OpenCloudOS-Kernel/drivers/md/raid10.c

4919 lines
135 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* raid10.c : Multiple Devices driver for Linux
*
* Copyright (C) 2000-2004 Neil Brown
*
* RAID-10 support for md.
*
* Base on code in raid1.c. See raid1.c for further copyright information.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/raid/md_p.h>
#include <trace/events/block.h>
#include "md.h"
#include "raid10.h"
#include "raid0.h"
#include "md-bitmap.h"
/*
* RAID10 provides a combination of RAID0 and RAID1 functionality.
* The layout of data is defined by
* chunk_size
* raid_disks
* near_copies (stored in low byte of layout)
* far_copies (stored in second byte of layout)
* far_offset (stored in bit 16 of layout )
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
* use_far_sets (stored in bit 17 of layout )
* use_far_sets_bugfixed (stored in bit 18 of layout )
*
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
* The data to be stored is divided into chunks using chunksize. Each device
* is divided into far_copies sections. In each section, chunks are laid out
* in a style similar to raid0, but near_copies copies of each chunk is stored
* (each on a different drive). The starting device for each section is offset
* near_copies from the starting device of the previous section. Thus there
* are (near_copies * far_copies) of each chunk, and each is on a different
* drive. near_copies and far_copies must be at least one, and their product
* is at most raid_disks.
*
* If far_offset is true, then the far_copies are handled a bit differently.
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
* The copies are still in different stripes, but instead of being very far
* apart on disk, there are adjacent stripes.
*
* The far and offset algorithms are handled slightly differently if
* 'use_far_sets' is true. In this case, the array's devices are grouped into
* sets that are (near_copies * far_copies) in size. The far copied stripes
* are still shifted by 'near_copies' devices, but this shifting stays confined
* to the set rather than the entire array. This is done to improve the number
* of device combinations that can fail without causing the array to fail.
* Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
* on a device):
* A B C D A B C D E
* ... ...
* D A B C E A B C D
* Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
* [A B] [C D] [A B] [C D E]
* |...| |...| |...| | ... |
* [B A] [D C] [B A] [E C D]
*/
static void allow_barrier(struct r10conf *conf);
static void lower_barrier(struct r10conf *conf);
static int _enough(struct r10conf *conf, int previous, int ignore);
static int enough(struct r10conf *conf, int ignore);
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
int *skipped);
static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
static void end_reshape_write(struct bio *bio);
static void end_reshape(struct r10conf *conf);
#define raid10_log(md, fmt, args...) \
do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
#include "raid1-10.c"
/*
* for resync bio, r10bio pointer can be retrieved from the per-bio
* 'struct resync_pages'.
*/
static inline struct r10bio *get_resync_r10bio(struct bio *bio)
{
return get_resync_pages(bio)->raid_bio;
}
static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
{
struct r10conf *conf = data;
int size = offsetof(struct r10bio, devs[conf->copies]);
/* allocate a r10bio with room for raid_disks entries in the
* bios array */
return kzalloc(size, gfp_flags);
}
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
/* amount of memory to reserve for resync requests */
#define RESYNC_WINDOW (1024*1024)
/* maximum number of concurrent requests, memory permitting */
#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
/*
* When performing a resync, we need to read and compare, so
* we need as many pages are there are copies.
* When performing a recovery, we need 2 bios, one for read,
* one for write (we recover only one drive per r10buf)
*
*/
static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
{
struct r10conf *conf = data;
struct r10bio *r10_bio;
struct bio *bio;
int j;
int nalloc, nalloc_rp;
struct resync_pages *rps;
r10_bio = r10bio_pool_alloc(gfp_flags, conf);
if (!r10_bio)
return NULL;
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
nalloc = conf->copies; /* resync */
else
nalloc = 2; /* recovery */
/* allocate once for all bios */
if (!conf->have_replacement)
nalloc_rp = nalloc;
else
nalloc_rp = nalloc * 2;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
if (!rps)
goto out_free_r10bio;
/*
* Allocate bios.
*/
for (j = nalloc ; j-- ; ) {
bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
if (!bio)
goto out_free_bio;
r10_bio->devs[j].bio = bio;
if (!conf->have_replacement)
continue;
bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
if (!bio)
goto out_free_bio;
r10_bio->devs[j].repl_bio = bio;
}
/*
* Allocate RESYNC_PAGES data pages and attach them
* where needed.
*/
for (j = 0; j < nalloc; j++) {
struct bio *rbio = r10_bio->devs[j].repl_bio;
struct resync_pages *rp, *rp_repl;
rp = &rps[j];
if (rbio)
rp_repl = &rps[nalloc + j];
bio = r10_bio->devs[j].bio;
if (!j || test_bit(MD_RECOVERY_SYNC,
&conf->mddev->recovery)) {
if (resync_alloc_pages(rp, gfp_flags))
goto out_free_pages;
} else {
memcpy(rp, &rps[0], sizeof(*rp));
resync_get_all_pages(rp);
}
rp->raid_bio = r10_bio;
bio->bi_private = rp;
if (rbio) {
memcpy(rp_repl, rp, sizeof(*rp));
rbio->bi_private = rp_repl;
}
}
return r10_bio;
out_free_pages:
while (--j >= 0)
resync_free_pages(&rps[j]);
j = 0;
out_free_bio:
for ( ; j < nalloc; j++) {
if (r10_bio->devs[j].bio)
bio_put(r10_bio->devs[j].bio);
if (r10_bio->devs[j].repl_bio)
bio_put(r10_bio->devs[j].repl_bio);
}
kfree(rps);
out_free_r10bio:
rbio_pool_free(r10_bio, conf);
return NULL;
}
static void r10buf_pool_free(void *__r10_bio, void *data)
{
struct r10conf *conf = data;
struct r10bio *r10bio = __r10_bio;
int j;
struct resync_pages *rp = NULL;
for (j = conf->copies; j--; ) {
struct bio *bio = r10bio->devs[j].bio;
raid10: check bio in r10buf_pool_free to void NULL pointer dereference For recovery case, r10buf_pool_alloc only allocates 2 bios, so we can't access more than 2 bios in r10buf_pool_free. Otherwise, we can see NULL pointer dereference as follows: [ 98.347009] BUG: unable to handle kernel NULL pointer dereference at 0000000000000050 [ 98.355783] IP: r10buf_pool_free+0x38/0xe0 [raid10] [...] [ 98.543734] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 98.550161] CR2: 0000000000000050 CR3: 000000089500a001 CR4: 00000000001606f0 [ 98.558145] Call Trace: [ 98.560881] <IRQ> [ 98.563136] put_buf+0x19/0x20 [raid10] [ 98.567426] end_sync_request+0x6b/0x70 [raid10] [ 98.572591] end_sync_write+0x9b/0x160 [raid10] [ 98.577662] blk_update_request+0x78/0x2c0 [ 98.582254] scsi_end_request+0x2c/0x1e0 [scsi_mod] [ 98.587719] scsi_io_completion+0x22f/0x610 [scsi_mod] [ 98.593472] blk_done_softirq+0x8e/0xc0 [ 98.597767] __do_softirq+0xde/0x2b3 [ 98.601770] irq_exit+0xae/0xb0 [ 98.605285] do_IRQ+0x81/0xd0 [ 98.608606] common_interrupt+0x7d/0x7d [ 98.612898] </IRQ> So we need to check the bio is valid or not before the bio is used in r10buf_pool_free. Another workable way is to free 2 bios for recovery case just like r10buf_pool_alloc. Fixes: f0250618361d ("md: raid10: don't use bio's vec table to manage resync pages") Reported-by: Alexis Castilla <pencerval@gmail.com> Tested-by: Alexis Castilla <pencerval@gmail.com> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-04-26 10:56:37 +08:00
if (bio) {
rp = get_resync_pages(bio);
resync_free_pages(rp);
bio_put(bio);
}
bio = r10bio->devs[j].repl_bio;
if (bio)
bio_put(bio);
}
/* resync pages array stored in the 1st bio's .bi_private */
kfree(rp);
rbio_pool_free(r10bio, conf);
}
static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
{
int i;
for (i = 0; i < conf->copies; i++) {
struct bio **bio = & r10_bio->devs[i].bio;
if (!BIO_SPECIAL(*bio))
bio_put(*bio);
*bio = NULL;
bio = &r10_bio->devs[i].repl_bio;
if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
bio_put(*bio);
*bio = NULL;
}
}
static void free_r10bio(struct r10bio *r10_bio)
{
struct r10conf *conf = r10_bio->mddev->private;
put_all_bios(conf, r10_bio);
mempool_free(r10_bio, &conf->r10bio_pool);
}
static void put_buf(struct r10bio *r10_bio)
{
struct r10conf *conf = r10_bio->mddev->private;
mempool_free(r10_bio, &conf->r10buf_pool);
lower_barrier(conf);
}
static void reschedule_retry(struct r10bio *r10_bio)
{
unsigned long flags;
struct mddev *mddev = r10_bio->mddev;
struct r10conf *conf = mddev->private;
spin_lock_irqsave(&conf->device_lock, flags);
list_add(&r10_bio->retry_list, &conf->retry_list);
conf->nr_queued ++;
spin_unlock_irqrestore(&conf->device_lock, flags);
/* wake up frozen array... */
wake_up(&conf->wait_barrier);
md_wakeup_thread(mddev->thread);
}
/*
* raid_end_bio_io() is called when we have finished servicing a mirrored
* operation and are ready to return a success/failure code to the buffer
* cache layer.
*/
static void raid_end_bio_io(struct r10bio *r10_bio)
{
struct bio *bio = r10_bio->master_bio;
struct r10conf *conf = r10_bio->mddev->private;
if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
bio->bi_status = BLK_STS_IOERR;
md/raid10: stop using bi_phys_segments raid10 currently repurposes bi_phys_segments on each incoming bio to count how many r10bio was used to encode the request. We need to know when the number of attached r10bio reaches zero to: 1/ call bio_endio() when all IO on the bio is finished 2/ decrement ->nr_pending so that resync IO can proceed. Now that the bio has its own __bi_remaining counter, that can be used instead. We can call bio_inc_remaining to increment the counter and call bio_endio() every time an r10bio completes, rather than only when bi_phys_segments reaches zero. This addresses point 1, but not point 2. bio_endio() doesn't (and cannot) report when the last r10bio has finished, so a different approach is needed. So: instead of counting bios in ->nr_pending, count r10bios. i.e. every time we attach a bio, increment nr_pending. Every time an r10bio completes, decrement nr_pending. Normally we only increment nr_pending after first checking that ->barrier is zero, or some other non-trivial tests and possible waiting. When attaching multiple r10bios to a bio, we only need the tests and the waiting once. After the first increment, subsequent increments can happen unconditionally as they are really all part of the one request. So introduce inc_pending() which can be used when we know that nr_pending is already elevated. Note that this fixes a bug. freeze_array() contains the line atomic_read(&conf->nr_pending) == conf->nr_queued+extra, which implies that the units for ->nr_pending, ->nr_queued and extra are the same. ->nr_queue and extra count r10_bios, but prior to this patch, ->nr_pending counted bios. If a bio ever resulted in multiple r10_bios (due to bad blocks), freeze_array() would not work correctly. Now it does. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-15 11:05:13 +08:00
bio_endio(bio);
/*
* Wake up any possible resync thread that waits for the device
* to go idle.
*/
allow_barrier(conf);
free_r10bio(r10_bio);
}
/*
* Update disk head position estimator based on IRQ completion info.
*/
static inline void update_head_pos(int slot, struct r10bio *r10_bio)
{
struct r10conf *conf = r10_bio->mddev->private;
conf->mirrors[r10_bio->devs[slot].devnum].head_position =
r10_bio->devs[slot].addr + (r10_bio->sectors);
}
/*
* Find the disk number which triggered given bio
*/
static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
struct bio *bio, int *slotp, int *replp)
{
int slot;
int repl = 0;
for (slot = 0; slot < conf->copies; slot++) {
if (r10_bio->devs[slot].bio == bio)
break;
if (r10_bio->devs[slot].repl_bio == bio) {
repl = 1;
break;
}
}
BUG_ON(slot == conf->copies);
update_head_pos(slot, r10_bio);
if (slotp)
*slotp = slot;
if (replp)
*replp = repl;
return r10_bio->devs[slot].devnum;
}
static void raid10_end_read_request(struct bio *bio)
{
int uptodate = !bio->bi_status;
struct r10bio *r10_bio = bio->bi_private;
int slot;
struct md_rdev *rdev;
struct r10conf *conf = r10_bio->mddev->private;
slot = r10_bio->read_slot;
rdev = r10_bio->devs[slot].rdev;
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
update_head_pos(slot, r10_bio);
if (uptodate) {
/*
* Set R10BIO_Uptodate in our master bio, so that
* we will return a good error code to the higher
* levels even if IO on some other mirrored buffer fails.
*
* The 'master' represents the composite IO operation to
* user-side. So if something waits for IO, then it will
* wait for the 'master' bio.
*/
set_bit(R10BIO_Uptodate, &r10_bio->state);
} else {
/* If all other devices that store this block have
* failed, we want to return the error upwards rather
* than fail the last device. Here we redefine
* "uptodate" to mean "Don't want to retry"
*/
if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
rdev->raid_disk))
uptodate = 1;
}
if (uptodate) {
raid_end_bio_io(r10_bio);
rdev_dec_pending(rdev, conf->mddev);
} else {
/*
* oops, read error - keep the refcount on the rdev
*/
char b[BDEVNAME_SIZE];
pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
mdname(conf->mddev),
bdevname(rdev->bdev, b),
(unsigned long long)r10_bio->sector);
set_bit(R10BIO_ReadError, &r10_bio->state);
reschedule_retry(r10_bio);
}
}
static void close_write(struct r10bio *r10_bio)
{
/* clear the bitmap if all writes complete successfully */
md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
r10_bio->sectors,
!test_bit(R10BIO_Degraded, &r10_bio->state),
0);
md_write_end(r10_bio->mddev);
}
static void one_write_done(struct r10bio *r10_bio)
{
if (atomic_dec_and_test(&r10_bio->remaining)) {
if (test_bit(R10BIO_WriteError, &r10_bio->state))
reschedule_retry(r10_bio);
else {
close_write(r10_bio);
if (test_bit(R10BIO_MadeGood, &r10_bio->state))
reschedule_retry(r10_bio);
else
raid_end_bio_io(r10_bio);
}
}
}
static void raid10_end_write_request(struct bio *bio)
{
struct r10bio *r10_bio = bio->bi_private;
int dev;
int dec_rdev = 1;
struct r10conf *conf = r10_bio->mddev->private;
int slot, repl;
struct md_rdev *rdev = NULL;
struct bio *to_put = NULL;
bool discard_error;
discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
if (repl)
rdev = conf->mirrors[dev].replacement;
if (!rdev) {
smp_rmb();
repl = 0;
rdev = conf->mirrors[dev].rdev;
}
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
if (bio->bi_status && !discard_error) {
if (repl)
/* Never record new bad blocks to replacement,
* just fail it.
*/
md_error(rdev->mddev, rdev);
else {
set_bit(WriteErrorSeen, &rdev->flags);
if (!test_and_set_bit(WantReplacement, &rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
dec_rdev = 0;
if (test_bit(FailFast, &rdev->flags) &&
(bio->bi_opf & MD_FAILFAST)) {
md_error(rdev->mddev, rdev);
}
/*
* When the device is faulty, it is not necessary to
* handle write error.
* For failfast, this is the only remaining device,
* We need to retry the write without FailFast.
*/
if (!test_bit(Faulty, &rdev->flags))
set_bit(R10BIO_WriteError, &r10_bio->state);
else {
r10_bio->devs[slot].bio = NULL;
to_put = bio;
dec_rdev = 1;
}
}
} else {
/*
* Set R10BIO_Uptodate in our master bio, so that
* we will return a good error code for to the higher
* levels even if IO on some other mirrored buffer fails.
*
* The 'master' represents the composite IO operation to
* user-side. So if something waits for IO, then it will
* wait for the 'master' bio.
*/
sector_t first_bad;
int bad_sectors;
/*
* Do not set R10BIO_Uptodate if the current device is
* rebuilding or Faulty. This is because we cannot use
* such device for properly reading the data back (we could
* potentially use it, if the current write would have felt
* before rdev->recovery_offset, but for simplicity we don't
* check this here.
*/
if (test_bit(In_sync, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
set_bit(R10BIO_Uptodate, &r10_bio->state);
/* Maybe we can clear some bad blocks. */
if (is_badblock(rdev,
r10_bio->devs[slot].addr,
r10_bio->sectors,
&first_bad, &bad_sectors) && !discard_error) {
bio_put(bio);
if (repl)
r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
else
r10_bio->devs[slot].bio = IO_MADE_GOOD;
dec_rdev = 0;
set_bit(R10BIO_MadeGood, &r10_bio->state);
}
}
/*
*
* Let's see if all mirrored write operations have finished
* already.
*/
one_write_done(r10_bio);
if (dec_rdev)
rdev_dec_pending(rdev, conf->mddev);
if (to_put)
bio_put(to_put);
}
/*
* RAID10 layout manager
* As well as the chunksize and raid_disks count, there are two
* parameters: near_copies and far_copies.
* near_copies * far_copies must be <= raid_disks.
* Normally one of these will be 1.
* If both are 1, we get raid0.
* If near_copies == raid_disks, we get raid1.
*
* Chunks are laid out in raid0 style with near_copies copies of the
* first chunk, followed by near_copies copies of the next chunk and
* so on.
* If far_copies > 1, then after 1/far_copies of the array has been assigned
* as described above, we start again with a device offset of near_copies.
* So we effectively have another copy of the whole array further down all
* the drives, but with blocks on different drives.
* With this layout, and block is never stored twice on the one device.
*
* raid10_find_phys finds the sector offset of a given virtual sector
* on each device that it is on.
*
* raid10_find_virt does the reverse mapping, from a device and a
* sector offset to a virtual address
*/
static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
{
int n,f;
sector_t sector;
sector_t chunk;
sector_t stripe;
int dev;
int slot = 0;
int last_far_set_start, last_far_set_size;
last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
last_far_set_start *= geo->far_set_size;
last_far_set_size = geo->far_set_size;
last_far_set_size += (geo->raid_disks % geo->far_set_size);
/* now calculate first sector/dev */
chunk = r10bio->sector >> geo->chunk_shift;
sector = r10bio->sector & geo->chunk_mask;
chunk *= geo->near_copies;
stripe = chunk;
dev = sector_div(stripe, geo->raid_disks);
if (geo->far_offset)
stripe *= geo->far_copies;
sector += stripe << geo->chunk_shift;
/* and calculate all the others */
for (n = 0; n < geo->near_copies; n++) {
int d = dev;
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
int set;
sector_t s = sector;
r10bio->devs[slot].devnum = d;
r10bio->devs[slot].addr = s;
slot++;
for (f = 1; f < geo->far_copies; f++) {
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
set = d / geo->far_set_size;
d += geo->near_copies;
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
if ((geo->raid_disks % geo->far_set_size) &&
(d > last_far_set_start)) {
d -= last_far_set_start;
d %= last_far_set_size;
d += last_far_set_start;
} else {
d %= geo->far_set_size;
d += geo->far_set_size * set;
}
s += geo->stride;
r10bio->devs[slot].devnum = d;
r10bio->devs[slot].addr = s;
slot++;
}
dev++;
if (dev >= geo->raid_disks) {
dev = 0;
sector += (geo->chunk_mask + 1);
}
}
}
static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
{
struct geom *geo = &conf->geo;
if (conf->reshape_progress != MaxSector &&
((r10bio->sector >= conf->reshape_progress) !=
conf->mddev->reshape_backwards)) {
set_bit(R10BIO_Previous, &r10bio->state);
geo = &conf->prev;
} else
clear_bit(R10BIO_Previous, &r10bio->state);
__raid10_find_phys(geo, r10bio);
}
static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
{
sector_t offset, chunk, vchunk;
/* Never use conf->prev as this is only called during resync
* or recovery, so reshape isn't happening
*/
struct geom *geo = &conf->geo;
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
int far_set_size = geo->far_set_size;
int last_far_set_start;
if (geo->raid_disks % geo->far_set_size) {
last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
last_far_set_start *= geo->far_set_size;
if (dev >= last_far_set_start) {
far_set_size = geo->far_set_size;
far_set_size += (geo->raid_disks % geo->far_set_size);
far_set_start = last_far_set_start;
}
}
offset = sector & geo->chunk_mask;
if (geo->far_offset) {
int fc;
chunk = sector >> geo->chunk_shift;
fc = sector_div(chunk, geo->far_copies);
dev -= fc * geo->near_copies;
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
if (dev < far_set_start)
dev += far_set_size;
} else {
while (sector >= geo->stride) {
sector -= geo->stride;
MD RAID10: Improve redundancy for 'far' and 'offset' algorithms (part 1) The MD RAID10 'far' and 'offset' algorithms make copies of entire stripe widths - copying them to a different location on the same devices after shifting the stripe. An example layout of each follows below: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... F A B C D E --> Copy of stripe0, but shifted by 1 L G H I J K ... "offset" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F F A B C D E --> Copy of stripe0, but shifted by 1 G H I J K L L G H I J K ... Redundancy for these algorithms is gained by shifting the copied stripes one device to the right. This patch proposes that array be divided into sets of adjacent devices and when the stripe copies are shifted, they wrap on set boundaries rather than the array size boundary. That is, for the purposes of shifting, the copies are confined to their sets within the array. The sets are 'near_copies * far_copies' in size. The above "far" algorithm example would change to: "far" algorithm dev1 dev2 dev3 dev4 dev5 dev6 ==== ==== ==== ==== ==== ==== A B C D E F G H I J K L ... B A D C F E --> Copy of stripe0, shifted 1, 2-dev sets H G J I L K Dev sets are 1-2, 3-4, 5-6 ... This has the affect of improving the redundancy of the array. We can always sustain at least one failure, but sometimes more than one can be handled. In the first examples, the pairs of devices that CANNOT fail together are: (1,2) (2,3) (3,4) (4,5) (5,6) (1, 6) [40% of possible pairs] In the example where the copies are confined to sets, the pairs of devices that cannot fail together are: (1,2) (3,4) (5,6) [20% of possible pairs] We cannot simply replace the old algorithms, so the 17th bit of the 'layout' variable is used to indicate whether we use the old or new method of computing the shift. (This is similar to the way the 16th bit indicates whether the "far" algorithm or the "offset" algorithm is being used.) This patch only handles the cases where the number of total raid disks is a multiple of 'far_copies'. A follow-on patch addresses the condition where this is not true. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
2013-02-21 10:28:10 +08:00
if (dev < (geo->near_copies + far_set_start))
dev += far_set_size - geo->near_copies;
else
dev -= geo->near_copies;
}
chunk = sector >> geo->chunk_shift;
}
vchunk = chunk * geo->raid_disks + dev;
sector_div(vchunk, geo->near_copies);
return (vchunk << geo->chunk_shift) + offset;
}
/*
* This routine returns the disk from which the requested read should
* be done. There is a per-array 'next expected sequential IO' sector
* number - if this matches on the next IO then we use the last disk.
* There is also a per-disk 'last know head position' sector that is
* maintained from IRQ contexts, both the normal and the resync IO
* completion handlers update this position correctly. If there is no
* perfect sequential match then we pick the disk whose head is closest.
