OpenCloudOS-Kernel/sound/firewire/amdtp.c

1065 lines
29 KiB
C
Raw Normal View History

/*
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
* with Common Isochronous Packet (IEC 61883-1) headers
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
#include <sound/rawmidi.h>
#include "amdtp.h"
#define TICKS_PER_CYCLE 3072
#define CYCLES_PER_SECOND 8000
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
/*
* Nominally 3125 bytes/second, but the MIDI port's clock might be
* 1% too slow, and the bus clock 100 ppm too fast.
*/
#define MIDI_BYTES_PER_SECOND 3093
/*
* Several devices look only at the first eight data blocks.
* In any case, this is more than enough for the MIDI data rate.
*/
#define MAX_MIDI_RX_BLOCKS 8
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT 16
#define TAG_CIP 1
/* common isochronous packet header parameters */
#define CIP_EOH (1u << 31)
#define CIP_EOH_MASK 0x80000000
#define CIP_FMT_AM (0x10 << 24)
#define CIP_FMT_MASK 0x3f000000
#define CIP_SYT_MASK 0x0000ffff
#define CIP_SYT_NO_INFO 0xffff
#define CIP_FDF_MASK 0x00ff0000
#define CIP_FDF_SFC_SHIFT 16
/*
* Audio and Music transfer protocol specific parameters
* only "Clock-based rate control mode" is supported
*/
#define AMDTP_FDF_AM824 (0 << (CIP_FDF_SFC_SHIFT + 3))
#define AMDTP_FDF_NO_DATA 0xff
#define AMDTP_DBS_MASK 0x00ff0000
#define AMDTP_DBS_SHIFT 16
#define AMDTP_DBC_MASK 0x000000ff
/* TODO: make these configurable */
#define INTERRUPT_INTERVAL 16
#define QUEUE_LENGTH 48
#define IN_PACKET_HEADER_SIZE 4
#define OUT_PACKET_HEADER_SIZE 0
static void pcm_period_tasklet(unsigned long data);
/**
* amdtp_stream_init - initialize an AMDTP stream structure
* @s: the AMDTP stream to initialize
* @unit: the target of the stream
* @dir: the direction of stream
* @flags: the packet transmission method to use
*/
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
enum amdtp_stream_direction dir, enum cip_flags flags)
{
s->unit = unit;
s->direction = dir;
s->flags = flags;
s->context = ERR_PTR(-1);
mutex_init(&s->mutex);
tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
s->packet_index = 0;
init_waitqueue_head(&s->callback_wait);
s->callbacked = false;
s->sync_slave = NULL;
return 0;
}
EXPORT_SYMBOL(amdtp_stream_init);
/**
* amdtp_stream_destroy - free stream resources
* @s: the AMDTP stream to destroy
*/
void amdtp_stream_destroy(struct amdtp_stream *s)
{
WARN_ON(amdtp_stream_running(s));
mutex_destroy(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_destroy);
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 8,
[CIP_SFC_44100] = 8,
[CIP_SFC_48000] = 8,
[CIP_SFC_88200] = 16,
[CIP_SFC_96000] = 16,
[CIP_SFC_176400] = 32,
[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
[CIP_SFC_32000] = 32000,
[CIP_SFC_44100] = 44100,
[CIP_SFC_48000] = 48000,
[CIP_SFC_88200] = 88200,
[CIP_SFC_96000] = 96000,
[CIP_SFC_176400] = 176400,
[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);
/**
* amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
* @s: the AMDTP stream, which must be initialized.
* @runtime: the PCM substream runtime
*/
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
struct snd_pcm_runtime *runtime)
{
int err;
/* AM824 in IEC 61883-6 can deliver 24bit data */
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (err < 0)
goto end;
/*
* Currently firewire-lib processes 16 packets in one software
* interrupt callback. This equals to 2msec but actually the
* interval of the interrupts has a jitter.
