 01:19:28 +08:00
jumping to the frequency corresponding to 'index'. Core will take care of
sending notifications and driver doesn't have to handle them in
target_intermediate() or target_index().
Drivers can return '0' from get_intermediate() in case they don't wish to switch
to intermediate frequency for some target frequency. In that case core will
directly call ->target_index().
NOTE: ->target_index() should restore to policy->restore_freq in case of
failures as core would send notifications for that.
2. Frequency Table Helpers
==========================
As most cpufreq processors only allow for being set to a few specific
frequencies, a "frequency table" with some functions might assist in
some work of the processor driver. Such a "frequency table" consists of
an array of struct cpufreq_frequency_table entries, with driver specific
values in "driver_data", the corresponding frequency in "frequency" and
flags set. At the end of the table, you need to add a
cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END.
And if you want to skip one entry in the table, set the frequency to
CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any
particular order, but if they are cpufreq core will do DVFS a bit
quickly for them as search for best match is faster.
The cpufreq table is verified automatically by the core if the policy contains a
valid pointer in its policy->freq_table field.
cpufreq_frequency_table_verify() assures that at least one valid
frequency is within policy->min and policy->max, and all other criteria
are met. This is helpful for the ->verify call.
cpufreq_frequency_table_target() is the corresponding frequency table
helper for the ->target stage. Just pass the values to this function,
and this function returns the of the frequency table entry which
contains the frequency the CPU shall be set to.
The following macros can be used as iterators over cpufreq_frequency_table:
cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
table.
cpufreq_for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
Use arguments "pos" - a ``cpufreq_frequency_table *`` as a loop cursor and
"table" - the ``cpufreq_frequency_table *`` you want to iterate over.
For example::
struct cpufreq_frequency_table *pos, *driver_freq_table;
cpufreq_for_each_entry(pos, driver_freq_table) {
/* Do something with pos */
pos->frequency = ...
}
If you need to work with the position of pos within driver_freq_table,
do not subtract the pointers, as it is quite costly. Instead, use the
macros cpufreq_for_each_entry_idx() and cpufreq_for_each_valid_entry_idx().