*
* If there are 2 mirrors in the same 2 devices, performance degrades
* because position is mirror, not device based.
*
* The rdev for the device selected will have nr_pending incremented.
*/
/*
* FIXME: possibly should rethink readbalancing and do it differently
* depending on near_copies / far_copies geometry.
*/
static struct md_rdev *read_balance(struct r10conf *conf,
struct r10bio *r10_bio,
int *max_sectors)
{
const sector_t this_sector = r10_bio->sector;
int disk, slot;
int sectors = r10_bio->sectors;
int best_good_sectors;
sector_t new_distance, best_dist;
struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
int do_balance;
int best_dist_slot, best_pending_slot;
bool has_nonrot_disk = false;
unsigned int min_pending;
struct geom *geo = &conf->geo;
raid10_find_phys(conf, r10_bio);
rcu_read_lock();
best_dist_slot = -1;
min_pending = UINT_MAX;
best_dist_rdev = NULL;
best_pending_rdev = NULL;
best_dist = MaxSector;
best_good_sectors = 0;
do_balance = 1;
clear_bit(R10BIO_FailFast, &r10_bio->state);
/*
* Check if we can balance. We can balance on the whole
* device if no resync is going on (recovery is ok), or below
* the resync window. We take the first readable disk when
* above the resync window.
*/
if ((conf->mddev->recovery_cp < MaxSector
&& (this_sector + sectors >= conf->next_resync)) ||
(mddev_is_clustered(conf->mddev) &&
md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
this_sector + sectors)))
do_balance = 0;
for (slot = 0; slot < conf->copies ; slot++) {
sector_t first_bad;
int bad_sectors;
sector_t dev_sector;
unsigned int pending;
bool nonrot;
if (r10_bio->devs[slot].bio == IO_BLOCKED)
continue;
disk = r10_bio->devs[slot].devnum;
rdev = rcu_dereference(conf->mirrors[disk].replacement);
if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
rdev = rcu_dereference(conf->mirrors[disk].rdev);
if (rdev == NULL ||
test_bit(Faulty, &rdev->flags))
continue;
if (!test_bit(In_sync, &rdev->flags) &&
r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
continue;
dev_sector = r10_bio->devs[slot].addr;
if (is_badblock(rdev, dev_sector, sectors,
&first_bad, &bad_sectors)) {
if (best_dist < MaxSector)
/* Already have a better slot */
continue;
if (first_bad <= dev_sector) {
/* Cannot read here. If this is the
* 'primary' device, then we must not read
* beyond 'bad_sectors' from another device.
*/
bad_sectors -= (dev_sector - first_bad);
if (!do_balance && sectors > bad_sectors)
sectors = bad_sectors;
if (best_good_sectors > sectors)
best_good_sectors = sectors;
} else {
sector_t good_sectors =
first_bad - dev_sector;
if (good_sectors > best_good_sectors) {
best_good_sectors = good_sectors;
best_dist_slot = slot;
best_dist_rdev = rdev;
}
if (!do_balance)
/* Must read from here */
break;
}
continue;
} else
best_good_sectors = sectors;
if (!do_balance)
break;
nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
has_nonrot_disk |= nonrot;
pending = atomic_read(&rdev->nr_pending);
if (min_pending > pending && nonrot) {
min_pending = pending;
best_pending_slot = slot;
best_pending_rdev = rdev;
}
if (best_dist_slot >= 0)
/* At least 2 disks to choose from so failfast is OK */
set_bit(R10BIO_FailFast, &r10_bio->state);
/* This optimisation is debatable, and completely destroys
* sequential read speed for 'far copies' arrays. So only
* keep it for 'near' arrays, and review those later.
*/
if (geo->near_copies > 1 && !pending)
new_distance = 0;
/* for far > 1 always use the lowest address */
else if (geo->far_copies > 1)
new_distance = r10_bio->devs[slot].addr;
else
new_distance = abs(r10_bio->devs[slot].addr -
conf->mirrors[disk].head_position);
if (new_distance < best_dist) {
best_dist = new_distance;
best_dist_slot = slot;
best_dist_rdev = rdev;
}
}
if (slot >= conf->copies) {
if (has_nonrot_disk) {
slot = best_pending_slot;
rdev = best_pending_rdev;
} else {
slot = best_dist_slot;
rdev = best_dist_rdev;
}
}
if (slot >= 0) {
atomic_inc(&rdev->nr_pending);
r10_bio->read_slot = slot;
} else
rdev = NULL;
rcu_read_unlock();
*max_sectors = best_good_sectors;
return rdev;
}
static void flush_pending_writes(struct r10conf *conf)
{
/* Any writes that have been queued but are awaiting
* bitmap updates get flushed here.
*/
spin_lock_irq(&conf->device_lock);
if (conf->pending_bio_list.head) {
struct blk_plug plug;
struct bio *bio;
bio = bio_list_get(&conf->pending_bio_list);
conf->pending_count = 0;
spin_unlock_irq(&conf->device_lock);
/*
* As this is called in a wait_event() loop (see freeze_array),
* current->state might be TASK_UNINTERRUPTIBLE which will
* cause a warning when we prepare to wait again. As it is
* rare that this path is taken, it is perfectly safe to force
* us to go around the wait_event() loop again, so the warning
* is a false-positive. Silence the warning by resetting
* thread state
*/
__set_current_state(TASK_RUNNING);
blk_start_plug(&plug);
/* flush any pending bitmap writes to disk
* before proceeding w/ I/O */
md_bitmap_unplug(conf->mddev->bitmap);
wake_up(&conf->wait_barrier);
while (bio) { /* submit pending writes */
struct bio *next = bio->bi_next;
struct md_rdev *rdev = (void*)bio->bi_disk;
bio->bi_next = NULL;
bio_set_dev(bio, rdev->bdev);
if (test_bit(Faulty, &rdev->flags)) {
bio_io_error(bio);
} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
!blk_queue_discard(bio->bi_disk->queue)))
/* Just ignore it */
bio_endio(bio);
else
submit_bio_noacct(bio);
bio = next;
}
blk_finish_plug(&plug);
} else
spin_unlock_irq(&conf->device_lock);
}
/* Barriers....
* Sometimes we need to suspend IO while we do something else,
* either some resync/recovery, or reconfigure the array.
* To do this we raise a 'barrier'.
* The 'barrier' is a counter that can be raised multiple times
* to count how many activities are happening which preclude
* normal IO.
* We can only raise the barrier if there is no pending IO.
* i.e. if nr_pending == 0.
* We choose only to raise the barrier if no-one is waiting for the
* barrier to go down. This means that as soon as an IO request
* is ready, no other operations which require a barrier will start
* until the IO request has had a chance.
*
* So: regular IO calls 'wait_barrier'. When that returns there
* is no backgroup IO happening, It must arrange to call
* allow_barrier when it has finished its IO.
* backgroup IO calls must call raise_barrier. Once that returns
* there is no normal IO happeing. It must arrange to call
* lower_barrier when the particular background IO completes.
*/
static void raise_barrier(struct r10conf *conf, int force)
{
BUG_ON(force && !conf->barrier);
spin_lock_irq(&conf->resync_lock);
/* Wait until no block IO is waiting (unless 'force') */
wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
conf->resync_lock);
/* block any new IO from starting */
conf->barrier++;
/* Now wait for all pending IO to complete */
wait_event_lock_irq(conf->wait_barrier,
!atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
conf->resync_lock);
spin_unlock_irq(&conf->resync_lock);
}
static void lower_barrier(struct r10conf *conf)
{
unsigned long flags;
spin_lock_irqsave(&conf->resync_lock, flags);
conf->barrier--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier);
}
static void wait_barrier(struct r10conf *conf)
{
spin_lock_irq(&conf->resync_lock);
if (conf->barrier) {
struct bio_list *bio_list = current->bio_list;
conf->nr_waiting++;
/* Wait for the barrier to drop.
* However if there are already pending
* requests (preventing the barrier from
* rising completely), and the
* pre-process bio queue isn't empty,
* then don't wait, as we need to empty
* that queue to get the nr_pending
* count down.
*/
raid10_log(conf->mddev, "wait barrier");
wait_event_lock_irq(conf->wait_barrier,
!conf->barrier ||
(atomic_read(&conf->nr_pending) &&
bio_list &&
(!bio_list_empty(&bio_list[0]) ||
!bio_list_empty(&bio_list[1]))) ||
/* move on if recovery thread is
* blocked by us
*/
(conf->mddev->thread->tsk == current &&
test_bit(MD_RECOVERY_RUNNING,
&conf->mddev->recovery) &&
conf->nr_queued > 0),
conf->resync_lock);
conf->nr_waiting--;
if (!conf->nr_waiting)
wake_up(&conf->wait_barrier);
}
atomic_inc(&conf->nr_pending);
spin_unlock_irq(&conf->resync_lock);
}
static void allow_barrier(struct r10conf *conf)
{
if ((atomic_dec_and_test(&conf->nr_pending)) ||
(conf->array_freeze_pending))
wake_up(&conf->wait_barrier);
}
static void freeze_array(struct r10conf *conf, int extra)
{
/* stop syncio and normal IO and wait for everything to
* go quiet.
* We increment barrier and nr_waiting, and then
* wait until nr_pending match nr_queued+extra
* This is called in the context of one normal IO request
* that has failed. Thus any sync request that might be pending
* will be blocked by nr_pending, and we need to wait for
* pending IO requests to complete or be queued for re-try.
* Thus the number queued (nr_queued) plus this request (extra)
* must match the number of pending IOs (nr_pending) before
* we continue.
*/
spin_lock_irq(&conf->resync_lock);
conf->array_freeze_pending++;
conf->barrier++;
conf->nr_waiting++;
wait_event_lock_irq_cmd(conf->wait_barrier,
atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
conf->resync_lock,
flush_pending_writes(conf));
conf->array_freeze_pending--;
spin_unlock_irq(&conf->resync_lock);
}
static void unfreeze_array(struct r10conf *conf)
{
/* reverse the effect of the freeze */
spin_lock_irq(&conf->resync_lock);
conf->barrier--;
conf->nr_waiting--;
wake_up(&conf->wait_barrier);
spin_unlock_irq(&conf->resync_lock);
}
static sector_t choose_data_offset(struct r10bio *r10_bio,
struct md_rdev *rdev)
{
if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
test_bit(R10BIO_Previous, &r10_bio->state))
return rdev->data_offset;
else
return rdev->new_data_offset;
}
struct raid10_plug_cb {
struct blk_plug_cb cb;
struct bio_list pending;
int pending_cnt;
};
static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
cb);
struct mddev *mddev = plug->cb.data;
struct r10conf *conf = mddev->private;
struct bio *bio;
if (from_schedule || current->bio_list) {
spin_lock_irq(&conf->device_lock);
bio_list_merge(&conf->pending_bio_list, &plug->pending);
conf->pending_count += plug->pending_cnt;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_barrier);
md_wakeup_thread(mddev->thread);
kfree(plug);
return;
}
/* we aren't scheduling, so we can do the write-out directly. */
bio = bio_list_get(&plug->pending);
md_bitmap_unplug(mddev->bitmap);
wake_up(&conf->wait_barrier);
while (bio) { /* submit pending writes */
struct bio *next = bio->bi_next;
struct md_rdev *rdev = (void*)bio->bi_disk;
bio->bi_next = NULL;
bio_set_dev(bio, rdev->bdev);
if (test_bit(Faulty, &rdev->flags)) {
bio_io_error(bio);
} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
!blk_queue_discard(bio->bi_disk->queue)))
/* Just ignore it */
bio_endio(bio);
else
submit_bio_noacct(bio);
bio = next;
}
kfree(plug);
}
/*
* 1. Register the new request and wait if the reconstruction thread has put
* up a bar for new requests. Continue immediately if no resync is active
* currently.
* 2. If IO spans the reshape position. Need to wait for reshape to pass.
*/
static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
struct bio *bio, sector_t sectors)
{
wait_barrier(conf);
while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
bio->bi_iter.bi_sector < conf->reshape_progress &&
bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
raid10_log(conf->mddev, "wait reshape");
allow_barrier(conf);
wait_event(conf->wait_barrier,
conf->reshape_progress <= bio->bi_iter.bi_sector ||
conf->reshape_progress >= bio->bi_iter.bi_sector +
sectors);
wait_barrier(conf);
}
}
static void raid10_read_request(struct mddev *mddev, struct bio *bio,
struct r10bio *r10_bio)
{
struct r10conf *conf = mddev->private;
struct bio *read_bio;
const int op = bio_op(bio);
const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
int max_sectors;
struct md_rdev *rdev;
char b[BDEVNAME_SIZE];
int slot = r10_bio->read_slot;
struct md_rdev *err_rdev = NULL;
gfp_t gfp = GFP_NOIO;
if (slot >= 0 && r10_bio->devs[slot].rdev) {
/*
* This is an error retry, but we cannot
* safely dereference the rdev in the r10_bio,
* we must use the one in conf.
* If it has already been disconnected (unlikely)
* we lose the device name in error messages.
*/
int disk;
/*
* As we are blocking raid10, it is a little safer to
* use __GFP_HIGH.
*/
gfp = GFP_NOIO | __GFP_HIGH;
rcu_read_lock();
disk = r10_bio->devs[slot].devnum;
err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
if (err_rdev)
bdevname(err_rdev->bdev, b);
else {
strcpy(b, "???");
/* This never gets dereferenced */
err_rdev = r10_bio->devs[slot].rdev;
}
rcu_read_unlock();
}
regular_request_wait(mddev, conf, bio, r10_bio->sectors);
rdev = read_balance(conf, r10_bio, &max_sectors);
if (!rdev) {
if (err_rdev) {
pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
mdname(mddev), b,
(unsigned long long)r10_bio->sector);
}
raid_end_bio_io(r10_bio);
return;
}
if (err_rdev)
pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
mdname(mddev),
bdevname(rdev->bdev, b),
(unsigned long long)r10_bio->sector);
if (max_sectors < bio_sectors(bio)) {
struct bio *split = bio_split(bio, max_sectors,
gfp, &conf->bio_split);
bio_chain(split, bio);
md: fix raid10 hang issue caused by barrier When both regular IO and resync IO happen at the same time, and if we also need to split regular. Then we can see tasks hang due to barrier. 1. resync thread [ 1463.757205] INFO: task md1_resync:5215 blocked for more than 480 seconds. [ 1463.757207] Not tainted 4.19.5-1-default #1 [ 1463.757209] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.757212] md1_resync D 0 5215 2 0x80000000 [ 1463.757216] Call Trace: [ 1463.757223] ? __schedule+0x29a/0x880 [ 1463.757231] ? raise_barrier+0x8d/0x140 [raid10] [ 1463.757236] schedule+0x78/0x110 [ 1463.757243] raise_barrier+0x8d/0x140 [raid10] [ 1463.757248] ? wait_woken+0x80/0x80 [ 1463.757257] raid10_sync_request+0x1f6/0x1e30 [raid10] [ 1463.757265] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.757284] ? is_mddev_idle+0x125/0x137 [md_mod] [ 1463.757302] md_do_sync.cold.78+0x404/0x969 [md_mod] [ 1463.757311] ? wait_woken+0x80/0x80 [ 1463.757336] ? md_rdev_init+0xb0/0xb0 [md_mod] [ 1463.757351] md_thread+0xe9/0x140 [md_mod] [ 1463.757358] ? _raw_spin_unlock_irqrestore+0x2e/0x60 [ 1463.757364] ? __kthread_parkme+0x4c/0x70 [ 1463.757369] kthread+0x112/0x130 [ 1463.757374] ? kthread_create_worker_on_cpu+0x40/0x40 [ 1463.757380] ret_from_fork+0x3a/0x50 2. regular IO [ 1463.760679] INFO: task kworker/0:8:5367 blocked for more than 480 seconds. [ 1463.760683] Not tainted 4.19.5-1-default #1 [ 1463.760684] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.760687] kworker/0:8 D 0 5367 2 0x80000000 [ 1463.760718] Workqueue: md submit_flushes [md_mod] [ 1463.760721] Call Trace: [ 1463.760731] ? __schedule+0x29a/0x880 [ 1463.760741] ? wait_barrier+0xdd/0x170 [raid10] [ 1463.760746] schedule+0x78/0x110 [ 1463.760753] wait_barrier+0xdd/0x170 [raid10] [ 1463.760761] ? wait_woken+0x80/0x80 [ 1463.760768] raid10_write_request+0xf2/0x900 [raid10] [ 1463.760774] ? wait_woken+0x80/0x80 [ 1463.760778] ? mempool_alloc+0x55/0x160 [ 1463.760795] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760801] ? try_to_wake_up+0x44/0x470 [ 1463.760810] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760816] ? wait_woken+0x80/0x80 [ 1463.760831] md_handle_request+0x121/0x190 [md_mod] [ 1463.760851] md_make_request+0x78/0x190 [md_mod] [ 1463.760860] generic_make_request+0x1c6/0x470 [ 1463.760870] raid10_write_request+0x77a/0x900 [raid10] [ 1463.760875] ? wait_woken+0x80/0x80 [ 1463.760879] ? mempool_alloc+0x55/0x160 [ 1463.760895] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760904] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760910] ? wait_woken+0x80/0x80 [ 1463.760926] md_handle_request+0x121/0x190 [md_mod] [ 1463.760931] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.760936] ? finish_task_switch+0x74/0x260 [ 1463.760954] submit_flushes+0x21/0x40 [md_mod] So resync io is waiting for regular write io to complete to decrease nr_pending (conf->barrier++ is called before waiting). The regular write io splits another bio after call wait_barrier which call nr_pending++, then the splitted bio would continue with raid10_write_request -> wait_barrier, so the splitted bio has to wait for barrier to be zero, then deadlock happens as follows. resync io regular io raise_barrier wait_barrier generic_make_request wait_barrier To resolve the issue, we need to call allow_barrier to decrease nr_pending before generic_make_request since regular IO is not issued to underlying devices, and wait_barrier is called again to ensure no internal IO happening. Fixes: fc9977dd069e ("md/raid10: simplify the splitting of requests.") Reported-and-tested-by: Siniša Bandin <sinisa@4net.rs> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-12-19 14:19:25 +08:00
allow_barrier(conf);
submit_bio_noacct(bio);
md: fix raid10 hang issue caused by barrier When both regular IO and resync IO happen at the same time, and if we also need to split regular. Then we can see tasks hang due to barrier. 1. resync thread [ 1463.757205] INFO: task md1_resync:5215 blocked for more than 480 seconds. [ 1463.757207] Not tainted 4.19.5-1-default #1 [ 1463.757209] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.757212] md1_resync D 0 5215 2 0x80000000 [ 1463.757216] Call Trace: [ 1463.757223] ? __schedule+0x29a/0x880 [ 1463.757231] ? raise_barrier+0x8d/0x140 [raid10] [ 1463.757236] schedule+0x78/0x110 [ 1463.757243] raise_barrier+0x8d/0x140 [raid10] [ 1463.757248] ? wait_woken+0x80/0x80 [ 1463.757257] raid10_sync_request+0x1f6/0x1e30 [raid10] [ 1463.757265] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.757284] ? is_mddev_idle+0x125/0x137 [md_mod] [ 1463.757302] md_do_sync.cold.78+0x404/0x969 [md_mod] [ 1463.757311] ? wait_woken+0x80/0x80 [ 1463.757336] ? md_rdev_init+0xb0/0xb0 [md_mod] [ 1463.757351] md_thread+0xe9/0x140 [md_mod] [ 1463.757358] ? _raw_spin_unlock_irqrestore+0x2e/0x60 [ 1463.757364] ? __kthread_parkme+0x4c/0x70 [ 1463.757369] kthread+0x112/0x130 [ 1463.757374] ? kthread_create_worker_on_cpu+0x40/0x40 [ 1463.757380] ret_from_fork+0x3a/0x50 2. regular IO [ 1463.760679] INFO: task kworker/0:8:5367 blocked for more than 480 seconds. [ 1463.760683] Not tainted 4.19.5-1-default #1 [ 1463.760684] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.760687] kworker/0:8 D 0 5367 2 0x80000000 [ 1463.760718] Workqueue: md submit_flushes [md_mod] [ 1463.760721] Call Trace: [ 1463.760731] ? __schedule+0x29a/0x880 [ 1463.760741] ? wait_barrier+0xdd/0x170 [raid10] [ 1463.760746] schedule+0x78/0x110 [ 1463.760753] wait_barrier+0xdd/0x170 [raid10] [ 1463.760761] ? wait_woken+0x80/0x80 [ 1463.760768] raid10_write_request+0xf2/0x900 [raid10] [ 1463.760774] ? wait_woken+0x80/0x80 [ 1463.760778] ? mempool_alloc+0x55/0x160 [ 1463.760795] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760801] ? try_to_wake_up+0x44/0x470 [ 1463.760810] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760816] ? wait_woken+0x80/0x80 [ 1463.760831] md_handle_request+0x121/0x190 [md_mod] [ 1463.760851] md_make_request+0x78/0x190 [md_mod] [ 1463.760860] generic_make_request+0x1c6/0x470 [ 1463.760870] raid10_write_request+0x77a/0x900 [raid10] [ 1463.760875] ? wait_woken+0x80/0x80 [ 1463.760879] ? mempool_alloc+0x55/0x160 [ 1463.760895] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760904] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760910] ? wait_woken+0x80/0x80 [ 1463.760926] md_handle_request+0x121/0x190 [md_mod] [ 1463.760931] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.760936] ? finish_task_switch+0x74/0x260 [ 1463.760954] submit_flushes+0x21/0x40 [md_mod] So resync io is waiting for regular write io to complete to decrease nr_pending (conf->barrier++ is called before waiting). The regular write io splits another bio after call wait_barrier which call nr_pending++, then the splitted bio would continue with raid10_write_request -> wait_barrier, so the splitted bio has to wait for barrier to be zero, then deadlock happens as follows. resync io regular io raise_barrier wait_barrier generic_make_request wait_barrier To resolve the issue, we need to call allow_barrier to decrease nr_pending before generic_make_request since regular IO is not issued to underlying devices, and wait_barrier is called again to ensure no internal IO happening. Fixes: fc9977dd069e ("md/raid10: simplify the splitting of requests.") Reported-and-tested-by: Siniša Bandin <sinisa@4net.rs> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-12-19 14:19:25 +08:00
wait_barrier(conf);
bio = split;
r10_bio->master_bio = bio;
r10_bio->sectors = max_sectors;
}
slot = r10_bio->read_slot;
read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
r10_bio->devs[slot].bio = read_bio;
r10_bio->devs[slot].rdev = rdev;
read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
choose_data_offset(r10_bio, rdev);
bio_set_dev(read_bio, rdev->bdev);
read_bio->bi_end_io = raid10_end_read_request;
bio_set_op_attrs(read_bio, op, do_sync);
if (test_bit(FailFast, &rdev->flags) &&
test_bit(R10BIO_FailFast, &r10_bio->state))
read_bio->bi_opf |= MD_FAILFAST;
read_bio->bi_private = r10_bio;
if (mddev->gendisk)
trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
r10_bio->sector);
submit_bio_noacct(read_bio);
return;
}
static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
struct bio *bio, bool replacement,
int n_copy)
{
const int op = bio_op(bio);
const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
unsigned long flags;
struct blk_plug_cb *cb;
struct raid10_plug_cb *plug = NULL;
struct r10conf *conf = mddev->private;
struct md_rdev *rdev;
int devnum = r10_bio->devs[n_copy].devnum;
struct bio *mbio;
if (replacement) {
rdev = conf->mirrors[devnum].replacement;
if (rdev == NULL) {
/* Replacement just got moved to main 'rdev' */
smp_mb();
rdev = conf->mirrors[devnum].rdev;
}
} else
rdev = conf->mirrors[devnum].rdev;
mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
if (replacement)
r10_bio->devs[n_copy].repl_bio = mbio;
else
r10_bio->devs[n_copy].bio = mbio;
mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
choose_data_offset(r10_bio, rdev));
bio_set_dev(mbio, rdev->bdev);
mbio->bi_end_io = raid10_end_write_request;
bio_set_op_attrs(mbio, op, do_sync | do_fua);
if (!replacement && test_bit(FailFast,
&conf->mirrors[devnum].rdev->flags)
&& enough(conf, devnum))
mbio->bi_opf |= MD_FAILFAST;
mbio->bi_private = r10_bio;
if (conf->mddev->gendisk)
trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
r10_bio->sector);
/* flush_pending_writes() needs access to the rdev so...*/
mbio->bi_disk = (void *)rdev;
atomic_inc(&r10_bio->remaining);
cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
if (cb)
plug = container_of(cb, struct raid10_plug_cb, cb);
else
plug = NULL;
if (plug) {
bio_list_add(&plug->pending, mbio);
plug->pending_cnt++;
} else {
spin_lock_irqsave(&conf->device_lock, flags);
bio_list_add(&conf->pending_bio_list, mbio);
conf->pending_count++;
spin_unlock_irqrestore(&conf->device_lock, flags);
md_wakeup_thread(mddev->thread);
}
}
static void raid10_write_request(struct mddev *mddev, struct bio *bio,
struct r10bio *r10_bio)
{
struct r10conf *conf = mddev->private;
int i;
struct md_rdev *blocked_rdev;
sector_t sectors;
int max_sectors;
if ((mddev_is_clustered(mddev) &&
md_cluster_ops->area_resyncing(mddev, WRITE,
bio->bi_iter.bi_sector,
bio_end_sector(bio)))) {
DEFINE_WAIT(w);
for (;;) {
prepare_to_wait(&conf->wait_barrier,
&w, TASK_IDLE);
if (!md_cluster_ops->area_resyncing(mddev, WRITE,
bio->bi_iter.bi_sector, bio_end_sector(bio)))
break;
schedule();
}
finish_wait(&conf->wait_barrier, &w);
}
sectors = r10_bio->sectors;
regular_request_wait(mddev, conf, bio, sectors);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
(mddev->reshape_backwards
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
? (bio->bi_iter.bi_sector < conf->reshape_safe &&
bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
: (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
bio->bi_iter.bi_sector < conf->reshape_progress))) {
/* Need to update reshape_position in metadata */
mddev->reshape_position = conf->reshape_progress;
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
md_wakeup_thread(mddev->thread);
raid10_log(conf->mddev, "wait reshape metadata");
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
conf->reshape_safe = mddev->reshape_position;
}
if (conf->pending_count >= max_queued_requests) {
md_wakeup_thread(mddev->thread);
raid10_log(mddev, "wait queued");
wait_event(conf->wait_barrier,
conf->pending_count < max_queued_requests);
}
/* first select target devices under rcu_lock and
* inc refcount on their rdev. Record them by setting
* bios[x] to bio
* If there are known/acknowledged bad blocks on any device
* on which we have seen a write error, we want to avoid
* writing to those blocks. This potentially requires several
* writes to write around the bad blocks. Each set of writes
md/raid10: stop using bi_phys_segments raid10 currently repurposes bi_phys_segments on each incoming bio to count how many r10bio was used to encode the request. We need to know when the number of attached r10bio reaches zero to: 1/ call bio_endio() when all IO on the bio is finished 2/ decrement ->nr_pending so that resync IO can proceed. Now that the bio has its own __bi_remaining counter, that can be used instead. We can call bio_inc_remaining to increment the counter and call bio_endio() every time an r10bio completes, rather than only when bi_phys_segments reaches zero. This addresses point 1, but not point 2. bio_endio() doesn't (and cannot) report when the last r10bio has finished, so a different approach is needed. So: instead of counting bios in ->nr_pending, count r10bios. i.e. every time we attach a bio, increment nr_pending. Every time an r10bio completes, decrement nr_pending. Normally we only increment nr_pending after first checking that ->barrier is zero, or some other non-trivial tests and possible waiting. When attaching multiple r10bios to a bio, we only need the tests and the waiting once. After the first increment, subsequent increments can happen unconditionally as they are really all part of the one request. So introduce inc_pending() which can be used when we know that nr_pending is already elevated. Note that this fixes a bug. freeze_array() contains the line atomic_read(&conf->nr_pending) == conf->nr_queued+extra, which implies that the units for ->nr_pending, ->nr_queued and extra are the same. ->nr_queue and extra count r10_bios, but prior to this patch, ->nr_pending counted bios. If a bio ever resulted in multiple r10_bios (due to bad blocks), freeze_array() would not work correctly. Now it does. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-15 11:05:13 +08:00
* gets its own r10_bio with a set of bios attached.