* Additionally, even if adding a constraint to fit period size to
* 2msec, actual calculated frames per period doesn't equal to 2msec,
* depending on sampling rate.
* Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
* Here let us use 5msec for safe period interrupt.
*/
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5000, UINT_MAX);
if (err < 0)
goto end;
/* Non-Blocking stream has no more constraints */
if (!(s->flags & CIP_BLOCKING))
goto end;
/*
* One AMDTP packet can include some frames. In blocking mode, the
* number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
* depending on its sampling rate. For accurate period interrupt, it's
* preferrable to aligh period/buffer sizes to current SYT_INTERVAL.
*
* TODO: These constraints can be improved with propper rules.
* Currently apply LCM of SYT_INTEVALs.
*/
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
if (err < 0)
goto end;
err = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
/**
* amdtp_stream_set_parameters - set stream parameters
* @s: the AMDTP stream to configure
* @rate: the sample rate
* @pcm_channels: the number of PCM samples in each data block, to be encoded
* as AM824 multi-bit linear audio
* @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
*
* The parameters must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_stream_set_parameters(struct amdtp_stream *s,
unsigned int rate,
unsigned int pcm_channels,
unsigned int midi_ports)
{
unsigned int i, sfc, midi_channels;
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
midi_channels = DIV_ROUND_UP(midi_ports, 8);
if (WARN_ON(amdtp_stream_running(s)) |
WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
return;
for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
if (amdtp_rate_table[sfc] == rate)
goto sfc_found;
WARN_ON(1);
return;
sfc_found:
s->pcm_channels = pcm_channels;
s->sfc = sfc;
s->data_block_quadlets = s->pcm_channels + midi_channels;
s->midi_ports = midi_ports;
s->syt_interval = amdtp_syt_intervals[sfc];
/* default buffering in the device */
s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
if (s->flags & CIP_BLOCKING)
/* additional buffering needed to adjust for no-data packets */
s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
/* init the position map for PCM and MIDI channels */
for (i = 0; i < pcm_channels; i++)
s->pcm_positions[i] = i;
s->midi_position = s->pcm_channels;
/*
* We do not know the actual MIDI FIFO size of most devices. Just
* assume two bytes, i.e., one byte can be received over the bus while
* the previous one is transmitted over MIDI.
* (The value here is adjusted for midi_ratelimit_per_packet().)
*/
s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
}
EXPORT_SYMBOL(amdtp_stream_set_parameters);
/**
* amdtp_stream_get_max_payload - get the stream's packet size
* @s: the AMDTP stream
*
* This function must not be called before the stream has been configured
* with amdtp_stream_set_parameters().
*/
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
{
return 8 + s->syt_interval * s->data_block_quadlets * 4;
}
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
static void amdtp_write_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void amdtp_write_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void amdtp_read_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
/**
* amdtp_stream_set_pcm_format - set the PCM format
* @s: the AMDTP stream to configure
* @format: the format of the ALSA PCM device
*
* The sample format must be set after the other paramters (rate/PCM channels/
* MIDI) and before the stream is started, and must not be changed while the
* stream is running.
*/
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
snd_pcm_format_t format)
{
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
if (WARN_ON(amdtp_stream_pcm_running(s)))
return;
switch (format) {
default:
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S16:
if (s->direction == AMDTP_OUT_STREAM) {
s->transfer_samples = amdtp_write_s16;
break;
}
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S32:
if (s->direction == AMDTP_OUT_STREAM)
s->transfer_samples = amdtp_write_s32;
else
s->transfer_samples = amdtp_read_s32;
break;
}
}
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
/**
* amdtp_stream_pcm_prepare - prepare PCM device for running
* @s: the AMDTP stream
*
* This function should be called from the PCM device's .prepare callback.
