2019-04-08 02:10:58 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* arch/parisc/kernel/kprobes.c
|
|
|
|
*
|
|
|
|
* PA-RISC kprobes implementation
|
|
|
|
*
|
|
|
|
* Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include <asm/patch.h>
|
|
|
|
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
if ((unsigned long)p->addr & 3UL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
p->ainsn.insn = get_insn_slot();
|
|
|
|
if (!p->ainsn.insn)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memcpy(p->ainsn.insn, p->addr,
|
|
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
|
|
p->opcode = *p->addr;
|
|
|
|
flush_insn_slot(p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
if (!p->ainsn.insn)
|
|
|
|
return;
|
|
|
|
|
|
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
|
|
p->ainsn.insn = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
patch_text(p->addr, p->opcode);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
|
{
|
|
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
|
{
|
|
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __kprobes set_current_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
__this_cpu_write(current_kprobe, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
|
|
|
struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
kcb->iaoq[0] = regs->iaoq[0];
|
|
|
|
kcb->iaoq[1] = regs->iaoq[1];
|
|
|
|
regs->iaoq[0] = (unsigned long)p->ainsn.insn;
|
|
|
|
mtctl(0, 0);
|
|
|
|
regs->gr[0] |= PSW_R;
|
|
|
|
}
|
|
|
|
|
|
|
|
int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct kprobe *p;
|
|
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
|
|
|
|
preempt_disable();
|
|
|
|
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
p = get_kprobe((unsigned long *)regs->iaoq[0]);
|
|
|
|
|
|
|
|
if (!p) {
|
|
|
|
preempt_enable_no_resched();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (kprobe_running()) {
|
|
|
|
/*
|
|
|
|
* We have reentered the kprobe_handler, since another kprobe
|
|
|
|
* was hit while within the handler, we save the original
|
|
|
|
* kprobes and single step on the instruction of the new probe
|
|
|
|
* without calling any user handlers to avoid recursive
|
|
|
|
* kprobes.
|
|
|
|
*/
|
|
|
|
save_previous_kprobe(kcb);
|
|
|
|
set_current_kprobe(p);
|
|
|
|
kprobes_inc_nmissed_count(p);
|
|
|
|
setup_singlestep(p, kcb, regs);
|
|
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
set_current_kprobe(p);
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
|
|
|
|
/* If we have no pre-handler or it returned 0, we continue with
|
|
|
|
* normal processing. If we have a pre-handler and it returned
|
|
|
|
* non-zero - which means user handler setup registers to exit
|
|
|
|
* to another instruction, we must skip the single stepping.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
|
|
setup_singlestep(p, kcb, regs);
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
|
} else {
|
|
|
|
reset_current_kprobe();
|
|
|
|
preempt_enable_no_resched();
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
struct kprobe *p = kprobe_running();
|
|
|
|
|
2019-07-17 03:16:26 +08:00
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
|
2019-04-08 02:10:58 +08:00
|
|
|
if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
|
|
restore_previous_kprobe(kcb);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* for absolute branch instructions we can copy iaoq_b. for relative
|
|
|
|
* branch instructions we need to calculate the new address based on the
|
|
|
|
* difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
|
|
|
|
* modificationt because it's based on our ainsn.insn address.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (p->post_handler)
|
|
|
|
p->post_handler(p, regs, 0);
|
|
|
|
|
|
|
|
switch (regs->iir >> 26) {
|
|
|
|
case 0x38: /* BE */
|
|
|
|
case 0x39: /* BE,L */
|
|
|
|
case 0x3a: /* BV */
|
|
|
|
case 0x3b: /* BVE */
|
|
|
|
/* for absolute branches, regs->iaoq[1] has already the right
|
|
|
|
* address
|
|
|
|
*/
|
|
|
|
regs->iaoq[0] = kcb->iaoq[1];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
regs->iaoq[1] = kcb->iaoq[0];
|
|
|
|
regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
|
|
|
|
regs->iaoq[0] = kcb->iaoq[1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
|
|
reset_current_kprobe();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2019-04-10 01:30:28 +08:00
|
|
|
static inline void kretprobe_trampoline(void)
|
|
|
|
{
|
|
|
|
asm volatile("nop");
|
|
|
|
asm volatile("nop");
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
|
|
struct pt_regs *regs);
|
|
|
|
|
|
|
|
static struct kprobe trampoline_p = {
|
|
|
|
.pre_handler = trampoline_probe_handler
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
|
|
struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct kretprobe_instance *ri = NULL;
|
|
|
|
struct hlist_head *head, empty_rp;
|
|
|
|
struct hlist_node *tmp;
|
|
|
|
unsigned long flags, orig_ret_address = 0;
|
|
|
|
unsigned long trampoline_address = (unsigned long)trampoline_p.addr;
|
|
|
|
kprobe_opcode_t *correct_ret_addr = NULL;
|
|
|
|
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It is possible to have multiple instances associated with a given
|
|
|
|
* task either because multiple functions in the call path have
|
|
|
|
* a return probe installed on them, and/or more than one return
|
|
|
|
* probe was registered for a target function.
|
|
|
|
*
|
|
|
|
* We can handle this because:
|
|
|
|
* - instances are always inserted at the head of the list
|
|
|
|
* - when multiple return probes are registered for the same
|
|
|
|
* function, the first instance's ret_addr will point to the
|
|
|
|
* real return address, and all the rest will point to
|
|
|
|
* kretprobe_trampoline
|
|
|
|
*/
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
|
|
if (ri->task != current)
|
|
|
|
/* another task is sharing our hash bucket */
|
|
|
|
continue;
|
|
|
|
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
|
|
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
|
|
/*
|
|
|
|
* This is the real return address. Any other
|
|
|
|
* instances associated with this task are for
|
|
|
|
* other calls deeper on the call stack
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
|
|
|
|
|
correct_ret_addr = ri->ret_addr;
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
|
|
if (ri->task != current)
|
|
|
|
/* another task is sharing our hash bucket */
|
|
|
|
continue;
|
|
|
|
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
|
|
if (ri->rp && ri->rp->handler) {
|
|
|
|
__this_cpu_write(current_kprobe, &ri->rp->kp);
|
|
|
|
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
ri->ret_addr = correct_ret_addr;
|
|
|
|
ri->rp->handler(ri, regs);
|
|
|
|
__this_cpu_write(current_kprobe, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
|
|
/*
|
|
|
|
* This is the real return address. Any other
|
|
|
|
* instances associated with this task are for
|
|
|
|
* other calls deeper on the call stack
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
|
|
hlist_del(&ri->hlist);
|
|
|
|
kfree(ri);
|
|
|
|
}
|
|
|
|
instruction_pointer_set(regs, orig_ret_address);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
|
|
struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
|
|
|
|
|
|
|
|
/* Replace the return addr with trampoline addr. */
|
|
|
|
regs->gr[2] = (unsigned long)trampoline_p.addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
|
|
{
|
|
|
|
return p->addr == trampoline_p.addr;
|
|
|
|
}
|
2019-04-08 02:10:58 +08:00
|
|
|
|
|
|
|
int __init arch_init_kprobes(void)
|
|
|
|
{
|
2019-04-10 01:30:28 +08:00
|
|
|
trampoline_p.addr = (kprobe_opcode_t *)
|
|
|
|
dereference_function_descriptor(kretprobe_trampoline);
|
|
|
|
return register_kprobe(&trampoline_p);
|
2019-04-08 02:10:58 +08:00
|
|
|
}
|