*/
r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
raid10_find_phys(conf, r10_bio);
retry_write:
blocked_rdev = NULL;
rcu_read_lock();
max_sectors = r10_bio->sectors;
for (i = 0; i < conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
struct md_rdev *rrdev = rcu_dereference(
conf->mirrors[d].replacement);
if (rdev == rrdev)
rrdev = NULL;
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
atomic_inc(&rdev->nr_pending);
blocked_rdev = rdev;
break;
}
if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
atomic_inc(&rrdev->nr_pending);
blocked_rdev = rrdev;
break;
}
if (rdev && (test_bit(Faulty, &rdev->flags)))
rdev = NULL;
if (rrdev && (test_bit(Faulty, &rrdev->flags)))
rrdev = NULL;
r10_bio->devs[i].bio = NULL;
r10_bio->devs[i].repl_bio = NULL;
if (!rdev && !rrdev) {
set_bit(R10BIO_Degraded, &r10_bio->state);
continue;
}
if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
sector_t first_bad;
sector_t dev_sector = r10_bio->devs[i].addr;
int bad_sectors;
int is_bad;
is_bad = is_badblock(rdev, dev_sector, max_sectors,
&first_bad, &bad_sectors);
if (is_bad < 0) {
/* Mustn't write here until the bad block
* is acknowledged
*/
atomic_inc(&rdev->nr_pending);
set_bit(BlockedBadBlocks, &rdev->flags);
blocked_rdev = rdev;
break;
}
if (is_bad && first_bad <= dev_sector) {
/* Cannot write here at all */
bad_sectors -= (dev_sector - first_bad);
if (bad_sectors < max_sectors)
/* Mustn't write more than bad_sectors
* to other devices yet
*/
max_sectors = bad_sectors;
/* We don't set R10BIO_Degraded as that
* only applies if the disk is missing,
* so it might be re-added, and we want to
* know to recover this chunk.
* In this case the device is here, and the
* fact that this chunk is not in-sync is
* recorded in the bad block log.
*/
continue;
}
if (is_bad) {
int good_sectors = first_bad - dev_sector;
if (good_sectors < max_sectors)
max_sectors = good_sectors;
}
}
if (rdev) {
r10_bio->devs[i].bio = bio;
atomic_inc(&rdev->nr_pending);
}
if (rrdev) {
r10_bio->devs[i].repl_bio = bio;
atomic_inc(&rrdev->nr_pending);
}
}
rcu_read_unlock();
if (unlikely(blocked_rdev)) {
/* Have to wait for this device to get unblocked, then retry */
int j;
int d;
for (j = 0; j < i; j++) {
if (r10_bio->devs[j].bio) {
d = r10_bio->devs[j].devnum;
rdev_dec_pending(conf->mirrors[d].rdev, mddev);
}
if (r10_bio->devs[j].repl_bio) {
struct md_rdev *rdev;
d = r10_bio->devs[j].devnum;
rdev = conf->mirrors[d].replacement;
if (!rdev) {
/* Race with remove_disk */
smp_mb();
rdev = conf->mirrors[d].rdev;
}
rdev_dec_pending(rdev, mddev);
}
}
allow_barrier(conf);
raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
md_wait_for_blocked_rdev(blocked_rdev, mddev);
wait_barrier(conf);
goto retry_write;
}
if (max_sectors < r10_bio->sectors)
r10_bio->sectors = max_sectors;
if (r10_bio->sectors < bio_sectors(bio)) {
struct bio *split = bio_split(bio, r10_bio->sectors,
GFP_NOIO, &conf->bio_split);
bio_chain(split, bio);
md: fix raid10 hang issue caused by barrier When both regular IO and resync IO happen at the same time, and if we also need to split regular. Then we can see tasks hang due to barrier. 1. resync thread [ 1463.757205] INFO: task md1_resync:5215 blocked for more than 480 seconds. [ 1463.757207] Not tainted 4.19.5-1-default #1 [ 1463.757209] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.757212] md1_resync D 0 5215 2 0x80000000 [ 1463.757216] Call Trace: [ 1463.757223] ? __schedule+0x29a/0x880 [ 1463.757231] ? raise_barrier+0x8d/0x140 [raid10] [ 1463.757236] schedule+0x78/0x110 [ 1463.757243] raise_barrier+0x8d/0x140 [raid10] [ 1463.757248] ? wait_woken+0x80/0x80 [ 1463.757257] raid10_sync_request+0x1f6/0x1e30 [raid10] [ 1463.757265] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.757284] ? is_mddev_idle+0x125/0x137 [md_mod] [ 1463.757302] md_do_sync.cold.78+0x404/0x969 [md_mod] [ 1463.757311] ? wait_woken+0x80/0x80 [ 1463.757336] ? md_rdev_init+0xb0/0xb0 [md_mod] [ 1463.757351] md_thread+0xe9/0x140 [md_mod] [ 1463.757358] ? _raw_spin_unlock_irqrestore+0x2e/0x60 [ 1463.757364] ? __kthread_parkme+0x4c/0x70 [ 1463.757369] kthread+0x112/0x130 [ 1463.757374] ? kthread_create_worker_on_cpu+0x40/0x40 [ 1463.757380] ret_from_fork+0x3a/0x50 2. regular IO [ 1463.760679] INFO: task kworker/0:8:5367 blocked for more than 480 seconds. [ 1463.760683] Not tainted 4.19.5-1-default #1 [ 1463.760684] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.760687] kworker/0:8 D 0 5367 2 0x80000000 [ 1463.760718] Workqueue: md submit_flushes [md_mod] [ 1463.760721] Call Trace: [ 1463.760731] ? __schedule+0x29a/0x880 [ 1463.760741] ? wait_barrier+0xdd/0x170 [raid10] [ 1463.760746] schedule+0x78/0x110 [ 1463.760753] wait_barrier+0xdd/0x170 [raid10] [ 1463.760761] ? wait_woken+0x80/0x80 [ 1463.760768] raid10_write_request+0xf2/0x900 [raid10] [ 1463.760774] ? wait_woken+0x80/0x80 [ 1463.760778] ? mempool_alloc+0x55/0x160 [ 1463.760795] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760801] ? try_to_wake_up+0x44/0x470 [ 1463.760810] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760816] ? wait_woken+0x80/0x80 [ 1463.760831] md_handle_request+0x121/0x190 [md_mod] [ 1463.760851] md_make_request+0x78/0x190 [md_mod] [ 1463.760860] generic_make_request+0x1c6/0x470 [ 1463.760870] raid10_write_request+0x77a/0x900 [raid10] [ 1463.760875] ? wait_woken+0x80/0x80 [ 1463.760879] ? mempool_alloc+0x55/0x160 [ 1463.760895] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760904] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760910] ? wait_woken+0x80/0x80 [ 1463.760926] md_handle_request+0x121/0x190 [md_mod] [ 1463.760931] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.760936] ? finish_task_switch+0x74/0x260 [ 1463.760954] submit_flushes+0x21/0x40 [md_mod] So resync io is waiting for regular write io to complete to decrease nr_pending (conf->barrier++ is called before waiting). The regular write io splits another bio after call wait_barrier which call nr_pending++, then the splitted bio would continue with raid10_write_request -> wait_barrier, so the splitted bio has to wait for barrier to be zero, then deadlock happens as follows. resync io regular io raise_barrier wait_barrier generic_make_request wait_barrier To resolve the issue, we need to call allow_barrier to decrease nr_pending before generic_make_request since regular IO is not issued to underlying devices, and wait_barrier is called again to ensure no internal IO happening. Fixes: fc9977dd069e ("md/raid10: simplify the splitting of requests.") Reported-and-tested-by: Siniša Bandin <sinisa@4net.rs> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-12-19 14:19:25 +08:00
allow_barrier(conf);
submit_bio_noacct(bio);
md: fix raid10 hang issue caused by barrier When both regular IO and resync IO happen at the same time, and if we also need to split regular. Then we can see tasks hang due to barrier. 1. resync thread [ 1463.757205] INFO: task md1_resync:5215 blocked for more than 480 seconds. [ 1463.757207] Not tainted 4.19.5-1-default #1 [ 1463.757209] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.757212] md1_resync D 0 5215 2 0x80000000 [ 1463.757216] Call Trace: [ 1463.757223] ? __schedule+0x29a/0x880 [ 1463.757231] ? raise_barrier+0x8d/0x140 [raid10] [ 1463.757236] schedule+0x78/0x110 [ 1463.757243] raise_barrier+0x8d/0x140 [raid10] [ 1463.757248] ? wait_woken+0x80/0x80 [ 1463.757257] raid10_sync_request+0x1f6/0x1e30 [raid10] [ 1463.757265] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.757284] ? is_mddev_idle+0x125/0x137 [md_mod] [ 1463.757302] md_do_sync.cold.78+0x404/0x969 [md_mod] [ 1463.757311] ? wait_woken+0x80/0x80 [ 1463.757336] ? md_rdev_init+0xb0/0xb0 [md_mod] [ 1463.757351] md_thread+0xe9/0x140 [md_mod] [ 1463.757358] ? _raw_spin_unlock_irqrestore+0x2e/0x60 [ 1463.757364] ? __kthread_parkme+0x4c/0x70 [ 1463.757369] kthread+0x112/0x130 [ 1463.757374] ? kthread_create_worker_on_cpu+0x40/0x40 [ 1463.757380] ret_from_fork+0x3a/0x50 2. regular IO [ 1463.760679] INFO: task kworker/0:8:5367 blocked for more than 480 seconds. [ 1463.760683] Not tainted 4.19.5-1-default #1 [ 1463.760684] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1463.760687] kworker/0:8 D 0 5367 2 0x80000000 [ 1463.760718] Workqueue: md submit_flushes [md_mod] [ 1463.760721] Call Trace: [ 1463.760731] ? __schedule+0x29a/0x880 [ 1463.760741] ? wait_barrier+0xdd/0x170 [raid10] [ 1463.760746] schedule+0x78/0x110 [ 1463.760753] wait_barrier+0xdd/0x170 [raid10] [ 1463.760761] ? wait_woken+0x80/0x80 [ 1463.760768] raid10_write_request+0xf2/0x900 [raid10] [ 1463.760774] ? wait_woken+0x80/0x80 [ 1463.760778] ? mempool_alloc+0x55/0x160 [ 1463.760795] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760801] ? try_to_wake_up+0x44/0x470 [ 1463.760810] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760816] ? wait_woken+0x80/0x80 [ 1463.760831] md_handle_request+0x121/0x190 [md_mod] [ 1463.760851] md_make_request+0x78/0x190 [md_mod] [ 1463.760860] generic_make_request+0x1c6/0x470 [ 1463.760870] raid10_write_request+0x77a/0x900 [raid10] [ 1463.760875] ? wait_woken+0x80/0x80 [ 1463.760879] ? mempool_alloc+0x55/0x160 [ 1463.760895] ? md_write_start+0xa9/0x270 [md_mod] [ 1463.760904] raid10_make_request+0xc1/0x120 [raid10] [ 1463.760910] ? wait_woken+0x80/0x80 [ 1463.760926] md_handle_request+0x121/0x190 [md_mod] [ 1463.760931] ? _raw_spin_unlock_irq+0x22/0x40 [ 1463.760936] ? finish_task_switch+0x74/0x260 [ 1463.760954] submit_flushes+0x21/0x40 [md_mod] So resync io is waiting for regular write io to complete to decrease nr_pending (conf->barrier++ is called before waiting). The regular write io splits another bio after call wait_barrier which call nr_pending++, then the splitted bio would continue with raid10_write_request -> wait_barrier, so the splitted bio has to wait for barrier to be zero, then deadlock happens as follows. resync io regular io raise_barrier wait_barrier generic_make_request wait_barrier To resolve the issue, we need to call allow_barrier to decrease nr_pending before generic_make_request since regular IO is not issued to underlying devices, and wait_barrier is called again to ensure no internal IO happening. Fixes: fc9977dd069e ("md/raid10: simplify the splitting of requests.") Reported-and-tested-by: Siniša Bandin <sinisa@4net.rs> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-12-19 14:19:25 +08:00
wait_barrier(conf);
bio = split;
r10_bio->master_bio = bio;
}
atomic_set(&r10_bio->remaining, 1);
md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
for (i = 0; i < conf->copies; i++) {
if (r10_bio->devs[i].bio)
raid10_write_one_disk(mddev, r10_bio, bio, false, i);
if (r10_bio->devs[i].repl_bio)
raid10_write_one_disk(mddev, r10_bio, bio, true, i);
}
one_write_done(r10_bio);
}
static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
{
struct r10conf *conf = mddev->private;
struct r10bio *r10_bio;
r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
r10_bio->master_bio = bio;
r10_bio->sectors = sectors;
r10_bio->mddev = mddev;
r10_bio->sector = bio->bi_iter.bi_sector;
r10_bio->state = 0;
r10_bio->read_slot = -1;
memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
if (bio_data_dir(bio) == READ)
raid10_read_request(mddev, bio, r10_bio);
else
raid10_write_request(mddev, bio, r10_bio);
}
static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
{
struct r10conf *conf = mddev->private;
sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
int chunk_sects = chunk_mask + 1;
int sectors = bio_sectors(bio);
if (unlikely(bio->bi_opf & REQ_PREFLUSH)
&& md_flush_request(mddev, bio))
return true;
if (!md_write_start(mddev, bio))
return false;
/*
* If this request crosses a chunk boundary, we need to split
* it.
*/
if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
sectors > chunk_sects
&& (conf->geo.near_copies < conf->geo.raid_disks
|| conf->prev.near_copies <
conf->prev.raid_disks)))
sectors = chunk_sects -
(bio->bi_iter.bi_sector &
(chunk_sects - 1));
__make_request(mddev, bio, sectors);
/* In case raid10d snuck in to freeze_array */
wake_up(&conf->wait_barrier);
return true;
}
static void raid10_status(struct seq_file *seq, struct mddev *mddev)
{
struct r10conf *conf = mddev->private;
int i;
if (conf->geo.near_copies < conf->geo.raid_disks)
seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
if (conf->geo.near_copies > 1)
seq_printf(seq, " %d near-copies", conf->geo.near_copies);
if (conf->geo.far_copies > 1) {
if (conf->geo.far_offset)
seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
else
seq_printf(seq, " %d far-copies", conf->geo.far_copies);
if (conf->geo.far_set_size != conf->geo.raid_disks)
seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
}
seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
conf->geo.raid_disks - mddev->degraded);
rcu_read_lock();
for (i = 0; i < conf->geo.raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
}
rcu_read_unlock();
seq_printf(seq, "]");
}
/* check if there are enough drives for
* every block to appear on atleast one.
* Don't consider the device numbered 'ignore'
* as we might be about to remove it.
*/
static int _enough(struct r10conf *conf, int previous, int ignore)
{
int first = 0;
int has_enough = 0;
int disks, ncopies;
if (previous) {
disks = conf->prev.raid_disks;
ncopies = conf->prev.near_copies;
} else {
disks = conf->geo.raid_disks;
ncopies = conf->geo.near_copies;
}
rcu_read_lock();
do {
int n = conf->copies;
int cnt = 0;
int this = first;
while (n--) {
struct md_rdev *rdev;
if (this != ignore &&
(rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
test_bit(In_sync, &rdev->flags))
cnt++;
this = (this+1) % disks;
}
if (cnt == 0)
goto out;
first = (first + ncopies) % disks;
} while (first != 0);
has_enough = 1;
out:
rcu_read_unlock();
return has_enough;
}
static int enough(struct r10conf *conf, int ignore)
{
/* when calling 'enough', both 'prev' and 'geo' must
* be stable.
* This is ensured if ->reconfig_mutex or ->device_lock
* is held.
*/
return _enough(conf, 0, ignore) &&
_enough(conf, 1, ignore);
}
static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
struct r10conf *conf = mddev->private;
unsigned long flags;
/*
* If it is not operational, then we have already marked it as dead
* else if it is the last working disks with "fail_last_dev == false",
* ignore the error, let the next level up know.
* else mark the drive as failed
*/
spin_lock_irqsave(&conf->device_lock, flags);
if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
&& !enough(conf, rdev->raid_disk)) {
/*
* Don't fail the drive, just return an IO error.
*/
spin_unlock_irqrestore(&conf->device_lock, flags);
return;
}
if (test_and_clear_bit(In_sync, &rdev->flags))
mddev->degraded++;
/*
* If recovery is running, make sure it aborts.
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md: make it easier to wait for bad blocks to be acknowledged. It is only safe to choose not to write to a bad block if that bad block is safely recorded in metadata - i.e. if it has been 'acknowledged'. If it hasn't we need to wait for the acknowledgement. We support that using rdev->blocked wait and md_wait_for_blocked_rdev by introducing a new device flag 'BlockedBadBlock'. This flag is only advisory. It is cleared whenever we acknowledge a bad block, so that a waiter can re-check the particular bad blocks that it is interested it. It should be set by a caller when they find they need to wait. This (set after test) is inherently racy, but as md_wait_for_blocked_rdev already has a timeout, losing the race will have minimal impact. When we clear "Blocked" was also clear "BlockedBadBlocks" incase it was set incorrectly (see above race). We also modify the way we manage 'Blocked' to fit better with the new handling of 'BlockedBadBlocks' and to make it consistent between externally managed and internally managed metadata. This requires that each raidXd loop checks if the metadata needs to be written and triggers a write (md_check_recovery) if needed. Otherwise a queued write request might cause raidXd to wait for the metadata to write, and only that thread can write it. Before writing metadata, we set FaultRecorded for all devices that are Faulty, then after writing the metadata we clear Blocked for any device for which the Fault was certainly Recorded. The 'faulty' device flag now appears in sysfs if the device is faulty *or* it has unacknowledged bad blocks. So user-space which does not understand bad blocks can continue to function correctly. User space which does, should not assume a device is faulty until it sees the 'faulty' flag, and then sees the list of unacknowledged bad blocks is empty. Signed-off-by: NeilBrown <neilb@suse.de>
2011-07-28 09:31:48 +08:00
set_bit(Blocked, &rdev->flags);
set_bit(Faulty, &rdev->flags);
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
spin_unlock_irqrestore(&conf->device_lock, flags);
pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
"md/raid10:%s: Operation continuing on %d devices.\n",
mdname(mddev), bdevname(rdev->bdev, b),
mdname(mddev), conf->geo.raid_disks - mddev->degraded);
}
static void print_conf(struct r10conf *conf)
{
int i;
struct md_rdev *rdev;
pr_debug("RAID10 conf printout:\n");
if (!conf) {
pr_debug("(!conf)\n");
return;
}
pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
conf->geo.raid_disks);
/* This is only called with ->reconfix_mutex held, so
* rcu protection of rdev is not needed */
for (i = 0; i < conf->geo.raid_disks; i++) {
char b[BDEVNAME_SIZE];
rdev = conf->mirrors[i].rdev;
if (rdev)
pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
i, !test_bit(In_sync, &rdev->flags),
!test_bit(Faulty, &rdev->flags),
bdevname(rdev->bdev,b));
}
}
static void close_sync(struct r10conf *conf)
{
wait_barrier(conf);
allow_barrier(conf);
mempool_exit(&conf->r10buf_pool);
}
static int raid10_spare_active(struct mddev *mddev)
{
int i;
struct r10conf *conf = mddev->private;
struct raid10_info *tmp;
int count = 0;
unsigned long flags;
/*
* Find all non-in_sync disks within the RAID10 configuration
* and mark them in_sync
*/
for (i = 0; i < conf->geo.raid_disks; i++) {
tmp = conf->mirrors + i;
if (tmp->replacement
&& tmp->replacement->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->replacement->flags)
&& !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
/* Replacement has just become active */
if (!tmp->rdev
|| !test_and_clear_bit(In_sync, &tmp->rdev->flags))
count++;
if (tmp->rdev) {
/* Replaced device not technically faulty,
* but we need to be sure it gets removed
* and never re-added.