*/
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
{
tasklet_kill(&s->period_tasklet);
s->pcm_buffer_pointer = 0;
s->pcm_period_pointer = 0;
s->pointer_flush = true;
}
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
static unsigned int calculate_data_blocks(struct amdtp_stream *s)
{
unsigned int phase, data_blocks;
if (s->flags & CIP_BLOCKING)
data_blocks = s->syt_interval;
else if (!cip_sfc_is_base_44100(s->sfc)) {
/* Sample_rate / 8000 is an integer, and precomputed. */
data_blocks = s->data_block_state;
} else {
phase = s->data_block_state;
/*
* This calculates the number of data blocks per packet so that
* 1) the overall rate is correct and exactly synchronized to
* the bus clock, and
* 2) packets with a rounded-up number of blocks occur as early
* as possible in the sequence (to prevent underruns of the
* device's buffer).
*/
if (s->sfc == CIP_SFC_44100)
/* 6 6 5 6 5 6 5 ... */
data_blocks = 5 + ((phase & 1) ^
(phase == 0 || phase >= 40));
else
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
if (++phase >= (80 >> (s->sfc >> 1)))
phase = 0;
s->data_block_state = phase;
}
return data_blocks;
}
static unsigned int calculate_syt(struct amdtp_stream *s,
unsigned int cycle)
{
unsigned int syt_offset, phase, index, syt;
if (s->last_syt_offset < TICKS_PER_CYCLE) {
if (!cip_sfc_is_base_44100(s->sfc))
syt_offset = s->last_syt_offset + s->syt_offset_state;
else {
/*
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
* n * SYT_INTERVAL * 24576000 / sample_rate
* Modulo TICKS_PER_CYCLE, the difference between successive
* elements is about 1386.23. Rounding the results of this
* formula to the SYT precision results in a sequence of
* differences that begins with:
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
* This code generates _exactly_ the same sequence.
*/
phase = s->syt_offset_state;
index = phase % 13;
syt_offset = s->last_syt_offset;
syt_offset += 1386 + ((index && !(index & 3)) ||
phase == 146);
if (++phase >= 147)
phase = 0;
s->syt_offset_state = phase;
}
} else
syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
s->last_syt_offset = syt_offset;
if (syt_offset < TICKS_PER_CYCLE) {
syt_offset += s->transfer_delay;
syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
syt += syt_offset % TICKS_PER_CYCLE;
return syt & CIP_SYT_MASK;
} else {
return CIP_SYT_NO_INFO;
}
}
static void amdtp_write_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u32 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src >> 8) | 0x40000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_write_s16(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
const u16 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
buffer[s->pcm_positions[c]] =
cpu_to_be32((*src << 8) | 0x42000000);
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_read_s32(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, i, c;
u32 *dst;
channels = s->pcm_channels;
dst = (void *)runtime->dma_area +
frames_to_bytes(runtime, s->pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
dst++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
dst = (void *)runtime->dma_area;
}
}
static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i, c;
for (i = 0; i < frames; ++i) {
for (c = 0; c < s->pcm_channels; ++c)
buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
buffer += s->data_block_quadlets;
}
}
/*
* To avoid sending MIDI bytes at too high a rate, assume that the receiving
* device has a FIFO, and track how much it is filled. This values increases
* by one whenever we send one byte in a packet, but the FIFO empties at
* a constant rate independent of our packet rate. One packet has syt_interval
* samples, so the number of bytes that empty out of the FIFO, per packet(!),
* is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate. To avoid storing
* fractional values, the values in midi_fifo_used[] are measured in bytes
* multiplied by the sample rate.