*/
set_bit(Faulty, &tmp->rdev->flags);
sysfs_notify_dirent_safe(
tmp->rdev->sysfs_state);
}
sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
} else if (tmp->rdev
&& tmp->rdev->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->rdev->flags)
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
count++;
sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
}
}
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded -= count;
spin_unlock_irqrestore(&conf->device_lock, flags);
print_conf(conf);
return count;
}
static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r10conf *conf = mddev->private;
int err = -EEXIST;
int mirror;
int first = 0;
int last = conf->geo.raid_disks - 1;
if (mddev->recovery_cp < MaxSector)
/* only hot-add to in-sync arrays, as recovery is
* very different from resync
*/
return -EBUSY;
if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
return -EINVAL;
md/raid: only permit hot-add of compatible integrity profiles It is not safe for an integrity profile to be changed while i/o is in-flight in the queue. Prevent adding new disks or otherwise online spares to an array if the device has an incompatible integrity profile. The original change to the blk_integrity_unregister implementation in md, commmit c7bfced9a671 "md: suspend i/o during runtime blk_integrity_unregister" introduced an immediate hang regression. This policy of disallowing changes the integrity profile once one has been established is shared with DM. Here is an abbreviated log from a test run that: 1/ Creates a degraded raid1 with an integrity-enabled device (pmem0s) [ 59.076127] 2/ Tries to add an integrity-disabled device (pmem1m) [ 90.489209] 3/ Retries with an integrity-enabled device (pmem1s) [ 205.671277] [ 59.076127] md/raid1:md0: active with 1 out of 2 mirrors [ 59.078302] md: data integrity enabled on md0 [..] [ 90.489209] md0: incompatible integrity profile for pmem1m [..] [ 205.671277] md: super_written gets error=-5 [ 205.677386] md/raid1:md0: Disk failure on pmem1m, disabling device. [ 205.677386] md/raid1:md0: Operation continuing on 1 devices. [ 205.683037] RAID1 conf printout: [ 205.684699] --- wd:1 rd:2 [ 205.685972] disk 0, wo:0, o:1, dev:pmem0s [ 205.687562] disk 1, wo:1, o:1, dev:pmem1s [ 205.691717] md: recovery of RAID array md0 Fixes: c7bfced9a671 ("md: suspend i/o during runtime blk_integrity_unregister") Cc: <stable@vger.kernel.org> Cc: Mike Snitzer <snitzer@redhat.com> Reported-by: NeilBrown <neilb@suse.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NeilBrown <neilb@suse.com>
2016-01-14 08:00:07 +08:00
if (md_integrity_add_rdev(rdev, mddev))
return -ENXIO;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
if (rdev->saved_raid_disk >= first &&
rdev->saved_raid_disk < conf->geo.raid_disks &&
conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
mirror = rdev->saved_raid_disk;
else
mirror = first;
for ( ; mirror <= last ; mirror++) {
struct raid10_info *p = &conf->mirrors[mirror];
if (p->recovery_disabled == mddev->recovery_disabled)
continue;
if (p->rdev) {
if (!test_bit(WantReplacement, &p->rdev->flags) ||
p->replacement != NULL)
continue;
clear_bit(In_sync, &rdev->flags);
set_bit(Replacement, &rdev->flags);
rdev->raid_disk = mirror;
err = 0;
if (mddev->gendisk)
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
conf->fullsync = 1;
rcu_assign_pointer(p->replacement, rdev);
break;
}
if (mddev->gendisk)
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
p->head_position = 0;
p->recovery_disabled = mddev->recovery_disabled - 1;
rdev->raid_disk = mirror;
err = 0;
if (rdev->saved_raid_disk != mirror)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
break;
}
if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
print_conf(conf);
return err;
}
static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r10conf *conf = mddev->private;
int err = 0;
int number = rdev->raid_disk;
struct md_rdev **rdevp;
struct raid10_info *p = conf->mirrors + number;
print_conf(conf);
if (rdev == p->rdev)
rdevp = &p->rdev;
else if (rdev == p->replacement)
rdevp = &p->replacement;
else
return 0;
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices if recovery
* is not possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->recovery_disabled != p->recovery_disabled &&
(!p->replacement || p->replacement == rdev) &&
number < conf->geo.raid_disks &&
enough(conf, -1)) {
err = -EBUSY;
goto abort;
}
*rdevp = NULL;
if (!test_bit(RemoveSynchronized, &rdev->flags)) {
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
*rdevp = rdev;
goto abort;
}
}
if (p->replacement) {
/* We must have just cleared 'rdev' */
p->rdev = p->replacement;
clear_bit(Replacement, &p->replacement->flags);
smp_mb(); /* Make sure other CPUs may see both as identical
* but will never see neither -- if they are careful.
*/
p->replacement = NULL;
}
clear_bit(WantReplacement, &rdev->flags);
err = md_integrity_register(mddev);
abort:
print_conf(conf);
return err;
}
static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
{
struct r10conf *conf = r10_bio->mddev->private;
if (!bio->bi_status)
set_bit(R10BIO_Uptodate, &r10_bio->state);
else
/* The write handler will notice the lack of
* R10BIO_Uptodate and record any errors etc
*/
atomic_add(r10_bio->sectors,
&conf->mirrors[d].rdev->corrected_errors);
/* for reconstruct, we always reschedule after a read.
* for resync, only after all reads
*/
rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
atomic_dec_and_test(&r10_bio->remaining)) {
/* we have read all the blocks,
* do the comparison in process context in raid10d
*/
reschedule_retry(r10_bio);
}
}
static void end_sync_read(struct bio *bio)
{
struct r10bio *r10_bio = get_resync_r10bio(bio);
struct r10conf *conf = r10_bio->mddev->private;
int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
__end_sync_read(r10_bio, bio, d);
}
static void end_reshape_read(struct bio *bio)
{
/* reshape read bio isn't allocated from r10buf_pool */
struct r10bio *r10_bio = bio->bi_private;
__end_sync_read(r10_bio, bio, r10_bio->read_slot);
}
static void end_sync_request(struct r10bio *r10_bio)
{
struct mddev *mddev = r10_bio->mddev;
md: restart recovery cleanly after device failure. When we get any IO error during a recovery (rebuilding a spare), we abort the recovery and restart it. For RAID6 (and multi-drive RAID1) it may not be best to restart at the beginning: when multiple failures can be tolerated, the recovery may be able to continue and re-doing all that has already been done doesn't make sense. We already have the infrastructure to record where a recovery is up to and restart from there, but it is not being used properly. This is because: - We sometimes abort with MD_RECOVERY_ERR rather than just MD_RECOVERY_INTR, which causes the recovery not be be checkpointed. - We remove spares and then re-added them which loses important state information. The distinction between MD_RECOVERY_ERR and MD_RECOVERY_INTR really isn't needed. If there is an error, the relevant drive will be marked as Faulty, and that is enough to ensure correct handling of the error. So we first remove MD_RECOVERY_ERR, changing some of the uses of it to MD_RECOVERY_INTR. Then we cause the attempt to remove a non-faulty device from an array to fail (unless recovery is impossible as the array is too degraded). Then when remove_and_add_spares attempts to remove the devices on which recovery can continue, it will fail, they will remain in place, and recovery will continue on them as desired. Issue: If we are halfway through rebuilding a spare and another drive fails, and a new spare is immediately available, do we want to: 1/ complete the current rebuild, then go back and rebuild the new spare or 2/ restart the rebuild from the start and rebuild both devices in parallel. Both options can be argued for. The code currently takes option 2 as a/ this requires least code change b/ this results in a minimally-degraded array in minimal time. Cc: "Eivind Sarto" <ivan@kasenna.com> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-24 04:04:39 +08:00
while (atomic_dec_and_test(&r10_bio->remaining)) {
if (r10_bio->master_bio == NULL) {
/* the primary of several recovery bios */
sector_t s = r10_bio->sectors;
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
test_bit(R10BIO_WriteError, &r10_bio->state))
reschedule_retry(r10_bio);
else
put_buf(r10_bio);
md_done_sync(mddev, s, 1);
break;
} else {
struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
test_bit(R10BIO_WriteError, &r10_bio->state))
reschedule_retry(r10_bio);
else
put_buf(r10_bio);
r10_bio = r10_bio2;
}
}
}
static void end_sync_write(struct bio *bio)
{
struct r10bio *r10_bio = get_resync_r10bio(bio);
struct mddev *mddev = r10_bio->mddev;
struct r10conf *conf = mddev->private;
int d;
sector_t first_bad;
int bad_sectors;
int slot;
int repl;
struct md_rdev *rdev = NULL;
d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
if (repl)
rdev = conf->mirrors[d].replacement;
else
rdev = conf->mirrors[d].rdev;
if (bio->bi_status) {
if (repl)
md_error(mddev, rdev);
else {
set_bit(WriteErrorSeen, &rdev->flags);
if (!test_and_set_bit(WantReplacement, &rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
set_bit(R10BIO_WriteError, &r10_bio->state);
}
} else if (is_badblock(rdev,
r10_bio->devs[slot].addr,
r10_bio->sectors,
&first_bad, &bad_sectors))
set_bit(R10BIO_MadeGood, &r10_bio->state);
rdev_dec_pending(rdev, mddev);
end_sync_request(r10_bio);
}
/*
* Note: sync and recover and handled very differently for raid10
* This code is for resync.
* For resync, we read through virtual addresses and read all blocks.
* If there is any error, we schedule a write. The lowest numbered
* drive is authoritative.
* However requests come for physical address, so we need to map.
* For every physical address there are raid_disks/copies virtual addresses,
* which is always are least one, but is not necessarly an integer.
* This means that a physical address can span multiple chunks, so we may
* have to submit multiple io requests for a single sync request.
*/
/*
* We check if all blocks are in-sync and only write to blocks that
* aren't in sync
*/
static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
{
struct r10conf *conf = mddev->private;
int i, first;
struct bio *tbio, *fbio;
int vcnt;
struct page **tpages, **fpages;
atomic_set(&r10_bio->remaining, 1);
/* find the first device with a block */
for (i=0; i<conf->copies; i++)
if (!r10_bio->devs[i].bio->bi_status)
break;
if (i == conf->copies)
goto done;
first = i;
fbio = r10_bio->devs[i].bio;
md/raid10: fix data corruption and crash during resync The commit c31df25f20e3 ("md/raid10: make sync_request_write() call bio_copy_data()") replaced manual data copying with bio_copy_data() but it doesn't work as intended. The source bio (fbio) is already processed, so its bvec_iter has bi_size == 0 and bi_idx == bi_vcnt. Because of this, bio_copy_data() either does not copy anything, or worse, copies data from the ->bi_next bio if it is set. This causes wrong data to be written to drives during resync and sometimes lockups/crashes in bio_copy_data(): [ 517.338478] NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [md126_raid10:3319] [ 517.347324] Modules linked in: raid10 xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 tun ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter ip_tables x86_pkg_temp_thermal coretemp kvm_intel kvm crct10dif_pclmul crc32_pclmul cryptd shpchp pcspkr ipmi_si ipmi_msghandler tpm_crb acpi_power_meter acpi_cpufreq ext4 mbcache jbd2 sr_mod cdrom sd_mod e1000e ax88179_178a usbnet mii ahci ata_generic crc32c_intel libahci ptp pata_acpi libata pps_core wmi sunrpc dm_mirror dm_region_hash dm_log dm_mod [ 517.440555] CPU: 0 PID: 3319 Comm: md126_raid10 Not tainted 4.3.0-rc6+ #1 [ 517.448384] Hardware name: Intel Corporation PURLEY/PURLEY, BIOS PLYDCRB1.86B.0055.D14.1509221924 09/22/2015 [ 517.459768] task: ffff880153773980 ti: ffff880150df8000 task.ti: ffff880150df8000 [ 517.468529] RIP: 0010:[<ffffffff812e1888>] [<ffffffff812e1888>] bio_copy_data+0xc8/0x3c0 [ 517.478164] RSP: 0018:ffff880150dfbc98 EFLAGS: 00000246 [ 517.484341] RAX: ffff880169356688 RBX: 0000000000001000 RCX: 0000000000000000 [ 517.492558] RDX: 0000000000000000 RSI: ffffea0001ac2980 RDI: ffffea0000d835c0 [ 517.500773] RBP: ffff880150dfbd08 R08: 0000000000000001 R09: ffff880153773980 [ 517.508987] R10: ffff880169356600 R11: 0000000000001000 R12: 0000000000010000 [ 517.517199] R13: 000000000000e000 R14: 0000000000000000 R15: 0000000000001000 [ 517.525412] FS: 0000000000000000(0000) GS:ffff880174a00000(0000) knlGS:0000000000000000 [ 517.534844] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 517.541507] CR2: 00007f8a044d5fed CR3: 0000000169504000 CR4: 00000000001406f0 [ 517.549722] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 517.557929] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 517.566144] Stack: [ 517.568626] ffff880174a16bc0 ffff880153773980 ffff880169356600 0000000000000000 [ 517.577659] 0000000000000001 0000000000000001 ffff880153773980 ffff88016a61a800 [ 517.586715] ffff880150dfbcf8 0000000000000001 ffff88016dd209e0 0000000000001000 [ 517.595773] Call Trace: [ 517.598747] [<ffffffffa043ef95>] raid10d+0xfc5/0x1690 [raid10] [ 517.605610] [<ffffffff816697ae>] ? __schedule+0x29e/0x8e2 [ 517.611987] [<ffffffff814ff206>] md_thread+0x106/0x140 [ 517.618072] [<ffffffff810c1d80>] ? wait_woken+0x80/0x80 [ 517.624252] [<ffffffff814ff100>] ? super_1_load+0x520/0x520 [ 517.630817] [<ffffffff8109ef89>] kthread+0xc9/0xe0 [ 517.636506] [<ffffffff8109eec0>] ? flush_kthread_worker+0x70/0x70 [ 517.643653] [<ffffffff8166d99f>] ret_from_fork+0x3f/0x70 [ 517.649929] [<ffffffff8109eec0>] ? flush_kthread_worker+0x70/0x70 Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Reviewed-by: Shaohua Li <shli@kernel.org> Cc: stable@vger.kernel.org (v4.2+) Fixes: c31df25f20e3 ("md/raid10: make sync_request_write() call bio_copy_data()") Signed-off-by: NeilBrown <neilb@suse.com>
2015-12-18 12:19:16 +08:00
fbio->bi_iter.bi_size = r10_bio->sectors << 9;
fbio->bi_iter.bi_idx = 0;
fpages = get_resync_pages(fbio)->pages;
vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
/* now find blocks with errors */
for (i=0 ; i < conf->copies ; i++) {
int j, d;
struct md_rdev *rdev;
struct resync_pages *rp;
tbio = r10_bio->devs[i].bio;
if (tbio->bi_end_io != end_sync_read)
continue;
if (i == first)
continue;
tpages = get_resync_pages(tbio)->pages;
d = r10_bio->devs[i].devnum;
rdev = conf->mirrors[d].rdev;
if (!r10_bio->devs[i].bio->bi_status) {
/* We know that the bi_io_vec layout is the same for
* both 'first' and 'i', so we just compare them.
* All vec entries are PAGE_SIZE;
*/
int sectors = r10_bio->sectors;
for (j = 0; j < vcnt; j++) {
int len = PAGE_SIZE;
if (sectors < (len / 512))
len = sectors * 512;
if (memcmp(page_address(fpages[j]),
page_address(tpages[j]),
len))
break;
sectors -= len/512;
}
if (j == vcnt)
continue;
atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
/* Don't fix anything. */
continue;
} else if (test_bit(FailFast, &rdev->flags)) {
/* Just give up on this device */
md_error(rdev->mddev, rdev);
continue;
}
/* Ok, we need to write this bio, either to correct an
* inconsistency or to correct an unreadable block.
* First we need to fixup bv_offset, bv_len and
* bi_vecs, as the read request might have corrupted these
*/
rp = get_resync_pages(tbio);
bio_reset(tbio);
md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
rp->raid_bio = r10_bio;
tbio->bi_private = rp;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
tbio->bi_end_io = end_sync_write;
bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
bio_copy_data(tbio, fbio);
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
atomic_inc(&r10_bio->remaining);
md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
tbio->bi_opf |= MD_FAILFAST;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
submit_bio_noacct(tbio);
}
/* Now write out to any replacement devices
* that are active
*/
for (i = 0; i < conf->copies; i++) {
int d;
tbio = r10_bio->devs[i].repl_bio;
if (!tbio || !tbio->bi_end_io)
continue;
if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
&& r10_bio->devs[i].bio != fbio)
bio_copy_data(tbio, fbio);
d = r10_bio->devs[i].devnum;
atomic_inc(&r10_bio->remaining);
md_sync_acct(conf->mirrors[d].replacement->bdev,
bio_sectors(tbio));
submit_bio_noacct(tbio);
}
done:
if (atomic_dec_and_test(&r10_bio->remaining)) {
md_done_sync(mddev, r10_bio->sectors, 1);
put_buf(r10_bio);
}
}
/*
* Now for the recovery code.
* Recovery happens across physical sectors.
* We recover all non-is_sync drives by finding the virtual address of
* each, and then choose a working drive that also has that virt address.
* There is a separate r10_bio for each non-in_sync drive.
* Only the first two slots are in use. The first for reading,
* The second for writing.
*
*/
static void fix_recovery_read_error(struct r10bio *r10_bio)
{
/* We got a read error during recovery.
* We repeat the read in smaller page-sized sections.
* If a read succeeds, write it to the new device or record
* a bad block if we cannot.
* If a read fails, record a bad block on both old and
* new devices.
*/
struct mddev *mddev = r10_bio->mddev;
struct r10conf *conf = mddev->private;
struct bio *bio = r10_bio->devs[0].bio;
sector_t sect = 0;
int sectors = r10_bio->sectors;
int idx = 0;
int dr = r10_bio->devs[0].devnum;
int dw = r10_bio->devs[1].devnum;
struct page **pages = get_resync_pages(bio)->pages;
while (sectors) {
int s = sectors;
struct md_rdev *rdev;
sector_t addr;
int ok;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
rdev = conf->mirrors[dr].rdev;
addr = r10_bio->devs[0].addr + sect,
ok = sync_page_io(rdev,
addr,
s << 9,
pages[idx],
REQ_OP_READ, 0, false);
if (ok) {
rdev = conf->mirrors[dw].rdev;
addr = r10_bio->devs[1].addr + sect;
ok = sync_page_io(rdev,
addr,
s << 9,
pages[idx],
REQ_OP_WRITE, 0, false);
if (!ok) {
set_bit(WriteErrorSeen, &rdev->flags);
if (!test_and_set_bit(WantReplacement,
&rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
}
}
if (!ok) {
/* We don't worry if we cannot set a bad block -
* it really is bad so there is no loss in not
* recording it yet
*/
rdev_set_badblocks(rdev, addr, s, 0);
if (rdev != conf->mirrors[dw].rdev) {
/* need bad block on destination too */
struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
addr = r10_bio->devs[1].addr + sect;
ok = rdev_set_badblocks(rdev2, addr, s, 0);
if (!ok) {
/* just abort the recovery */
pr_notice("md/raid10:%s: recovery aborted due to read error\n",
mdname(mddev));
conf->mirrors[dw].recovery_disabled
= mddev->recovery_disabled;
set_bit(MD_RECOVERY_INTR,
&mddev->recovery);
break;
}
}
}
sectors -= s;
sect += s;
idx++;
}
}
static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
{
struct r10conf *conf = mddev->private;
int d;
struct bio *wbio, *wbio2;
if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
fix_recovery_read_error(r10_bio);
end_sync_request(r10_bio);
return;
}
/*
* share the pages with the first bio
* and submit the write request
*/
d = r10_bio->devs[1].devnum;
wbio = r10_bio->devs[1].bio;
wbio2 = r10_bio->devs[1].repl_bio;
/* Need to test wbio2->bi_end_io before we call
* submit_bio_noacct as if the former is NULL,
* the latter is free to free wbio2.
*/
if (wbio2 && !wbio2->bi_end_io)
wbio2 = NULL;
if (wbio->bi_end_io) {
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
submit_bio_noacct(wbio);
}
if (wbio2) {
atomic_inc(&conf->mirrors[d].replacement->nr_pending);
md_sync_acct(conf->mirrors[d].replacement->bdev,
bio_sectors(wbio2));
submit_bio_noacct(wbio2);
}
}
/*
* Used by fix_read_error() to decay the per rdev read_errors.
* We halve the read error count for every hour that has elapsed
* since the last recorded read error.
*
*/
static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
{
long cur_time_mon;
unsigned long hours_since_last;
unsigned int read_errors = atomic_read(&rdev->read_errors);
cur_time_mon = ktime_get_seconds();
if (rdev->last_read_error == 0) {
/* first time we've seen a read error */
rdev->last_read_error = cur_time_mon;
return;
}
hours_since_last = (long)(cur_time_mon -
rdev->last_read_error) / 3600;
rdev->last_read_error = cur_time_mon;
/*
* if hours_since_last is > the number of bits in read_errors
* just set read errors to 0. We do this to avoid
* overflowing the shift of read_errors by hours_since_last.
*/
if (hours_since_last >= 8 * sizeof(read_errors))
atomic_set(&rdev->read_errors, 0);
else
atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
}
static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
int sectors, struct page *page, int rw)
{
sector_t first_bad;
int bad_sectors;
if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
&& (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
return -1;
if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
/* success */
return 1;
if (rw == WRITE) {
set_bit(WriteErrorSeen, &rdev->flags);
if (!test_and_set_bit(WantReplacement, &rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
}
/* need to record an error - either for the block or the device */
if (!rdev_set_badblocks(rdev, sector, sectors, 0))
md_error(rdev->mddev, rdev);
return 0;
}
/*
* This is a kernel thread which:
*
* 1. Retries failed read operations on working mirrors.
* 2. Updates the raid superblock when problems encounter.
* 3. Performs writes following reads for array synchronising.
*/
static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
{
int sect = 0; /* Offset from r10_bio->sector */
int sectors = r10_bio->sectors;
struct md_rdev *rdev;
int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
int d = r10_bio->devs[r10_bio->read_slot].devnum;
/* still own a reference to this rdev, so it cannot
* have been cleared recently.
*/
rdev = conf->mirrors[d].rdev;
if (test_bit(Faulty, &rdev->flags))
/* drive has already been failed, just ignore any
more fix_read_error() attempts */
return;
check_decay_read_errors(mddev, rdev);
atomic_inc(&rdev->read_errors);
if (atomic_read(&rdev->read_errors) > max_read_errors) {
char b[BDEVNAME_SIZE];
bdevname(rdev->bdev, b);
pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
mdname(mddev), b,
atomic_read(&rdev->read_errors), max_read_errors);
pr_notice("md/raid10:%s: %s: Failing raid device\n",
mdname(mddev), b);
md_error(mddev, rdev);
r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
return;
}
while(sectors) {
int s = sectors;
int sl = r10_bio->read_slot;
int success = 0;
int start;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
rcu_read_lock();
do {
sector_t first_bad;
int bad_sectors;
d = r10_bio->devs[sl].devnum;
rdev = rcu_dereference(conf->mirrors[d].rdev);
if (rdev &&
test_bit(In_sync, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
&first_bad, &bad_sectors) == 0) {
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
success = sync_page_io(rdev,
r10_bio->devs[sl].addr +
sect,
s<<9,
conf->tmppage,
REQ_OP_READ, 0, false);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
if (success)
break;
}
sl++;
if (sl == conf->copies)
sl = 0;
} while (!success && sl != r10_bio->read_slot);
rcu_read_unlock();
if (!success) {
/* Cannot read from anywhere, just mark the block
* as bad on the first device to discourage future
* reads.
*/
int dn = r10_bio->devs[r10_bio->read_slot].devnum;
rdev = conf->mirrors[dn].rdev;
if (!rdev_set_badblocks(
rdev,
r10_bio->devs[r10_bio->read_slot].addr
+ sect,
s, 0)) {
md_error(mddev, rdev);
r10_bio->devs[r10_bio->read_slot].bio
= IO_BLOCKED;
}
break;
}
start = sl;
/* write it back and re-read */
rcu_read_lock();
while (sl != r10_bio->read_slot) {
char b[BDEVNAME_SIZE];
if (sl==0)
sl = conf->copies;
sl--;
d = r10_bio->devs[sl].devnum;
rdev = rcu_dereference(conf->mirrors[d].rdev);
if (!rdev ||
test_bit(Faulty, &rdev->flags) ||
!test_bit(In_sync, &rdev->flags))
continue;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (r10_sync_page_io(rdev,
r10_bio->devs[sl].addr +
sect,
s, conf->tmppage, WRITE)
== 0) {
/* Well, this device is dead */
pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
mdname(mddev), s,
(unsigned long long)(
sect +
choose_data_offset(r10_bio,
rdev)),
bdevname(rdev->bdev, b));
pr_notice("md/raid10:%s: %s: failing drive\n",
mdname(mddev),
bdevname(rdev->bdev, b));
}
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
sl = start;
while (sl != r10_bio->read_slot) {
char b[BDEVNAME_SIZE];
if (sl==0)
sl = conf->copies;
sl--;
d = r10_bio->devs[sl].devnum;
rdev = rcu_dereference(conf->mirrors[d].rdev);
if (!rdev ||
test_bit(Faulty, &rdev->flags) ||
!test_bit(In_sync, &rdev->flags))
continue;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
switch (r10_sync_page_io(rdev,
r10_bio->devs[sl].addr +
sect,
s, conf->tmppage,
READ)) {
case 0:
/* Well, this device is dead */
pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
mdname(mddev), s,
(unsigned long long)(
sect +
choose_data_offset(r10_bio, rdev)),
bdevname(rdev->bdev, b));
pr_notice("md/raid10:%s: %s: failing drive\n",
mdname(mddev),
bdevname(rdev->bdev, b));
break;
case 1:
pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
mdname(mddev), s,
(unsigned long long)(
sect +
choose_data_offset(r10_bio, rdev)),
bdevname(rdev->bdev, b));
atomic_add(s, &rdev->corrected_errors);
}
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
rcu_read_unlock();
sectors -= s;
sect += s;
}
}
static int narrow_write_error(struct r10bio *r10_bio, int i)
{
struct bio *bio = r10_bio->master_bio;
struct mddev *mddev = r10_bio->mddev;
struct r10conf *conf = mddev->private;
struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
/* bio has the data to be written to slot 'i' where
* we just recently had a write error.
* We repeatedly clone the bio and trim down to one block,
* then try the write. Where the write fails we record
* a bad block.
* It is conceivable that the bio doesn't exactly align with
* blocks. We must handle this.
*
* We currently own a reference to the rdev.
*/
int block_sectors;
sector_t sector;
int sectors;
int sect_to_write = r10_bio->sectors;
int ok = 1;
if (rdev->badblocks.shift < 0)
return 0;
block_sectors = roundup(1 << rdev->badblocks.shift,
bdev_logical_block_size(rdev->bdev) >> 9);
sector = r10_bio->sector;
sectors = ((r10_bio->sector + block_sectors)
& ~(sector_t)(block_sectors - 1))
- sector;
while (sect_to_write) {
struct bio *wbio;
sector_t wsector;
if (sectors > sect_to_write)
sectors = sect_to_write;
/* Write at 'sector' for 'sectors' */
wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
wbio->bi_iter.bi_sector = wsector +
choose_data_offset(r10_bio, rdev);
bio_set_dev(wbio, rdev->bdev);
bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
if (submit_bio_wait(wbio) < 0)
/* Failure! */
ok = rdev_set_badblocks(rdev, wsector,
sectors, 0)
&& ok;
bio_put(wbio);
sect_to_write -= sectors;
sector += sectors;
sectors = block_sectors;
}
return ok;
}
static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
{
int slot = r10_bio->read_slot;
struct bio *bio;
struct r10conf *conf = mddev->private;
struct md_rdev *rdev = r10_bio->devs[slot].rdev;
/* we got a read error. Maybe the drive is bad. Maybe just
* the block and we can fix it.
* We freeze all other IO, and try reading the block from
* other devices. When we find one, we re-write
* and check it that fixes the read error.
* This is all done synchronously while the array is
* frozen.
*/
bio = r10_bio->devs[slot].bio;
bio_put(bio);
r10_bio->devs[slot].bio = NULL;
if (mddev->ro)
r10_bio->devs[slot].bio = IO_BLOCKED;
else if (!test_bit(FailFast, &rdev->flags)) {
freeze_array(conf, 1);
fix_read_error(conf, mddev, r10_bio);
unfreeze_array(conf);
} else
md_error(mddev, rdev);
rdev_dec_pending(rdev, mddev);
allow_barrier(conf);
r10_bio->state = 0;
raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
}
static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
{
/* Some sort of write request has finished and it
* succeeded in writing where we thought there was a
* bad block. So forget the bad block.
* Or possibly if failed and we need to record
* a bad block.
*/
int m;
struct md_rdev *rdev;
if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
test_bit(R10BIO_IsRecover, &r10_bio->state)) {
for (m = 0; m < conf->copies; m++) {
int dev = r10_bio->devs[m].devnum;
rdev = conf->mirrors[dev].rdev;
if (r10_bio->devs[m].bio == NULL ||
r10_bio->devs[m].bio->bi_end_io == NULL)
continue;
if (!r10_bio->devs[m].bio->bi_status) {
rdev_clear_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0);
} else {
if (!rdev_set_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0))
md_error(conf->mddev, rdev);
}
rdev = conf->mirrors[dev].replacement;
if (r10_bio->devs[m].repl_bio == NULL ||
r10_bio->devs[m].repl_bio->bi_end_io == NULL)
continue;
if (!r10_bio->devs[m].repl_bio->bi_status) {
rdev_clear_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0);
} else {
if (!rdev_set_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0))
md_error(conf->mddev, rdev);
}
}
put_buf(r10_bio);
} else {
bool fail = false;
for (m = 0; m < conf->copies; m++) {
int dev = r10_bio->devs[m].devnum;
struct bio *bio = r10_bio->devs[m].bio;
rdev = conf->mirrors[dev].rdev;
if (bio == IO_MADE_GOOD) {
rdev_clear_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0);
rdev_dec_pending(rdev, conf->mddev);
} else if (bio != NULL && bio->bi_status) {
fail = true;
if (!narrow_write_error(r10_bio, m)) {
md_error(conf->mddev, rdev);
set_bit(R10BIO_Degraded,
&r10_bio->state);
}
rdev_dec_pending(rdev, conf->mddev);
}
bio = r10_bio->devs[m].repl_bio;
rdev = conf->mirrors[dev].replacement;
if (rdev && bio == IO_MADE_GOOD) {
rdev_clear_badblocks(
rdev,
r10_bio->devs[m].addr,
r10_bio->sectors, 0);
rdev_dec_pending(rdev, conf->mddev);
}
}
if (fail) {
spin_lock_irq(&conf->device_lock);
list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
conf->nr_queued++;
spin_unlock_irq(&conf->device_lock);
/*
* In case freeze_array() is waiting for condition
* nr_pending == nr_queued + extra to be true.
*/
wake_up(&conf->wait_barrier);
md_wakeup_thread(conf->mddev->thread);
md/raid10: don't clear bitmap bit when bad-block-list write fails. When a write fails and a bad-block-list is present, we can update the bad-block-list instead of writing the data. If this succeeds then it is OK clear the relevant bitmap-bit as no further 'sync' of the block is needed. However if writing the bad-block-list fails then we need to treat the write as failed and particularly must not clear the bitmap bit. Otherwise the device can be re-added (after any hardware connection issues are resolved) and because the relevant bit in the bitmap is clear, that block will not be resynced. This leads to data corruption. We already delay the final bio_endio() on the write until the bad-block-list is written so that when the write returns: either that data is safe, the bad-block record is safe, or the fact that the device is faulty is safe. However we *don't* delay the clearing of the bitmap, so the bitmap bit can be recorded as cleared before we know if the bad-block-list was written safely. So: delay that until the write really is safe. i.e. move the call to close_write() until just before calling bio_endio(), and recheck the 'is array degraded' status before making that call. This bug goes back to v3.1 when bad-block-lists were introduced, though it only affects arrays created with mdadm-3.3 or later as only those have bad-block lists. Backports will require at least Commit: 95af587e95aa ("md/raid10: ensure device failure recorded before write request returns.") as well. I'll send that to 'stable' separately. Note that of the two tests of R10BIO_WriteError that this patch adds, the first is certain to fail and the second is certain to succeed. However doing it this way makes the patch more obviously correct. I will tidy the code up in a future merge window. Reported-by: Nate Dailey <nate.dailey@stratus.com> Fixes: bd870a16c594 ("md/raid10: Handle write errors by updating badblock log.") Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24 13:23:48 +08:00
} else {
if (test_bit(R10BIO_WriteError,
&r10_bio->state))
close_write(r10_bio);
raid_end_bio_io(r10_bio);
md/raid10: don't clear bitmap bit when bad-block-list write fails. When a write fails and a bad-block-list is present, we can update the bad-block-list instead of writing the data. If this succeeds then it is OK clear the relevant bitmap-bit as no further 'sync' of the block is needed. However if writing the bad-block-list fails then we need to treat the write as failed and particularly must not clear the bitmap bit. Otherwise the device can be re-added (after any hardware connection issues are resolved) and because the relevant bit in the bitmap is clear, that block will not be resynced. This leads to data corruption. We already delay the final bio_endio() on the write until the bad-block-list is written so that when the write returns: either that data is safe, the bad-block record is safe, or the fact that the device is faulty is safe. However we *don't* delay the clearing of the bitmap, so the bitmap bit can be recorded as cleared before we know if the bad-block-list was written safely. So: delay that until the write really is safe. i.e. move the call to close_write() until just before calling bio_endio(), and recheck the 'is array degraded' status before making that call. This bug goes back to v3.1 when bad-block-lists were introduced, though it only affects arrays created with mdadm-3.3 or later as only those have bad-block lists. Backports will require at least Commit: 95af587e95aa ("md/raid10: ensure device failure recorded before write request returns.") as well. I'll send that to 'stable' separately. Note that of the two tests of R10BIO_WriteError that this patch adds, the first is certain to fail and the second is certain to succeed. However doing it this way makes the patch more obviously correct. I will tidy the code up in a future merge window. Reported-by: Nate Dailey <nate.dailey@stratus.com> Fixes: bd870a16c594 ("md/raid10: Handle write errors by updating badblock log.") Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24 13:23:48 +08:00
}
}
}
static void raid10d(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct r10bio *r10_bio;
unsigned long flags;
struct r10conf *conf = mddev->private;
struct list_head *head = &conf->retry_list;
struct blk_plug plug;
md_check_recovery(mddev);
if (!list_empty_careful(&conf->bio_end_io_list) &&
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
LIST_HEAD(tmp);
spin_lock_irqsave(&conf->device_lock, flags);
if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
while (!list_empty(&conf->bio_end_io_list)) {
list_move(conf->bio_end_io_list.prev, &tmp);
conf->nr_queued--;
}
}
spin_unlock_irqrestore(&conf->device_lock, flags);
while (!list_empty(&tmp)) {
crash in md-raid1 and md-raid10 due to incorrect list manipulation The commit 55ce74d4bfe1b9444436264c637f39a152d1e5ac (md/raid1: ensure device failure recorded before write request returns) is causing crash in the LVM2 testsuite test shell/lvchange-raid.sh. For me the crash is 100% reproducible. The reason for the crash is that the newly added code in raid1d moves the list from conf->bio_end_io_list to tmp, then tests if tmp is non-empty and then incorrectly pops the bio from conf->bio_end_io_list (which is empty because the list was alrady moved). Raid-10 has a similar bug. Kernel Fault: Code=15 regs=000000006ccb8640 (Addr=0000000100000000) CPU: 3 PID: 1930 Comm: mdX_raid1 Not tainted 4.2.0-rc5-bisect+ #35 task: 000000006cc1f258 ti: 000000006ccb8000 task.ti: 000000006ccb8000 YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI PSW: 00001000000001001111111000001111 Not tainted r00-03 000000ff0804fe0f 000000001059d000 000000001059f818 000000007f16be38 r04-07 000000001059d000 000000007f16be08 0000000000200200 0000000000000001 r08-11 000000006ccb8260 000000007b7934d0 0000000000000001 0000000000000000 r12-15 000000004056f320 0000000000000000 0000000000013dd0 0000000000000000 r16-19 00000000f0d00ae0 0000000000000000 0000000000000000 0000000000000001 r20-23 000000000800000f 0000000042200390 0000000000000000 0000000000000000 r24-27 0000000000000001 000000000800000f 000000007f16be08 000000001059d000 r28-31 0000000100000000 000000006ccb8560 000000006ccb8640 0000000000000000 sr00-03 0000000000249800 0000000000000000 0000000000000000 0000000000249800 sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000 IASQ: 0000000000000000 0000000000000000 IAOQ: 000000001059f61c 000000001059f620 IIR: 0f8010c6 ISR: 0000000000000000 IOR: 0000000100000000 CPU: 3 CR30: 000000006ccb8000 CR31: 0000000000000000 ORIG_R28: 000000001059d000 IAOQ[0]: call_bio_endio+0x34/0x1a8 [raid1] IAOQ[1]: call_bio_endio+0x38/0x1a8 [raid1] RP(r2): raid_end_bio_io+0x88/0x168 [raid1] Backtrace: [<000000001059f818>] raid_end_bio_io+0x88/0x168 [raid1] [<00000000105a4f64>] raid1d+0x144/0x1640 [raid1] [<000000004017fd5c>] kthread+0x144/0x160 Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Fixes: 55ce74d4bfe1 ("md/raid1: ensure device failure recorded before write request returns.") Fixes: 95af587e95aa ("md/raid10: ensure device failure recorded before write request returns.") Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-02 03:17:43 +08:00
r10_bio = list_first_entry(&tmp, struct r10bio,
retry_list);
list_del(&r10_bio->retry_list);
md/raid10: don't clear bitmap bit when bad-block-list write fails. When a write fails and a bad-block-list is present, we can update the bad-block-list instead of writing the data. If this succeeds then it is OK clear the relevant bitmap-bit as no further 'sync' of the block is needed. However if writing the bad-block-list fails then we need to treat the write as failed and particularly must not clear the bitmap bit. Otherwise the device can be re-added (after any hardware connection issues are resolved) and because the relevant bit in the bitmap is clear, that block will not be resynced. This leads to data corruption. We already delay the final bio_endio() on the write until the bad-block-list is written so that when the write returns: either that data is safe, the bad-block record is safe, or the fact that the device is faulty is safe. However we *don't* delay the clearing of the bitmap, so the bitmap bit can be recorded as cleared before we know if the bad-block-list was written safely. So: delay that until the write really is safe. i.e. move the call to close_write() until just before calling bio_endio(), and recheck the 'is array degraded' status before making that call. This bug goes back to v3.1 when bad-block-lists were introduced, though it only affects arrays created with mdadm-3.3 or later as only those have bad-block lists. Backports will require at least Commit: 95af587e95aa ("md/raid10: ensure device failure recorded before write request returns.") as well. I'll send that to 'stable' separately. Note that of the two tests of R10BIO_WriteError that this patch adds, the first is certain to fail and the second is certain to succeed. However doing it this way makes the patch more obviously correct. I will tidy the code up in a future merge window. Reported-by: Nate Dailey <nate.dailey@stratus.com> Fixes: bd870a16c594 ("md/raid10: Handle write errors by updating badblock log.") Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24 13:23:48 +08:00
if (mddev->degraded)
set_bit(R10BIO_Degraded, &r10_bio->state);
if (test_bit(R10BIO_WriteError,
&r10_bio->state))
close_write(r10_bio);
raid_end_bio_io(r10_bio);
}
}
blk_start_plug(&plug);
for (;;) {
flush_pending_writes(conf);
spin_lock_irqsave(&conf->device_lock, flags);
if (list_empty(head)) {
spin_unlock_irqrestore(&conf->device_lock, flags);
break;
}
r10_bio = list_entry(head->prev, struct r10bio, retry_list);
list_del(head->prev);
conf->nr_queued--;
spin_unlock_irqrestore(&conf->device_lock, flags);
mddev = r10_bio->mddev;
conf = mddev->private;
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
test_bit(R10BIO_WriteError, &r10_bio->state))
handle_write_completed(conf, r10_bio);
else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
reshape_request_write(mddev, r10_bio);
else if (test_bit(R10BIO_IsSync, &r10_bio->state))
sync_request_write(mddev, r10_bio);
else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
recovery_request_write(mddev, r10_bio);
else if (test_bit(R10BIO_ReadError, &r10_bio->state))
handle_read_error(mddev, r10_bio);
else
WARN_ON_ONCE(1);
cond_resched();
if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
md: make it easier to wait for bad blocks to be acknowledged. It is only safe to choose not to write to a bad block if that bad block is safely recorded in metadata - i.e. if it has been 'acknowledged'. If it hasn't we need to wait for the acknowledgement. We support that using rdev->blocked wait and md_wait_for_blocked_rdev by introducing a new device flag 'BlockedBadBlock'. This flag is only advisory. It is cleared whenever we acknowledge a bad block, so that a waiter can re-check the particular bad blocks that it is interested it. It should be set by a caller when they find they need to wait. This (set after test) is inherently racy, but as md_wait_for_blocked_rdev already has a timeout, losing the race will have minimal impact. When we clear "Blocked" was also clear "BlockedBadBlocks" incase it was set incorrectly (see above race). We also modify the way we manage 'Blocked' to fit better with the new handling of 'BlockedBadBlocks' and to make it consistent between externally managed and internally managed metadata. This requires that each raidXd loop checks if the metadata needs to be written and triggers a write (md_check_recovery) if needed. Otherwise a queued write request might cause raidXd to wait for the metadata to write, and only that thread can write it. Before writing metadata, we set FaultRecorded for all devices that are Faulty, then after writing the metadata we clear Blocked for any device for which the Fault was certainly Recorded. The 'faulty' device flag now appears in sysfs if the device is faulty *or* it has unacknowledged bad blocks. So user-space which does not understand bad blocks can continue to function correctly. User space which does, should not assume a device is faulty until it sees the 'faulty' flag, and then sees the list of unacknowledged bad blocks is empty. Signed-off-by: NeilBrown <neilb@suse.de>
2011-07-28 09:31:48 +08:00
md_check_recovery(mddev);
}
blk_finish_plug(&plug);
}
static int init_resync(struct r10conf *conf)
{
int ret, buffs, i;
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
BUG_ON(mempool_initialized(&conf->r10buf_pool));
conf->have_replacement = 0;
for (i = 0; i < conf->geo.raid_disks; i++)
if (conf->mirrors[i].replacement)
conf->have_replacement = 1;
ret = mempool_init(&conf->r10buf_pool, buffs,
r10buf_pool_alloc, r10buf_pool_free, conf);
if (ret)
return ret;
conf->next_resync = 0;
return 0;
}
static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
{
struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
struct rsync_pages *rp;
struct bio *bio;
int nalloc;
int i;
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
nalloc = conf->copies; /* resync */
else
nalloc = 2; /* recovery */
for (i = 0; i < nalloc; i++) {
bio = r10bio->devs[i].bio;
rp = bio->bi_private;
bio_reset(bio);
bio->bi_private = rp;
bio = r10bio->devs[i].repl_bio;
if (bio) {
rp = bio->bi_private;
bio_reset(bio);
bio->bi_private = rp;
}
}
return r10bio;
}
/*
* Set cluster_sync_high since we need other nodes to add the
* range [cluster_sync_low, cluster_sync_high] to suspend list.
*/
static void raid10_set_cluster_sync_high(struct r10conf *conf)
{
sector_t window_size;
int extra_chunk, chunks;
/*
* First, here we define "stripe" as a unit which across
* all member devices one time, so we get chunks by use
* raid_disks / near_copies. Otherwise, if near_copies is
* close to raid_disks, then resync window could increases
* linearly with the increase of raid_disks, which means
* we will suspend a really large IO window while it is not
* necessary. If raid_disks is not divisible by near_copies,
* an extra chunk is needed to ensure the whole "stripe" is
* covered.
*/
chunks = conf->geo.raid_disks / conf->geo.near_copies;
if (conf->geo.raid_disks % conf->geo.near_copies == 0)
extra_chunk = 0;
else
extra_chunk = 1;
window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
/*
* At least use a 32M window to align with raid1's resync window
*/
window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
conf->cluster_sync_high = conf->cluster_sync_low + window_size;
}
/*
* perform a "sync" on one "block"
*
* We need to make sure that no normal I/O request - particularly write
* requests - conflict with active sync requests.
*
* This is achieved by tracking pending requests and a 'barrier' concept
* that can be installed to exclude normal IO requests.
*
* Resync and recovery are handled very differently.
* We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
*
* For resync, we iterate over virtual addresses, read all copies,
* and update if there are differences. If only one copy is live,
* skip it.
* For recovery, we iterate over physical addresses, read a good
* value for each non-in_sync drive, and over-write.