*/
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
int used;
used = s->midi_fifo_used[port];
if (used == 0) /* common shortcut */
return true;
used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
used = max(used, 0);
s->midi_fifo_used[port] = used;
return used < s->midi_fifo_limit;
}
static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}
static void amdtp_fill_midi(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
unsigned int f, port;
u8 *b;
for (f = 0; f < frames; f++) {
b = (u8 *)&buffer[s->midi_position];
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
port = (s->data_block_counter + f) % 8;
if (f < MAX_MIDI_RX_BLOCKS &&
midi_ratelimit_per_packet(s, port) &&
s->midi[port] != NULL &&
snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
midi_rate_use_one_byte(s, port);
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
b[0] = 0x81;
} else {
b[0] = 0x80;
b[1] = 0;
}
b[2] = 0;
b[3] = 0;
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
buffer += s->data_block_quadlets;
}
}
static void amdtp_pull_midi(struct amdtp_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int f, port;
int len;
u8 *b;
for (f = 0; f < frames; f++) {
port = (s->data_block_counter + f) % 8;
b = (u8 *)&buffer[s->midi_position];
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
len = b[0] - 0x80;
if ((1 <= len) && (len <= 3) && (s->midi[port]))
snd_rawmidi_receive(s->midi[port], b + 1, len);
buffer += s->data_block_quadlets;
}
}
static void update_pcm_pointers(struct amdtp_stream *s,
struct snd_pcm_substream *pcm,
unsigned int frames)
{
unsigned int ptr;
/*
* In IEC 61883-6, one data block represents one event. In ALSA, one
* event equals to one PCM frame. But Dice has a quirk to transfer
* two PCM frames in one data block.
*/
if (s->double_pcm_frames)
frames *= 2;
ptr = s->pcm_buffer_pointer + frames;
if (ptr >= pcm->runtime->buffer_size)
ptr -= pcm->runtime->buffer_size;
ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
s->pcm_period_pointer += frames;
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
s->pcm_period_pointer -= pcm->runtime->period_size;
s->pointer_flush = false;
tasklet_hi_schedule(&s->period_tasklet);
}
}
static void pcm_period_tasklet(unsigned long data)
{
struct amdtp_stream *s = (void *)data;
struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_period_elapsed(pcm);
}
static int queue_packet(struct amdtp_stream *s,
unsigned int header_length,
unsigned int payload_length, bool skip)
{
struct fw_iso_packet p = {0};
int err = 0;
if (IS_ERR(s->context))
goto end;
p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
p.tag = TAG_CIP;
p.header_length = header_length;
p.payload_length = (!skip) ? payload_length : 0;
p.skip = skip;
err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
s->buffer.packets[s->packet_index].offset);
if (err < 0) {
dev_err(&s->unit->device, "queueing error: %d\n", err);
goto end;
}
if (++s->packet_index >= QUEUE_LENGTH)
s->packet_index = 0;
end:
return err;
}
static inline int queue_out_packet(struct amdtp_stream *s,
unsigned int payload_length, bool skip)
{
return queue_packet(s, OUT_PACKET_HEADER_SIZE,
payload_length, skip);
}
static inline int queue_in_packet(struct amdtp_stream *s)
{
return queue_packet(s, IN_PACKET_HEADER_SIZE,
amdtp_stream_get_max_payload(s), false);
}
static void handle_out_packet(struct amdtp_stream *s, unsigned int syt)
{
__be32 *buffer;
unsigned int data_blocks, payload_length;
struct snd_pcm_substream *pcm;
if (s->packet_index < 0)
return;
/* this module generate empty packet for 'no data' */
if (!(s->flags & CIP_BLOCKING) || (syt != CIP_SYT_NO_INFO))
data_blocks = calculate_data_blocks(s);
else
data_blocks = 0;
buffer = s->buffer.packets[s->packet_index].buffer;
buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
s->data_block_counter);
buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
else
amdtp_fill_pcm_silence(s, buffer, data_blocks);
if (s->midi_ports)
amdtp_fill_midi(s, buffer, data_blocks);
s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
if (queue_out_packet(s, payload_length, false) < 0) {
s->packet_index = -1;
amdtp_stream_pcm_abort(s);
return;
}
if (pcm)
update_pcm_pointers(s, pcm, data_blocks);
}
static void handle_in_packet(struct amdtp_stream *s,
unsigned int payload_quadlets,
__be32 *buffer)
{
u32 cip_header[2];
unsigned int data_blocks, data_block_quadlets, data_block_counter,
dbc_interval;
struct snd_pcm_substream *pcm = NULL;
bool lost;
cip_header[0] = be32_to_cpu(buffer[0]);
cip_header[1] = be32_to_cpu(buffer[1]);
/*
* This module supports 'Two-quadlet CIP header with SYT field'.