*
* So, for recovery we may have several outstanding complex requests for a
* given address, one for each out-of-sync device. We model this by allocating
* a number of r10_bio structures, one for each out-of-sync device.
* As we setup these structures, we collect all bio's together into a list
* which we then process collectively to add pages, and then process again
* to pass to submit_bio_noacct.
*
* The r10_bio structures are linked using a borrowed master_bio pointer.
* This link is counted in ->remaining. When the r10_bio that points to NULL
* has its remaining count decremented to 0, the whole complex operation
* is complete.
*
*/
static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
int *skipped)
{
struct r10conf *conf = mddev->private;
struct r10bio *r10_bio;
struct bio *biolist = NULL, *bio;
sector_t max_sector, nr_sectors;
int i;
int max_sync;
sector_t sync_blocks;
sector_t sectors_skipped = 0;
int chunks_skipped = 0;
sector_t chunk_mask = conf->geo.chunk_mask;
int page_idx = 0;
if (!mempool_initialized(&conf->r10buf_pool))
if (init_resync(conf))
return 0;
/*
* Allow skipping a full rebuild for incremental assembly
* of a clean array, like RAID1 does.
*/
if (mddev->bitmap == NULL &&
mddev->recovery_cp == MaxSector &&
mddev->reshape_position == MaxSector &&
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
conf->fullsync == 0) {
*skipped = 1;
return mddev->dev_sectors - sector_nr;
}
skipped:
max_sector = mddev->dev_sectors;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sector = mddev->resync_max_sectors;
if (sector_nr >= max_sector) {
conf->cluster_sync_low = 0;
conf->cluster_sync_high = 0;
/* If we aborted, we need to abort the
* sync on the 'current' bitmap chucks (there can
* be several when recovering multiple devices).
* as we may have started syncing it but not finished.
* We can find the current address in
* mddev->curr_resync, but for recovery,
* we need to convert that to several
* virtual addresses.
*/
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
end_reshape(conf);
close_sync(conf);
return 0;
}
if (mddev->curr_resync < max_sector) { /* aborted */
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else for (i = 0; i < conf->geo.raid_disks; i++) {
sector_t sect =
raid10_find_virt(conf, mddev->curr_resync, i);
md_bitmap_end_sync(mddev->bitmap, sect,
&sync_blocks, 1);
}
} else {
/* completed sync */
if ((!mddev->bitmap || conf->fullsync)
&& conf->have_replacement
&& test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* Completed a full sync so the replacements
* are now fully recovered.
*/
rcu_read_lock();
for (i = 0; i < conf->geo.raid_disks; i++) {
struct md_rdev *rdev =
rcu_dereference(conf->mirrors[i].replacement);
if (rdev)
rdev->recovery_offset = MaxSector;
}
rcu_read_unlock();
}
conf->fullsync = 0;
}
md_bitmap_close_sync(mddev->bitmap);
close_sync(conf);
*skipped = 1;
return sectors_skipped;
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
return reshape_request(mddev, sector_nr, skipped);
if (chunks_skipped >= conf->geo.raid_disks) {
/* if there has been nothing to do on any drive,
* then there is nothing to do at all..
*/
*skipped = 1;
return (max_sector - sector_nr) + sectors_skipped;
}
if (max_sector > mddev->resync_max)
max_sector = mddev->resync_max; /* Don't do IO beyond here */
/* make sure whole request will fit in a chunk - if chunks
* are meaningful
*/
if (conf->geo.near_copies < conf->geo.raid_disks &&
max_sector > (sector_nr | chunk_mask))
max_sector = (sector_nr | chunk_mask) + 1;
/*
* If there is non-resync activity waiting for a turn, then let it
* though before starting on this new sync request.
*/
if (conf->nr_waiting)
schedule_timeout_uninterruptible(1);
/* Again, very different code for resync and recovery.
* Both must result in an r10bio with a list of bios that
* have bi_end_io, bi_sector, bi_disk set,
* and bi_private set to the r10bio.
* For recovery, we may actually create several r10bios
* with 2 bios in each, that correspond to the bios in the main one.
* In this case, the subordinate r10bios link back through a
* borrowed master_bio pointer, and the counter in the master
* includes a ref from each subordinate.
*/
/* First, we decide what to do and set ->bi_end_io
* To end_sync_read if we want to read, and
* end_sync_write if we will want to write.
*/
max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* recovery... the complicated one */
int j;
r10_bio = NULL;
for (i = 0 ; i < conf->geo.raid_disks; i++) {
int still_degraded;
struct r10bio *rb2;
sector_t sect;
int must_sync;
int any_working;
md/raid10: Fix raid10 replace hang when new added disk faulty [Symptom] Resync thread hang when new added disk faulty during replacing. [Root Cause] In raid10_sync_request(), we expect to issue a bio with callback end_sync_read(), and a bio with callback end_sync_write(). In normal situation, we will add resyncing sectors into mddev->recovery_active when raid10_sync_request() returned, and sub resynced sectors from mddev->recovery_active when end_sync_write() calls end_sync_request(). If new added disk, which are replacing the old disk, is set faulty, there is a race condition: 1. In the first rcu protected section, resync thread did not detect that mreplace is set faulty and pass the condition. 2. In the second rcu protected section, mreplace is set faulty. 3. But, resync thread will prepare the read object first, and then check the write condition. 4. It will find that mreplace is set faulty and do not have to prepare write object. This cause we add resync sectors but never sub it. [How to Reproduce] This issue can be easily reproduced by the following steps: mdadm -C /dev/md0 --assume-clean -l 10 -n 4 /dev/sd[abcd] mdadm /dev/md0 -a /dev/sde mdadm /dev/md0 --replace /dev/sdd sleep 1 mdadm /dev/md0 -f /dev/sde [How to Fix] This issue can be fixed by using local variables to record the result of test conditions. Once the conditions are satisfied, we can make sure that we need to issue a bio for read and a bio for write. Previous 'commit 24afd80d99f8 ("md/raid10: handle recovery of replacement devices.")' will also check whether bio is NULL, but leave the comment saying that it is a pointless test. So we remove this dummy check. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Allen Peng <allenpeng@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Alex Wu <alexwu@synology.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-09-21 16:05:03 +08:00
int need_recover = 0;
int need_replace = 0;
struct raid10_info *mirror = &conf->mirrors[i];
struct md_rdev *mrdev, *mreplace;
rcu_read_lock();
mrdev = rcu_dereference(mirror->rdev);
mreplace = rcu_dereference(mirror->replacement);
md/raid10: Fix raid10 replace hang when new added disk faulty [Symptom] Resync thread hang when new added disk faulty during replacing. [Root Cause] In raid10_sync_request(), we expect to issue a bio with callback end_sync_read(), and a bio with callback end_sync_write(). In normal situation, we will add resyncing sectors into mddev->recovery_active when raid10_sync_request() returned, and sub resynced sectors from mddev->recovery_active when end_sync_write() calls end_sync_request(). If new added disk, which are replacing the old disk, is set faulty, there is a race condition: 1. In the first rcu protected section, resync thread did not detect that mreplace is set faulty and pass the condition. 2. In the second rcu protected section, mreplace is set faulty. 3. But, resync thread will prepare the read object first, and then check the write condition. 4. It will find that mreplace is set faulty and do not have to prepare write object. This cause we add resync sectors but never sub it. [How to Reproduce] This issue can be easily reproduced by the following steps: mdadm -C /dev/md0 --assume-clean -l 10 -n 4 /dev/sd[abcd] mdadm /dev/md0 -a /dev/sde mdadm /dev/md0 --replace /dev/sdd sleep 1 mdadm /dev/md0 -f /dev/sde [How to Fix] This issue can be fixed by using local variables to record the result of test conditions. Once the conditions are satisfied, we can make sure that we need to issue a bio for read and a bio for write. Previous 'commit 24afd80d99f8 ("md/raid10: handle recovery of replacement devices.")' will also check whether bio is NULL, but leave the comment saying that it is a pointless test. So we remove this dummy check. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Allen Peng <allenpeng@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Alex Wu <alexwu@synology.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-09-21 16:05:03 +08:00
if (mrdev != NULL &&
!test_bit(Faulty, &mrdev->flags) &&
!test_bit(In_sync, &mrdev->flags))
need_recover = 1;
if (mreplace != NULL &&
!test_bit(Faulty, &mreplace->flags))
need_replace = 1;
if (!need_recover && !need_replace) {
rcu_read_unlock();
continue;
}
still_degraded = 0;
/* want to reconstruct this device */
rb2 = r10_bio;
sect = raid10_find_virt(conf, sector_nr, i);
if (sect >= mddev->resync_max_sectors) {
/* last stripe is not complete - don't
* try to recover this sector.
*/
rcu_read_unlock();
continue;
}
if (mreplace && test_bit(Faulty, &mreplace->flags))
mreplace = NULL;
/* Unless we are doing a full sync, or a replacement
* we only need to recover the block if it is set in
* the bitmap
*/
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
&sync_blocks, 1);
if (sync_blocks < max_sync)
max_sync = sync_blocks;
if (!must_sync &&
mreplace == NULL &&
!conf->fullsync) {
/* yep, skip the sync_blocks here, but don't assume
* that there will never be anything to do here
*/
chunks_skipped = -1;
rcu_read_unlock();
continue;
}
atomic_inc(&mrdev->nr_pending);
if (mreplace)
atomic_inc(&mreplace->nr_pending);
rcu_read_unlock();
r10_bio = raid10_alloc_init_r10buf(conf);
r10_bio->state = 0;
raise_barrier(conf, rb2 != NULL);
atomic_set(&r10_bio->remaining, 0);
r10_bio->master_bio = (struct bio*)rb2;
if (rb2)
atomic_inc(&rb2->remaining);
r10_bio->mddev = mddev;
set_bit(R10BIO_IsRecover, &r10_bio->state);
r10_bio->sector = sect;
raid10_find_phys(conf, r10_bio);
/* Need to check if the array will still be
* degraded
*/
rcu_read_lock();
for (j = 0; j < conf->geo.raid_disks; j++) {
struct md_rdev *rdev = rcu_dereference(
conf->mirrors[j].rdev);
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
still_degraded = 1;
break;
}
}
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
&sync_blocks, still_degraded);
any_working = 0;
for (j=0; j<conf->copies;j++) {
int k;
int d = r10_bio->devs[j].devnum;
sector_t from_addr, to_addr;
struct md_rdev *rdev =
rcu_dereference(conf->mirrors[d].rdev);
sector_t sector, first_bad;
int bad_sectors;
if (!rdev ||
!test_bit(In_sync, &rdev->flags))
continue;
/* This is where we read from */
any_working = 1;
sector = r10_bio->devs[j].addr;
if (is_badblock(rdev, sector, max_sync,
&first_bad, &bad_sectors)) {
if (first_bad > sector)
max_sync = first_bad - sector;
else {
bad_sectors -= (sector
- first_bad);
if (max_sync > bad_sectors)
max_sync = bad_sectors;
continue;
}
}
bio = r10_bio->devs[0].bio;
bio->bi_next = biolist;
biolist = bio;
bio->bi_end_io = end_sync_read;
bio_set_op_attrs(bio, REQ_OP_READ, 0);
if (test_bit(FailFast, &rdev->flags))
bio->bi_opf |= MD_FAILFAST;
from_addr = r10_bio->devs[j].addr;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector = from_addr +
rdev->data_offset;
bio_set_dev(bio, rdev->bdev);
atomic_inc(&rdev->nr_pending);
/* and we write to 'i' (if not in_sync) */
for (k=0; k<conf->copies; k++)
if (r10_bio->devs[k].devnum == i)
break;
BUG_ON(k == conf->copies);
to_addr = r10_bio->devs[k].addr;
r10_bio->devs[0].devnum = d;
r10_bio->devs[0].addr = from_addr;
r10_bio->devs[1].devnum = i;
r10_bio->devs[1].addr = to_addr;
md/raid10: Fix raid10 replace hang when new added disk faulty [Symptom] Resync thread hang when new added disk faulty during replacing. [Root Cause] In raid10_sync_request(), we expect to issue a bio with callback end_sync_read(), and a bio with callback end_sync_write(). In normal situation, we will add resyncing sectors into mddev->recovery_active when raid10_sync_request() returned, and sub resynced sectors from mddev->recovery_active when end_sync_write() calls end_sync_request(). If new added disk, which are replacing the old disk, is set faulty, there is a race condition: 1. In the first rcu protected section, resync thread did not detect that mreplace is set faulty and pass the condition. 2. In the second rcu protected section, mreplace is set faulty. 3. But, resync thread will prepare the read object first, and then check the write condition. 4. It will find that mreplace is set faulty and do not have to prepare write object. This cause we add resync sectors but never sub it. [How to Reproduce] This issue can be easily reproduced by the following steps: mdadm -C /dev/md0 --assume-clean -l 10 -n 4 /dev/sd[abcd] mdadm /dev/md0 -a /dev/sde mdadm /dev/md0 --replace /dev/sdd sleep 1 mdadm /dev/md0 -f /dev/sde [How to Fix] This issue can be fixed by using local variables to record the result of test conditions. Once the conditions are satisfied, we can make sure that we need to issue a bio for read and a bio for write. Previous 'commit 24afd80d99f8 ("md/raid10: handle recovery of replacement devices.")' will also check whether bio is NULL, but leave the comment saying that it is a pointless test. So we remove this dummy check. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Allen Peng <allenpeng@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Alex Wu <alexwu@synology.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-09-21 16:05:03 +08:00
if (need_recover) {
bio = r10_bio->devs[1].bio;
bio->bi_next = biolist;
biolist = bio;
bio->bi_end_io = end_sync_write;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector = to_addr
+ mrdev->data_offset;
bio_set_dev(bio, mrdev->bdev);
atomic_inc(&r10_bio->remaining);
} else
r10_bio->devs[1].bio->bi_end_io = NULL;
/* and maybe write to replacement */
bio = r10_bio->devs[1].repl_bio;
if (bio)
bio->bi_end_io = NULL;
md/raid10: Fix raid10 replace hang when new added disk faulty [Symptom] Resync thread hang when new added disk faulty during replacing. [Root Cause] In raid10_sync_request(), we expect to issue a bio with callback end_sync_read(), and a bio with callback end_sync_write(). In normal situation, we will add resyncing sectors into mddev->recovery_active when raid10_sync_request() returned, and sub resynced sectors from mddev->recovery_active when end_sync_write() calls end_sync_request(). If new added disk, which are replacing the old disk, is set faulty, there is a race condition: 1. In the first rcu protected section, resync thread did not detect that mreplace is set faulty and pass the condition. 2. In the second rcu protected section, mreplace is set faulty. 3. But, resync thread will prepare the read object first, and then check the write condition. 4. It will find that mreplace is set faulty and do not have to prepare write object. This cause we add resync sectors but never sub it. [How to Reproduce] This issue can be easily reproduced by the following steps: mdadm -C /dev/md0 --assume-clean -l 10 -n 4 /dev/sd[abcd] mdadm /dev/md0 -a /dev/sde mdadm /dev/md0 --replace /dev/sdd sleep 1 mdadm /dev/md0 -f /dev/sde [How to Fix] This issue can be fixed by using local variables to record the result of test conditions. Once the conditions are satisfied, we can make sure that we need to issue a bio for read and a bio for write. Previous 'commit 24afd80d99f8 ("md/raid10: handle recovery of replacement devices.")' will also check whether bio is NULL, but leave the comment saying that it is a pointless test. So we remove this dummy check. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Allen Peng <allenpeng@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Alex Wu <alexwu@synology.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-09-21 16:05:03 +08:00
/* Note: if need_replace, then bio
* cannot be NULL as r10buf_pool_alloc will
* have allocated it.
*/
md/raid10: Fix raid10 replace hang when new added disk faulty [Symptom] Resync thread hang when new added disk faulty during replacing. [Root Cause] In raid10_sync_request(), we expect to issue a bio with callback end_sync_read(), and a bio with callback end_sync_write(). In normal situation, we will add resyncing sectors into mddev->recovery_active when raid10_sync_request() returned, and sub resynced sectors from mddev->recovery_active when end_sync_write() calls end_sync_request(). If new added disk, which are replacing the old disk, is set faulty, there is a race condition: 1. In the first rcu protected section, resync thread did not detect that mreplace is set faulty and pass the condition. 2. In the second rcu protected section, mreplace is set faulty. 3. But, resync thread will prepare the read object first, and then check the write condition. 4. It will find that mreplace is set faulty and do not have to prepare write object. This cause we add resync sectors but never sub it. [How to Reproduce] This issue can be easily reproduced by the following steps: mdadm -C /dev/md0 --assume-clean -l 10 -n 4 /dev/sd[abcd] mdadm /dev/md0 -a /dev/sde mdadm /dev/md0 --replace /dev/sdd sleep 1 mdadm /dev/md0 -f /dev/sde [How to Fix] This issue can be fixed by using local variables to record the result of test conditions. Once the conditions are satisfied, we can make sure that we need to issue a bio for read and a bio for write. Previous 'commit 24afd80d99f8 ("md/raid10: handle recovery of replacement devices.")' will also check whether bio is NULL, but leave the comment saying that it is a pointless test. So we remove this dummy check. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Allen Peng <allenpeng@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Alex Wu <alexwu@synology.com> Signed-off-by: Shaohua Li <shli@fb.com>
2018-09-21 16:05:03 +08:00
if (!need_replace)
break;
bio->bi_next = biolist;
biolist = bio;
bio->bi_end_io = end_sync_write;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector = to_addr +
mreplace->data_offset;
bio_set_dev(bio, mreplace->bdev);
atomic_inc(&r10_bio->remaining);
break;
}
rcu_read_unlock();
if (j == conf->copies) {
/* Cannot recover, so abort the recovery or
* record a bad block */
if (any_working) {
/* problem is that there are bad blocks
* on other device(s)
*/
int k;
for (k = 0; k < conf->copies; k++)
if (r10_bio->devs[k].devnum == i)
break;
if (!test_bit(In_sync,
&mrdev->flags)
&& !rdev_set_badblocks(
mrdev,
r10_bio->devs[k].addr,
max_sync, 0))
any_working = 0;
if (mreplace &&
!rdev_set_badblocks(
mreplace,
r10_bio->devs[k].addr,
max_sync, 0))
any_working = 0;
}
if (!any_working) {
if (!test_and_set_bit(MD_RECOVERY_INTR,
&mddev->recovery))
pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
mdname(mddev));
mirror->recovery_disabled
= mddev->recovery_disabled;
}
put_buf(r10_bio);
if (rb2)
atomic_dec(&rb2->remaining);
r10_bio = rb2;
rdev_dec_pending(mrdev, mddev);
if (mreplace)
rdev_dec_pending(mreplace, mddev);
break;
}
rdev_dec_pending(mrdev, mddev);
if (mreplace)
rdev_dec_pending(mreplace, mddev);
if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
/* Only want this if there is elsewhere to
* read from. 'j' is currently the first
* readable copy.
*/
int targets = 1;
for (; j < conf->copies; j++) {
int d = r10_bio->devs[j].devnum;
if (conf->mirrors[d].rdev &&
test_bit(In_sync,
&conf->mirrors[d].rdev->flags))
targets++;
}
if (targets == 1)
r10_bio->devs[0].bio->bi_opf
&= ~MD_FAILFAST;
}
}
if (biolist == NULL) {
while (r10_bio) {
struct r10bio *rb2 = r10_bio;
r10_bio = (struct r10bio*) rb2->master_bio;
rb2->master_bio = NULL;
put_buf(rb2);
}
goto giveup;
}
} else {
/* resync. Schedule a read for every block at this virt offset */
int count = 0;
/*
* Since curr_resync_completed could probably not update in
* time, and we will set cluster_sync_low based on it.
* Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
* safety reason, which ensures curr_resync_completed is
* updated in bitmap_cond_end_sync.
*/
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
mddev_is_clustered(mddev) &&
(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
&sync_blocks, mddev->degraded) &&
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
&mddev->recovery)) {
/* We can skip this block */
*skipped = 1;
return sync_blocks + sectors_skipped;
}
if (sync_blocks < max_sync)
max_sync = sync_blocks;
r10_bio = raid10_alloc_init_r10buf(conf);
r10_bio->state = 0;
r10_bio->mddev = mddev;
atomic_set(&r10_bio->remaining, 0);
raise_barrier(conf, 0);
conf->next_resync = sector_nr;
r10_bio->master_bio = NULL;
r10_bio->sector = sector_nr;
set_bit(R10BIO_IsSync, &r10_bio->state);
raid10_find_phys(conf, r10_bio);
r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
for (i = 0; i < conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
sector_t first_bad, sector;
int bad_sectors;
struct md_rdev *rdev;
if (r10_bio->devs[i].repl_bio)
r10_bio->devs[i].repl_bio->bi_end_io = NULL;
bio = r10_bio->devs[i].bio;
bio->bi_status = BLK_STS_IOERR;
rcu_read_lock();
rdev = rcu_dereference(conf->mirrors[d].rdev);
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
rcu_read_unlock();
continue;
}
sector = r10_bio->devs[i].addr;
if (is_badblock(rdev, sector, max_sync,
&first_bad, &bad_sectors)) {
if (first_bad > sector)
max_sync = first_bad - sector;
else {
bad_sectors -= (sector - first_bad);
if (max_sync > bad_sectors)
max_sync = bad_sectors;
rcu_read_unlock();
continue;
}
}
atomic_inc(&rdev->nr_pending);
atomic_inc(&r10_bio->remaining);
bio->bi_next = biolist;
biolist = bio;
bio->bi_end_io = end_sync_read;
bio_set_op_attrs(bio, REQ_OP_READ, 0);
if (test_bit(FailFast, &rdev->flags))
bio->bi_opf |= MD_FAILFAST;
bio->bi_iter.bi_sector = sector + rdev->data_offset;
bio_set_dev(bio, rdev->bdev);
count++;
rdev = rcu_dereference(conf->mirrors[d].replacement);
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
rcu_read_unlock();
continue;
}
atomic_inc(&rdev->nr_pending);
/* Need to set up for writing to the replacement */
bio = r10_bio->devs[i].repl_bio;
bio->bi_status = BLK_STS_IOERR;
sector = r10_bio->devs[i].addr;
bio->bi_next = biolist;
biolist = bio;
bio->bi_end_io = end_sync_write;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
if (test_bit(FailFast, &rdev->flags))
bio->bi_opf |= MD_FAILFAST;
bio->bi_iter.bi_sector = sector + rdev->data_offset;
bio_set_dev(bio, rdev->bdev);
count++;
rcu_read_unlock();
}
if (count < 2) {
for (i=0; i<conf->copies; i++) {
int d = r10_bio->devs[i].devnum;
if (r10_bio->devs[i].bio->bi_end_io)
rdev_dec_pending(conf->mirrors[d].rdev,
mddev);
if (r10_bio->devs[i].repl_bio &&
r10_bio->devs[i].repl_bio->bi_end_io)
rdev_dec_pending(
conf->mirrors[d].replacement,
mddev);
}
put_buf(r10_bio);
biolist = NULL;
goto giveup;
}
}
nr_sectors = 0;
if (sector_nr + max_sync < max_sector)
max_sector = sector_nr + max_sync;
do {
struct page *page;
int len = PAGE_SIZE;
if (sector_nr + (len>>9) > max_sector)
len = (max_sector - sector_nr) << 9;
if (len == 0)
break;
for (bio= biolist ; bio ; bio=bio->bi_next) {
struct resync_pages *rp = get_resync_pages(bio);
page = resync_fetch_page(rp, page_idx);
/*
* won't fail because the vec table is big enough
* to hold all these pages
*/
bio_add_page(bio, page, len, 0);
}
nr_sectors += len>>9;
sector_nr += len>>9;
} while (++page_idx < RESYNC_PAGES);
r10_bio->sectors = nr_sectors;
if (mddev_is_clustered(mddev) &&
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* It is resync not recovery */
if (conf->cluster_sync_high < sector_nr + nr_sectors) {
conf->cluster_sync_low = mddev->curr_resync_completed;
raid10_set_cluster_sync_high(conf);
/* Send resync message */
md_cluster_ops->resync_info_update(mddev,
conf->cluster_sync_low,
conf->cluster_sync_high);
}
} else if (mddev_is_clustered(mddev)) {
/* This is recovery not resync */
sector_t sect_va1, sect_va2;
bool broadcast_msg = false;
for (i = 0; i < conf->geo.raid_disks; i++) {
/*
* sector_nr is a device address for recovery, so we
* need translate it to array address before compare
* with cluster_sync_high.
*/
sect_va1 = raid10_find_virt(conf, sector_nr, i);
if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
broadcast_msg = true;
/*
* curr_resync_completed is similar as
* sector_nr, so make the translation too.
*/
sect_va2 = raid10_find_virt(conf,
mddev->curr_resync_completed, i);
if (conf->cluster_sync_low == 0 ||
conf->cluster_sync_low > sect_va2)
conf->cluster_sync_low = sect_va2;
}
}
if (broadcast_msg) {
raid10_set_cluster_sync_high(conf);
md_cluster_ops->resync_info_update(mddev,
conf->cluster_sync_low,
conf->cluster_sync_high);
}
}
while (biolist) {
bio = biolist;
biolist = biolist->bi_next;
bio->bi_next = NULL;
r10_bio = get_resync_r10bio(bio);
r10_bio->sectors = nr_sectors;
if (bio->bi_end_io == end_sync_read) {
md_sync_acct_bio(bio, nr_sectors);
bio->bi_status = 0;
submit_bio_noacct(bio);
}
}
if (sectors_skipped)
/* pretend they weren't skipped, it makes
* no important difference in this case
*/
md_done_sync(mddev, sectors_skipped, 1);
return sectors_skipped + nr_sectors;
giveup:
/* There is nowhere to write, so all non-sync
* drives must be failed or in resync, all drives
* have a bad block, so try the next chunk...
*/
if (sector_nr + max_sync < max_sector)
max_sector = sector_nr + max_sync;
sectors_skipped += (max_sector - sector_nr);
chunks_skipped ++;
sector_nr = max_sector;
goto skipped;
}
static sector_t
raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
sector_t size;
struct r10conf *conf = mddev->private;
if (!raid_disks)
raid_disks = min(conf->geo.raid_disks,
conf->prev.raid_disks);
if (!sectors)
sectors = conf->dev_sectors;
size = sectors >> conf->geo.chunk_shift;
sector_div(size, conf->geo.far_copies);
size = size * raid_disks;
sector_div(size, conf->geo.near_copies);
return size << conf->geo.chunk_shift;
}
static void calc_sectors(struct r10conf *conf, sector_t size)
{
/* Calculate the number of sectors-per-device that will
* actually be used, and set conf->dev_sectors and
* conf->stride
*/
size = size >> conf->geo.chunk_shift;
sector_div(size, conf->geo.far_copies);
size = size * conf->geo.raid_disks;
sector_div(size, conf->geo.near_copies);
/* 'size' is now the number of chunks in the array */
/* calculate "used chunks per device" */
size = size * conf->copies;
/* We need to round up when dividing by raid_disks to
* get the stride size.
*/
size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
conf->dev_sectors = size << conf->geo.chunk_shift;
if (conf->geo.far_offset)
conf->geo.stride = 1 << conf->geo.chunk_shift;
else {
sector_div(size, conf->geo.far_copies);
conf->geo.stride = size << conf->geo.chunk_shift;
}
}
enum geo_type {geo_new, geo_old, geo_start};
static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
{
int nc, fc, fo;
int layout, chunk, disks;
switch (new) {
case geo_old:
layout = mddev->layout;
chunk = mddev->chunk_sectors;
disks = mddev->raid_disks - mddev->delta_disks;
break;
case geo_new:
layout = mddev->new_layout;
chunk = mddev->new_chunk_sectors;
disks = mddev->raid_disks;
break;
default: /* avoid 'may be unused' warnings */
case geo_start: /* new when starting reshape - raid_disks not
* updated yet. */
layout = mddev->new_layout;
chunk = mddev->new_chunk_sectors;
disks = mddev->raid_disks + mddev->delta_disks;
break;
}
if (layout >> 19)
return -1;
if (chunk < (PAGE_SIZE >> 9) ||
!is_power_of_2(chunk))
return -2;
nc = layout & 255;
fc = (layout >> 8) & 255;
fo = layout & (1<<16);
geo->raid_disks = disks;
geo->near_copies = nc;
geo->far_copies = fc;
geo->far_offset = fo;
switch (layout >> 17) {
case 0: /* original layout. simple but not always optimal */
geo->far_set_size = disks;
break;
case 1: /* "improved" layout which was buggy. Hopefully no-one is
* actually using this, but leave code here just in case.*/
geo->far_set_size = disks/fc;
WARN(geo->far_set_size < fc,
"This RAID10 layout does not provide data safety - please backup and create new array\n");
break;
case 2: /* "improved" layout fixed to match documentation */
geo->far_set_size = fc * nc;
break;
default: /* Not a valid layout */
return -1;
}
geo->chunk_mask = chunk - 1;
geo->chunk_shift = ffz(~chunk);
return nc*fc;
}
static struct r10conf *setup_conf(struct mddev *mddev)
{
struct r10conf *conf = NULL;
int err = -EINVAL;
struct geom geo;
int copies;
copies = setup_geo(&geo, mddev, geo_new);
if (copies == -2) {
pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
mdname(mddev), PAGE_SIZE);
goto out;
}
if (copies < 2 || copies > mddev->raid_disks) {
pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
mdname(mddev), mddev->new_layout);
goto out;
}
err = -ENOMEM;
conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
if (!conf)
goto out;
/* FIXME calc properly */
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
sizeof(struct raid10_info),
GFP_KERNEL);
if (!conf->mirrors)
goto out;
conf->tmppage = alloc_page(GFP_KERNEL);
if (!conf->tmppage)
goto out;
conf->geo = geo;
conf->copies = copies;
err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
rbio_pool_free, conf);
if (err)
goto out;
err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
if (err)
goto out;
calc_sectors(conf, mddev->dev_sectors);
if (mddev->reshape_position == MaxSector) {
conf->prev = conf->geo;
conf->reshape_progress = MaxSector;
} else {
if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
err = -EINVAL;
goto out;
}
conf->reshape_progress = mddev->reshape_position;
if (conf->prev.far_offset)
conf->prev.stride = 1 << conf->prev.chunk_shift;
else
/* far_copies must be 1 */
conf->prev.stride = conf->dev_sectors;
}
conf->reshape_safe = conf->reshape_progress;
spin_lock_init(&conf->device_lock);
INIT_LIST_HEAD(&conf->retry_list);
INIT_LIST_HEAD(&conf->bio_end_io_list);
spin_lock_init(&conf->resync_lock);
init_waitqueue_head(&conf->wait_barrier);
atomic_set(&conf->nr_pending, 0);
err = -ENOMEM;
conf->thread = md_register_thread(raid10d, mddev, "raid10");
if (!conf->thread)
goto out;
conf->mddev = mddev;
return conf;
out:
if (conf) {
mempool_exit(&conf->r10bio_pool);
kfree(conf->mirrors);
safe_put_page(conf->tmppage);
bioset_exit(&conf->bio_split);
kfree(conf);
}
return ERR_PTR(err);
}
static void raid10_set_io_opt(struct r10conf *conf)
{
int raid_disks = conf->geo.raid_disks;
if (!(conf->geo.raid_disks % conf->geo.near_copies))
raid_disks /= conf->geo.near_copies;
blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
raid_disks);
}
static int raid10_run(struct mddev *mddev)
{
struct r10conf *conf;
int i, disk_idx;
struct raid10_info *disk;
struct md_rdev *rdev;
sector_t size;
sector_t min_offset_diff = 0;
int first = 1;
bool discard_supported = false;
if (mddev_init_writes_pending(mddev) < 0)
return -ENOMEM;
if (mddev->private == NULL) {
conf = setup_conf(mddev);
if (IS_ERR(conf))
return PTR_ERR(conf);
mddev->private = conf;
}
conf = mddev->private;
if (!conf)
goto out;
if (mddev_is_clustered(conf->mddev)) {
int fc, fo;
fc = (mddev->layout >> 8) & 255;
fo = mddev->layout & (1<<16);
if (fc > 1 || fo > 0) {
pr_err("only near layout is supported by clustered"
" raid10\n");
goto out_free_conf;
}
}
mddev->thread = conf->thread;
conf->thread = NULL;
if (mddev->queue) {
blk_queue_max_discard_sectors(mddev->queue,
mddev->chunk_sectors);
blk_queue_max_write_same_sectors(mddev->queue, 0);
blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
raid10_set_io_opt(conf);
}
rdev_for_each(rdev, mddev) {
long long diff;
disk_idx = rdev->raid_disk;
if (disk_idx < 0)
continue;
if (disk_idx >= conf->geo.raid_disks &&
disk_idx >= conf->prev.raid_disks)
continue;
disk = conf->mirrors + disk_idx;
if (test_bit(Replacement, &rdev->flags)) {
if (disk->replacement)
goto out_free_conf;
disk->replacement = rdev;
} else {
if (disk->rdev)
goto out_free_conf;
disk->rdev = rdev;
}
diff = (rdev->new_data_offset - rdev->data_offset);
if (!mddev->reshape_backwards)
diff = -diff;
if (diff < 0)
diff = 0;
if (first || diff < min_offset_diff)
min_offset_diff = diff;
if (mddev->gendisk)
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
disk->head_position = 0;
if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
discard_supported = true;
first = 0;
}
if (mddev->queue) {
if (discard_supported)
blk_queue_flag_set(QUEUE_FLAG_DISCARD,
mddev->queue);
else
blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
mddev->queue);
}
/* need to check that every block has at least one working mirror */
if (!enough(conf, -1)) {
pr_err("md/raid10:%s: not enough operational mirrors.\n",
mdname(mddev));
goto out_free_conf;
}
if (conf->reshape_progress != MaxSector) {
/* must ensure that shape change is supported */
if (conf->geo.far_copies != 1 &&
conf->geo.far_offset == 0)
goto out_free_conf;
if (conf->prev.far_copies != 1 &&
conf->prev.far_offset == 0)
goto out_free_conf;
}
mddev->degraded = 0;
for (i = 0;
i < conf->geo.raid_disks
|| i < conf->prev.raid_disks;
i++) {
disk = conf->mirrors + i;
if (!disk->rdev && disk->replacement) {
/* The replacement is all we have - use it */
disk->rdev = disk->replacement;
disk->replacement = NULL;
clear_bit(Replacement, &disk->rdev->flags);
}
if (!disk->rdev ||
!test_bit(In_sync, &disk->rdev->flags)) {
disk->head_position = 0;
mddev->degraded++;
if (disk->rdev &&
disk->rdev->saved_raid_disk < 0)
conf->fullsync = 1;
}
if (disk->replacement &&
!test_bit(In_sync, &disk->replacement->flags) &&
disk->replacement->saved_raid_disk < 0) {
conf->fullsync = 1;
}
disk->recovery_disabled = mddev->recovery_disabled - 1;
}
if (mddev->recovery_cp != MaxSector)
pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
mdname(mddev));
pr_info("md/raid10:%s: active with %d out of %d devices\n",
mdname(mddev), conf->geo.raid_disks - mddev->degraded,
conf->geo.raid_disks);
/*
* Ok, everything is just fine now
*/
mddev->dev_sectors = conf->dev_sectors;
size = raid10_size(mddev, 0, 0);
md_set_array_sectors(mddev, size);
mddev->resync_max_sectors = size;
set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
if (md_integrity_register(mddev))
goto out_free_conf;
if (conf->reshape_progress != MaxSector) {
unsigned long before_length, after_length;
before_length = ((1 << conf->prev.chunk_shift) *
conf->prev.far_copies);
after_length = ((1 << conf->geo.chunk_shift) *
conf->geo.far_copies);
if (max(before_length, after_length) > min_offset_diff) {
/* This cannot work */
pr_warn("md/raid10: offset difference not enough to continue reshape\n");
goto out_free_conf;
}
conf->offset_diff = min_offset_diff;
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread)
goto out_free_conf;
}
return 0;
out_free_conf:
md_unregister_thread(&mddev->thread);
mempool_exit(&conf->r10bio_pool);
safe_put_page(conf->tmppage);
kfree(conf->mirrors);
kfree(conf);
mddev->private = NULL;
out:
return -EIO;
}
static void raid10_free(struct mddev *mddev, void *priv)
{
struct r10conf *conf = priv;
mempool_exit(&conf->r10bio_pool);
safe_put_page(conf->tmppage);
kfree(conf->mirrors);
kfree(conf->mirrors_old);
kfree(conf->mirrors_new);
bioset_exit(&conf->bio_split);
kfree(conf);
}
static void raid10_quiesce(struct mddev *mddev, int quiesce)
{
struct r10conf *conf = mddev->private;
if (quiesce)
raise_barrier(conf, 0);
else
lower_barrier(conf);
}
static int raid10_resize(struct mddev *mddev, sector_t sectors)
{
/* Resize of 'far' arrays is not supported.
* For 'near' and 'offset' arrays we can set the
* number of sectors used to be an appropriate multiple
* of the chunk size.
* For 'offset', this is far_copies*chunksize.
* For 'near' the multiplier is the LCM of
* near_copies and raid_disks.
* So if far_copies > 1 && !far_offset, fail.
* Else find LCM(raid_disks, near_copy)*far_copies and
* multiply by chunk_size. Then round to this number.
* This is mostly done by raid10_size()
*/
struct r10conf *conf = mddev->private;
sector_t oldsize, size;
if (mddev->reshape_position != MaxSector)
return -EBUSY;
if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
return -EINVAL;
oldsize = raid10_size(mddev, 0, 0);
size = raid10_size(mddev, sectors, 0);
if (mddev->external_size &&
mddev->array_sectors > size)
return -EINVAL;
if (mddev->bitmap) {
int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
if (ret)
return ret;
}
md_set_array_sectors(mddev, size);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > oldsize) {
mddev->recovery_cp = oldsize;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
calc_sectors(conf, sectors);
mddev->dev_sectors = conf->dev_sectors;
mddev->resync_max_sectors = size;
return 0;
}
static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
{
struct md_rdev *rdev;
struct r10conf *conf;
if (mddev->degraded > 0) {
pr_warn("md/raid10:%s: Error: degraded raid0!\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
sector_div(size, devs);
/* Set new parameters */
mddev->new_level = 10;
/* new layout: far_copies = 1, near_copies = 2 */
mddev->new_layout = (1<<8) + 2;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->delta_disks = mddev->raid_disks;
mddev->raid_disks *= 2;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
mddev->dev_sectors = size;
conf = setup_conf(mddev);
if (!IS_ERR(conf)) {
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0) {
rdev->new_raid_disk = rdev->raid_disk * 2;
rdev->sectors = size;
}
conf->barrier = 1;
}
return conf;
}
static void *raid10_takeover(struct mddev *mddev)
{
struct r0conf *raid0_conf;
/* raid10 can take over:
* raid0 - providing it has only two drives
*/
if (mddev->level == 0) {
/* for raid0 takeover only one zone is supported */
raid0_conf = mddev->private;
if (raid0_conf->nr_strip_zones > 1) {
pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
return raid10_takeover_raid0(mddev,
raid0_conf->strip_zone->zone_end,
raid0_conf->strip_zone->nb_dev);
}
return ERR_PTR(-EINVAL);
}
static int raid10_check_reshape(struct mddev *mddev)
{
/* Called when there is a request to change
* - layout (to ->new_layout)
* - chunk size (to ->new_chunk_sectors)
* - raid_disks (by delta_disks)
* or when trying to restart a reshape that was ongoing.
*
* We need to validate the request and possibly allocate
* space if that might be an issue later.
*
* Currently we reject any reshape of a 'far' mode array,
* allow chunk size to change if new is generally acceptable,
* allow raid_disks to increase, and allow
* a switch between 'near' mode and 'offset' mode.
*/
struct r10conf *conf = mddev->private;
struct geom geo;
if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
return -EINVAL;
if (setup_geo(&geo, mddev, geo_start) != conf->copies)
/* mustn't change number of copies */
return -EINVAL;
if (geo.far_copies > 1 && !geo.far_offset)
/* Cannot switch to 'far' mode */
return -EINVAL;
if (mddev->array_sectors & geo.chunk_mask)
/* not factor of array size */
return -EINVAL;
if (!enough(conf, -1))
return -EINVAL;
kfree(conf->mirrors_new);
conf->mirrors_new = NULL;
if (mddev->delta_disks > 0) {
/* allocate new 'mirrors' list */
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
conf->mirrors_new =
kcalloc(mddev->raid_disks + mddev->delta_disks,
sizeof(struct raid10_info),
GFP_KERNEL);
if (!conf->mirrors_new)
return -ENOMEM;
}
return 0;
}
/*
* Need to check if array has failed when deciding whether to:
* - start an array
* - remove non-faulty devices
* - add a spare
* - allow a reshape
* This determination is simple when no reshape is happening.
* However if there is a reshape, we need to carefully check
* both the before and after sections.
* This is because some failed devices may only affect one
* of the two sections, and some non-in_sync devices may
* be insync in the section most affected by failed devices.
*/
static int calc_degraded(struct r10conf *conf)
{
int degraded, degraded2;
int i;
rcu_read_lock();
degraded = 0;
/* 'prev' section first */
for (i = 0; i < conf->prev.raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded++;
else if (!test_bit(In_sync, &rdev->flags))
/* When we can reduce the number of devices in
* an array, this might not contribute to
* 'degraded'. It does now.
*/
degraded++;
}
rcu_read_unlock();
if (conf->geo.raid_disks == conf->prev.raid_disks)
return degraded;
rcu_read_lock();
degraded2 = 0;
for (i = 0; i < conf->geo.raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded2++;
else if (!test_bit(In_sync, &rdev->flags)) {
/* If reshape is increasing the number of devices,
* this section has already been recovered, so
* it doesn't contribute to degraded.
* else it does.
*/
if (conf->geo.raid_disks <= conf->prev.raid_disks)
degraded2++;
}
}
rcu_read_unlock();
if (degraded2 > degraded)
return degraded2;
return degraded;
}
static int raid10_start_reshape(struct mddev *mddev)
{
/* A 'reshape' has been requested. This commits
* the various 'new' fields and sets MD_RECOVER_RESHAPE
* This also checks if there are enough spares and adds them
* to the array.
* We currently require enough spares to make the final
* array non-degraded. We also require that the difference
* between old and new data_offset - on each device - is
* enough that we never risk over-writing.
*/
unsigned long before_length, after_length;
sector_t min_offset_diff = 0;
int first = 1;
struct geom new;
struct r10conf *conf = mddev->private;
struct md_rdev *rdev;
int spares = 0;
int ret;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
if (setup_geo(&new, mddev, geo_start) != conf->copies)
return -EINVAL;
before_length = ((1 << conf->prev.chunk_shift) *
conf->prev.far_copies);
after_length = ((1 << conf->geo.chunk_shift) *
conf->geo.far_copies);
rdev_for_each(rdev, mddev) {
if (!test_bit(In_sync, &rdev->flags)
&& !test_bit(Faulty, &rdev->flags))
spares++;
if (rdev->raid_disk >= 0) {
long long diff = (rdev->new_data_offset
- rdev->data_offset);
if (!mddev->reshape_backwards)
diff = -diff;
if (diff < 0)
diff = 0;
if (first || diff < min_offset_diff)
min_offset_diff = diff;
first = 0;
}
}
if (max(before_length, after_length) > min_offset_diff)
return -EINVAL;
if (spares < mddev->delta_disks)
return -EINVAL;
conf->offset_diff = min_offset_diff;
spin_lock_irq(&conf->device_lock);
if (conf->mirrors_new) {
memcpy(conf->mirrors_new, conf->mirrors,
sizeof(struct raid10_info)*conf->prev.raid_disks);
smp_mb();
kfree(conf->mirrors_old);
conf->mirrors_old = conf->mirrors;
conf->mirrors = conf->mirrors_new;
conf->mirrors_new = NULL;
}
setup_geo(&conf->geo, mddev, geo_start);
smp_mb();
if (mddev->reshape_backwards) {
sector_t size = raid10_size(mddev, 0, 0);
if (size < mddev->array_sectors) {
spin_unlock_irq(&conf->device_lock);
pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
mdname(mddev));
return -EINVAL;
}
mddev->resync_max_sectors = size;
conf->reshape_progress = size;
} else
conf->reshape_progress = 0;
conf->reshape_safe = conf->reshape_progress;
spin_unlock_irq(&conf->device_lock);
if (mddev->delta_disks && mddev->bitmap) {
struct mdp_superblock_1 *sb = NULL;
sector_t oldsize, newsize;
oldsize = raid10_size(mddev, 0, 0);
newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
if (!mddev_is_clustered(mddev)) {
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
if (ret)
goto abort;
else
goto out;
}
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk > -1 &&
!test_bit(Faulty, &rdev->flags))
sb = page_address(rdev->sb_page);
}
/*
* some node is already performing reshape, and no need to
* call md_bitmap_resize again since it should be called when
* receiving BITMAP_RESIZE msg
*/
if ((sb && (le32_to_cpu(sb->feature_map) &
MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
goto out;
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
if (ret)
goto abort;
ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
if (ret) {
md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
goto abort;
}
}
out:
if (mddev->delta_disks > 0) {
rdev_for_each(rdev, mddev)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags)) {
if (raid10_add_disk(mddev, rdev) == 0) {
if (rdev->raid_disk >=
conf->prev.raid_disks)
set_bit(In_sync, &rdev->flags);
else
rdev->recovery_offset = 0;
/* Failure here is OK */
sysfs_link_rdev(mddev, rdev);
}
} else if (rdev->raid_disk >= conf->prev.raid_disks
&& !test_bit(Faulty, &rdev->flags)) {
/* This is a spare that was manually added */
set_bit(In_sync, &rdev->flags);
}
}
/* When a reshape changes the number of devices,
* ->degraded is measured against the larger of the
* pre and post numbers.
*/
spin_lock_irq(&conf->device_lock);
mddev->degraded = calc_degraded(conf);
spin_unlock_irq(&conf->device_lock);
mddev->raid_disks = conf->geo.raid_disks;
mddev->reshape_position = conf->reshape_progress;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread) {
ret = -EAGAIN;
goto abort;
}
conf->reshape_checkpoint = jiffies;
md_wakeup_thread(mddev->sync_thread);
md_new_event(mddev);
return 0;
abort:
mddev->recovery = 0;
spin_lock_irq(&conf->device_lock);
conf->geo = conf->prev;
mddev->raid_disks = conf->geo.raid_disks;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
smp_wmb();
conf->reshape_progress = MaxSector;
conf->reshape_safe = MaxSector;
mddev->reshape_position = MaxSector;
spin_unlock_irq(&conf->device_lock);
return ret;
}
/* Calculate the last device-address that could contain
* any block from the chunk that includes the array-address 's'
* and report the next address.
* i.e. the address returned will be chunk-aligned and after
* any data that is in the chunk containing 's'.
*/
static sector_t last_dev_address(sector_t s, struct geom *geo)
{
s = (s | geo->chunk_mask) + 1;
s >>= geo->chunk_shift;
s *= geo->near_copies;
s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
s *= geo->far_copies;
s <<= geo->chunk_shift;
return s;
}
/* Calculate the first device-address that could contain
* any block from the chunk that includes the array-address 's'.
* This too will be the start of a chunk
*/
static sector_t first_dev_address(sector_t s, struct geom *geo)
{
s >>= geo->chunk_shift;
s *= geo->near_copies;
sector_div(s, geo->raid_disks);
s *= geo->far_copies;
s <<= geo->chunk_shift;
return s;
}
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
int *skipped)
{
/* We simply copy at most one chunk (smallest of old and new)
* at a time, possibly less if that exceeds RESYNC_PAGES,
* or we hit a bad block or something.
* This might mean we pause for normal IO in the middle of
* a chunk, but that is not a problem as mddev->reshape_position
* can record any location.
*
* If we will want to write to a location that isn't
* yet recorded as 'safe' (i.e. in metadata on disk) then
* we need to flush all reshape requests and update the metadata.
*
* When reshaping forwards (e.g. to more devices), we interpret
* 'safe' as the earliest block which might not have been copied
* down yet. We divide this by previous stripe size and multiply
* by previous stripe length to get lowest device offset that we
* cannot write to yet.
* We interpret 'sector_nr' as an address that we want to write to.
* From this we use last_device_address() to find where we might
* write to, and first_device_address on the 'safe' position.
* If this 'next' write position is after the 'safe' position,
* we must update the metadata to increase the 'safe' position.
*
* When reshaping backwards, we round in the opposite direction
* and perform the reverse test: next write position must not be
* less than current safe position.
*
* In all this the minimum difference in data offsets
* (conf->offset_diff - always positive) allows a bit of slack,
* so next can be after 'safe', but not by more than offset_diff
*
* We need to prepare all the bios here before we start any IO
* to ensure the size we choose is acceptable to all devices.
* The means one for each copy for write-out and an extra one for
* read-in.
* We store the read-in bio in ->master_bio and the others in
* ->devs[x].bio and ->devs[x].repl_bio.
*/
struct r10conf *conf = mddev->private;
struct r10bio *r10_bio;
sector_t next, safe, last;
int max_sectors;
int nr_sectors;
int s;
struct md_rdev *rdev;
int need_flush = 0;
struct bio *blist;
struct bio *bio, *read_bio;
int sectors_done = 0;
struct page **pages;
if (sector_nr == 0) {
/* If restarting in the middle, skip the initial sectors */
if (mddev->reshape_backwards &&
conf->reshape_progress < raid10_size(mddev, 0, 0)) {
sector_nr = (raid10_size(mddev, 0, 0)
- conf->reshape_progress);
} else if (!mddev->reshape_backwards &&
conf->reshape_progress > 0)
sector_nr = conf->reshape_progress;
if (sector_nr) {
mddev->curr_resync_completed = sector_nr;
md: fix deadlock causing by sysfs_notify The following deadlock was captured. The first process is holding 'kernfs_mutex' and hung by io. The io was staging in 'r1conf.pending_bio_list' of raid1 device, this pending bio list would be flushed by second process 'md127_raid1', but it was hung by 'kernfs_mutex'. Using sysfs_notify_dirent_safe() to replace sysfs_notify() can fix it. There were other sysfs_notify() invoked from io path, removed all of them. PID: 40430 TASK: ffff8ee9c8c65c40 CPU: 29 COMMAND: "probe_file" #0 [ffffb87c4df37260] __schedule at ffffffff9a8678ec #1 [ffffb87c4df372f8] schedule at ffffffff9a867f06 #2 [ffffb87c4df37310] io_schedule at ffffffff9a0c73e6 #3 [ffffb87c4df37328] __dta___xfs_iunpin_wait_3443 at ffffffffc03a4057 [xfs] #4 [ffffb87c4df373a0] xfs_iunpin_wait at ffffffffc03a6c79 [xfs] #5 [ffffb87c4df373b0] __dta_xfs_reclaim_inode_3357 at ffffffffc039a46c [xfs] #6 [ffffb87c4df37400] xfs_reclaim_inodes_ag at ffffffffc039a8b6 [xfs] #7 [ffffb87c4df37590] xfs_reclaim_inodes_nr at ffffffffc039bb33 [xfs] #8 [ffffb87c4df375b0] xfs_fs_free_cached_objects at ffffffffc03af0e9 [xfs] #9 [ffffb87c4df375c0] super_cache_scan at ffffffff9a287ec7 #10 [ffffb87c4df37618] shrink_slab at ffffffff9a1efd93 #11 [ffffb87c4df37700] shrink_node at ffffffff9a1f5968 #12 [ffffb87c4df37788] do_try_to_free_pages at ffffffff9a1f5ea2 #13 [ffffb87c4df377f0] try_to_free_mem_cgroup_pages at ffffffff9a1f6445 #14 [ffffb87c4df37880] try_charge at ffffffff9a26cc5f #15 [ffffb87c4df37920] memcg_kmem_charge_memcg at ffffffff9a270f6a #16 [ffffb87c4df37958] new_slab at ffffffff9a251430 #17 [ffffb87c4df379c0] ___slab_alloc at ffffffff9a251c85 #18 [ffffb87c4df37a80] __slab_alloc at ffffffff9a25635d #19 [ffffb87c4df37ac0] kmem_cache_alloc at ffffffff9a251f89 #20 [ffffb87c4df37b00] alloc_inode at ffffffff9a2a2b10 #21 [ffffb87c4df37b20] iget_locked at ffffffff9a2a4854 #22 [ffffb87c4df37b60] kernfs_get_inode at ffffffff9a311377 #23 [ffffb87c4df37b80] kernfs_iop_lookup at ffffffff9a311e2b #24 [ffffb87c4df37ba8] lookup_slow at ffffffff9a290118 #25 [ffffb87c4df37c10] walk_component at ffffffff9a291e83 #26 [ffffb87c4df37c78] path_lookupat at ffffffff9a293619 #27 [ffffb87c4df37cd8] filename_lookup at ffffffff9a2953af #28 [ffffb87c4df37de8] user_path_at_empty at ffffffff9a295566 #29 [ffffb87c4df37e10] vfs_statx at ffffffff9a289787 #30 [ffffb87c4df37e70] SYSC_newlstat at ffffffff9a289d5d #31 [ffffb87c4df37f18] sys_newlstat at ffffffff9a28a60e #32 [ffffb87c4df37f28] do_syscall_64 at ffffffff9a003949 #33 [ffffb87c4df37f50] entry_SYSCALL_64_after_hwframe at ffffffff9aa001ad RIP: 00007f617a5f2905 RSP: 00007f607334f838 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 00007f6064044b20 RCX: 00007f617a5f2905 RDX: 00007f6064044b20 RSI: 00007f6064044b20 RDI: 00007f6064005890 RBP: 00007f6064044aa0 R8: 0000000000000030 R9: 000000000000011c R10: 0000000000000013 R11: 0000000000000246 R12: 00007f606417e6d0 R13: 00007f6064044aa0 R14: 00007f6064044b10 R15: 00000000ffffffff ORIG_RAX: 0000000000000006 CS: 0033 SS: 002b PID: 927 TASK: ffff8f15ac5dbd80 CPU: 42 COMMAND: "md127_raid1" #0 [ffffb87c4df07b28] __schedule at ffffffff9a8678ec #1 [ffffb87c4df07bc0] schedule at ffffffff9a867f06 #2 [ffffb87c4df07bd8] schedule_preempt_disabled at ffffffff9a86825e #3 [ffffb87c4df07be8] __mutex_lock at ffffffff9a869bcc #4 [ffffb87c4df07ca0] __mutex_lock_slowpath at ffffffff9a86a013 #5 [ffffb87c4df07cb0] mutex_lock at ffffffff9a86a04f #6 [ffffb87c4df07cc8] kernfs_find_and_get_ns at ffffffff9a311d83 #7 [ffffb87c4df07cf0] sysfs_notify at ffffffff9a314b3a #8 [ffffb87c4df07d18] md_update_sb at ffffffff9a688696 #9 [ffffb87c4df07d98] md_update_sb at ffffffff9a6886d5 #10 [ffffb87c4df07da8] md_check_recovery at ffffffff9a68ad9c #11 [ffffb87c4df07dd0] raid1d at ffffffffc01f0375 [raid1] #12 [ffffb87c4df07ea0] md_thread at ffffffff9a680348 #13 [ffffb87c4df07f08] kthread at ffffffff9a0b8005 #14 [ffffb87c4df07f50] ret_from_fork at ffffffff9aa00344 Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Song Liu <songliubraving@fb.com>
2020-07-15 07:10:26 +08:00
sysfs_notify_dirent_safe(mddev->sysfs_completed);
*skipped = 1;
return sector_nr;
}
}
/* We don't use sector_nr to track where we are up to
* as that doesn't work well for ->reshape_backwards.
* So just use ->reshape_progress.
*/
if (mddev->reshape_backwards) {
/* 'next' is the earliest device address that we might
* write to for this chunk in the new layout
*/
next = first_dev_address(conf->reshape_progress - 1,
&conf->geo);
/* 'safe' is the last device address that we might read from
* in the old layout after a restart
*/
safe = last_dev_address(conf->reshape_safe - 1,
&conf->prev);
if (next + conf->offset_diff < safe)
need_flush = 1;
last = conf->reshape_progress - 1;
sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
& conf->prev.chunk_mask);
if (sector_nr + RESYNC_SECTORS < last)
sector_nr = last + 1 - RESYNC_SECTORS;
} else {
/* 'next' is after the last device address that we
* might write to for this chunk in the new layout
*/
next = last_dev_address(conf->reshape_progress, &conf->geo);
/* 'safe' is the earliest device address that we might
* read from in the old layout after a restart
*/
safe = first_dev_address(conf->reshape_safe, &conf->prev);
/* Need to update metadata if 'next' might be beyond 'safe'
* as that would possibly corrupt data
*/
if (next > safe + conf->offset_diff)
need_flush = 1;
sector_nr = conf->reshape_progress;
last = sector_nr | (conf->geo.chunk_mask
& conf->prev.chunk_mask);
if (sector_nr + RESYNC_SECTORS <= last)
last = sector_nr + RESYNC_SECTORS - 1;
}
if (need_flush ||
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
/* Need to update reshape_position in metadata */
wait_barrier(conf);
mddev->reshape_position = conf->reshape_progress;
if (mddev->reshape_backwards)
mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
- conf->reshape_progress;
else
mddev->curr_resync_completed = conf->reshape_progress;
conf->reshape_checkpoint = jiffies;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
allow_barrier(conf);
return sectors_done;
}
conf->reshape_safe = mddev->reshape_position;
allow_barrier(conf);
}
raise_barrier(conf, 0);
read_more:
/* Now schedule reads for blocks from sector_nr to last */
r10_bio = raid10_alloc_init_r10buf(conf);
r10_bio->state = 0;
raise_barrier(conf, 1);
atomic_set(&r10_bio->remaining, 0);
r10_bio->mddev = mddev;
r10_bio->sector = sector_nr;
set_bit(R10BIO_IsReshape, &r10_bio->state);
r10_bio->sectors = last - sector_nr + 1;
rdev = read_balance(conf, r10_bio, &max_sectors);
BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
if (!rdev) {
/* Cannot read from here, so need to record bad blocks
* on all the target devices.
*/
// FIXME
mempool_free(r10_bio, &conf->r10buf_pool);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return sectors_done;
}
read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
bio_set_dev(read_bio, rdev->bdev);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
+ rdev->data_offset);
read_bio->bi_private = r10_bio;
read_bio->bi_end_io = end_reshape_read;
bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
read_bio->bi_status = 0;
read_bio->bi_vcnt = 0;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
read_bio->bi_iter.bi_size = 0;
r10_bio->master_bio = read_bio;
r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
/*
* Broadcast RESYNC message to other nodes, so all nodes would not
* write to the region to avoid conflict.
*/
if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
struct mdp_superblock_1 *sb = NULL;
int sb_reshape_pos = 0;
conf->cluster_sync_low = sector_nr;
conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
sb = page_address(rdev->sb_page);
if (sb) {
sb_reshape_pos = le64_to_cpu(sb->reshape_position);
/*
* Set cluster_sync_low again if next address for array
* reshape is less than cluster_sync_low. Since we can't
* update cluster_sync_low until it has finished reshape.
*/
if (sb_reshape_pos < conf->cluster_sync_low)
conf->cluster_sync_low = sb_reshape_pos;
}
md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
conf->cluster_sync_high);
}
/* Now find the locations in the new layout */
__raid10_find_phys(&conf->geo, r10_bio);
blist = read_bio;
read_bio->bi_next = NULL;
rcu_read_lock();
for (s = 0; s < conf->copies*2; s++) {
struct bio *b;
int d = r10_bio->devs[s/2].devnum;
struct md_rdev *rdev2;
if (s&1) {
rdev2 = rcu_dereference(conf->mirrors[d].replacement);
b = r10_bio->devs[s/2].repl_bio;
} else {
rdev2 = rcu_dereference(conf->mirrors[d].rdev);
b = r10_bio->devs[s/2].bio;
}
if (!rdev2 || test_bit(Faulty, &rdev2->flags))
continue;
bio_set_dev(b, rdev2->bdev);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
rdev2->new_data_offset;
b->bi_end_io = end_reshape_write;
bio_set_op_attrs(b, REQ_OP_WRITE, 0);
b->bi_next = blist;
blist = b;
}
/* Now add as many pages as possible to all of these bios. */
nr_sectors = 0;
pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
struct page *page = pages[s / (PAGE_SIZE >> 9)];
int len = (max_sectors - s) << 9;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
for (bio = blist; bio ; bio = bio->bi_next) {
/*
* won't fail because the vec table is big enough
* to hold all these pages
*/
bio_add_page(bio, page, len, 0);
}
sector_nr += len >> 9;
nr_sectors += len >> 9;
}
rcu_read_unlock();
r10_bio->sectors = nr_sectors;
/* Now submit the read */
md_sync_acct_bio(read_bio, r10_bio->sectors);
atomic_inc(&r10_bio->remaining);
read_bio->bi_next = NULL;
submit_bio_noacct(read_bio);
sectors_done += nr_sectors;
if (sector_nr <= last)
goto read_more;
lower_barrier(conf);
/* Now that we have done the whole section we can
* update reshape_progress
*/
if (mddev->reshape_backwards)
conf->reshape_progress -= sectors_done;
else
conf->reshape_progress += sectors_done;
return sectors_done;
}
static void end_reshape_request(struct r10bio *r10_bio);
static int handle_reshape_read_error(struct mddev *mddev,
struct r10bio *r10_bio);
static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
{
/* Reshape read completed. Hopefully we have a block
* to write out.
* If we got a read error then we do sync 1-page reads from
* elsewhere until we find the data - or give up.
*/
struct r10conf *conf = mddev->private;
int s;
if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
if (handle_reshape_read_error(mddev, r10_bio) < 0) {
/* Reshape has been aborted */
md_done_sync(mddev, r10_bio->sectors, 0);
return;
}
/* We definitely have the data in the pages, schedule the
* writes.
*/
atomic_set(&r10_bio->remaining, 1);
for (s = 0; s < conf->copies*2; s++) {
struct bio *b;
int d = r10_bio->devs[s/2].devnum;
struct md_rdev *rdev;
rcu_read_lock();
if (s&1) {
rdev = rcu_dereference(conf->mirrors[d].replacement);
b = r10_bio->devs[s/2].repl_bio;
} else {
rdev = rcu_dereference(conf->mirrors[d].rdev);
b = r10_bio->devs[s/2].bio;
}
if (!rdev || test_bit(Faulty, &rdev->flags)) {
rcu_read_unlock();
continue;
}
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
md_sync_acct_bio(b, r10_bio->sectors);
atomic_inc(&r10_bio->remaining);
b->bi_next = NULL;
submit_bio_noacct(b);
}
end_reshape_request(r10_bio);
}
static void end_reshape(struct r10conf *conf)
{
if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
return;
spin_lock_irq(&conf->device_lock);
conf->prev = conf->geo;
md_finish_reshape(conf->mddev);
smp_wmb();
conf->reshape_progress = MaxSector;
conf->reshape_safe = MaxSector;
spin_unlock_irq(&conf->device_lock);
if (conf->mddev->queue)
raid10_set_io_opt(conf);
conf->fullsync = 0;
}
static void raid10_update_reshape_pos(struct mddev *mddev)
{
struct r10conf *conf = mddev->private;
sector_t lo, hi;
md_cluster_ops->resync_info_get(mddev, &lo, &hi);
if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
|| mddev->reshape_position == MaxSector)
conf->reshape_progress = mddev->reshape_position;
else
WARN_ON_ONCE(1);
}
static int handle_reshape_read_error(struct mddev *mddev,
struct r10bio *r10_bio)
{
/* Use sync reads to get the blocks from somewhere else */
int sectors = r10_bio->sectors;
struct r10conf *conf = mddev->private;
struct r10bio *r10b;
int slot = 0;
int idx = 0;
struct page **pages;
r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
if (!r10b) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return -ENOMEM;
}
/* reshape IOs share pages from .devs[0].bio */
pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
r10b->sector = r10_bio->sector;
__raid10_find_phys(&conf->prev, r10b);
while (sectors) {
int s = sectors;
int success = 0;
int first_slot = slot;
if (s > (PAGE_SIZE >> 9))
s = PAGE_SIZE >> 9;
rcu_read_lock();
while (!success) {
int d = r10b->devs[slot].devnum;
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
sector_t addr;
if (rdev == NULL ||
test_bit(Faulty, &rdev->flags) ||
!test_bit(In_sync, &rdev->flags))
goto failed;
addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
success = sync_page_io(rdev,
addr,
s << 9,
pages[idx],
REQ_OP_READ, 0, false);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
if (success)
break;
failed:
slot++;
if (slot >= conf->copies)
slot = 0;
if (slot == first_slot)
break;
}
rcu_read_unlock();
if (!success) {
/* couldn't read this block, must give up */
set_bit(MD_RECOVERY_INTR,
&mddev->recovery);
kfree(r10b);
return -EIO;
}
sectors -= s;
idx++;
}
kfree(r10b);
return 0;
}
static void end_reshape_write(struct bio *bio)
{
struct r10bio *r10_bio = get_resync_r10bio(bio);
struct mddev *mddev = r10_bio->mddev;
struct r10conf *conf = mddev->private;
int d;
int slot;
int repl;
struct md_rdev *rdev = NULL;
d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
if (repl)
rdev = conf->mirrors[d].replacement;
if (!rdev) {
smp_mb();
rdev = conf->mirrors[d].rdev;
}
if (bio->bi_status) {
/* FIXME should record badblock */
md_error(mddev, rdev);
}
rdev_dec_pending(rdev, mddev);
end_reshape_request(r10_bio);
}
static void end_reshape_request(struct r10bio *r10_bio)
{
if (!atomic_dec_and_test(&r10_bio->remaining))
return;
md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
bio_put(r10_bio->master_bio);
put_buf(r10_bio);
}
static void raid10_finish_reshape(struct mddev *mddev)
{
struct r10conf *conf = mddev->private;
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
return;
if (mddev->delta_disks > 0) {
if (mddev->recovery_cp > mddev->resync_max_sectors) {
mddev->recovery_cp = mddev->resync_max_sectors;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
md: fix a potential deadlock of raid5/raid10 reshape There is a potential deadlock if mount/umount happens when raid5_finish_reshape() tries to grow the size of emulated disk. How the deadlock happens? 1) The raid5 resync thread finished reshape (expanding array). 2) The mount or umount thread holds VFS sb->s_umount lock and tries to write through critical data into raid5 emulated block device. So it waits for raid5 kernel thread handling stripes in order to finish it I/Os. 3) In the routine of raid5 kernel thread, md_check_recovery() will be called first in order to reap the raid5 resync thread. That is, raid5_finish_reshape() will be called. In this function, it will try to update conf and call VFS revalidate_disk() to grow the raid5 emulated block device. It will try to acquire VFS sb->s_umount lock. The raid5 kernel thread cannot continue, so no one can handle mount/ umount I/Os (stripes). Once the write-through I/Os cannot be finished, mount/umount will not release sb->s_umount lock. The deadlock happens. The raid5 kernel thread is an emulated block device. It is responible to handle I/Os (stripes) from upper layers. The emulated block device should not request any I/Os on itself. That is, it should not call VFS layer functions. (If it did, it will try to acquire VFS locks to guarantee the I/Os sequence.) So we have the resync thread to send resync I/O requests and to wait for the results. For solving this potential deadlock, we can put the size growth of the emulated block device as the final step of reshape thread. 2017/12/29: Thanks to Guoqing Jiang <gqjiang@suse.com>, we confirmed that there is the same deadlock issue in raid10. It's reproducible and can be fixed by this patch. For raid10.c, we can remove the similar code to prevent deadlock as well since they has been called before. Reported-by: Alex Wu <alexwu@synology.com> Reviewed-by: Alex Wu <alexwu@synology.com> Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Shaohua Li <sh.li@alibaba-inc.com>
2018-02-22 13:34:46 +08:00
mddev->resync_max_sectors = mddev->array_sectors;
} else {
int d;
rcu_read_lock();
for (d = conf->geo.raid_disks ;
d < conf->geo.raid_disks - mddev->delta_disks;
d++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
if (rdev)
clear_bit(In_sync, &rdev->flags);
rdev = rcu_dereference(conf->mirrors[d].replacement);
if (rdev)
clear_bit(In_sync, &rdev->flags);
}
rcu_read_unlock();
}
mddev->layout = mddev->new_layout;
mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
static struct md_personality raid10_personality =
{
.name = "raid10",
.level = 10,
.owner = THIS_MODULE,
.make_request = raid10_make_request,
.run = raid10_run,
.free = raid10_free,
.status = raid10_status,
.error_handler = raid10_error,
.hot_add_disk = raid10_add_disk,
.hot_remove_disk= raid10_remove_disk,
.spare_active = raid10_spare_active,
.sync_request = raid10_sync_request,
.quiesce = raid10_quiesce,
.size = raid10_size,
.resize = raid10_resize,
.takeover = raid10_takeover,
.check_reshape = raid10_check_reshape,
.start_reshape = raid10_start_reshape,
.finish_reshape = raid10_finish_reshape,
.update_reshape_pos = raid10_update_reshape_pos,
};
static int __init raid_init(void)
{
return register_md_personality(&raid10_personality);
}
static void raid_exit(void)
{
unregister_md_personality(&raid10_personality);
}
module_init(raid_init);
module_exit(raid_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
MODULE_ALIAS("md-personality-9"); /* RAID10 */
MODULE_ALIAS("md-raid10");
MODULE_ALIAS("md-level-10");
module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);