* For convenience, also check FMT field is AM824 or not.
*/
if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
dev_info_ratelimited(&s->unit->device,
"Invalid CIP header for AMDTP: %08X:%08X\n",
cip_header[0], cip_header[1]);
goto end;
}
/* Calculate data blocks */
if (payload_quadlets < 3 ||
((cip_header[1] & CIP_FDF_MASK) ==
(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
data_blocks = 0;
} else {
data_block_quadlets =
(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
/* avoid division by zero */
if (data_block_quadlets == 0) {
dev_info_ratelimited(&s->unit->device,
"Detect invalid value in dbs field: %08X\n",
cip_header[0]);
goto err;
}
if (s->flags & CIP_WRONG_DBS)
data_block_quadlets = s->data_block_quadlets;
data_blocks = (payload_quadlets - 2) / data_block_quadlets;
}
/* Check data block counter continuity */
data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
s->data_block_counter != UINT_MAX)
data_block_counter = s->data_block_counter;
ALSA: bebob/firewire-lib: Add a quirk for discontinuity at bus reset Normal BeBoB firmware has a quirk. When receiving bus reset, it transmits packets with discontinuous value in dbc field. This causes two situation, one is to abort streaming by firewire-lib as a result of detecting the discontinuity. Another is to call driver's .update() because of bus reset. These two is generated independently. (The former depends on isochronous stream and the latter depends on IEEE1394 bus driver.) When BeBoB driver works with XRUN-recoverable applications, this situation looks like stream_start_duplex() call followed by stream_update_duplex() call because applications will call snd_pcm_prepare() immediately at XRUN. To update connections and streams at first, this commit use completion. When queueing error occurs, stream_start_duplex() is forced to wait maximum 1000msec. During this, when .update() is called, the completion is waken and stream_start_duplex() is processed without breaking connections. At bus reset, stream_start_duplex() shouldn't break/establish connections and stream_update_duplex() should update connections because a caller of fw_iso_resources_allocate() is responsible for calling fw_iso_resources_update() on bus reset. This commit also adds a flag, which has an effect to skip checking continuity for first packet. This flag is useful for BeBoB quirk to start handling packets during streaming. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:16 +08:00
if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
(s->data_block_counter == UINT_MAX)) {
lost = false;
} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
lost = data_block_counter != s->data_block_counter;
} else {
if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
dbc_interval = s->tx_dbc_interval;
else
dbc_interval = data_blocks;
lost = data_block_counter !=
((s->data_block_counter + dbc_interval) & 0xff);
}
if (lost) {
dev_info(&s->unit->device,
"Detect discontinuity of CIP: %02X %02X\n",
s->data_block_counter, data_block_counter);
goto err;
}
if (data_blocks > 0) {
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
ALSA: firewire-lib: Add support for MIDI capture/playback For capturing/playbacking MIDI messages, this commit adds one MIDI conformant data channel. This data channel has multiplexed 8 MIDI data streams. So this data channel can transfer messages from/to 8 MIDI ports. And this commit allows to set PCM format even if AMDTP streams already start. I suppose the case that PCM substreams are going to be joined into AMDTP streams when AMDTP streams are already started for MIDI substreams. Each driver must count how many PCM/MIDI substreams use AMDTP streams to stop AMDTP streams. There are differences between specifications about MIDI conformant data. About the multiplexing, IEC 61883-6:2002, itself, has no information. It describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027 for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data streams for one MIDI conformant data channel. IEC 61883-6:2005 adds 'sequence multiplexing' and apply this way and describe incompatibility between 2002 and 2005. So this commit applies IEC 61883-6:2005. When we find some devices compliant to IEC 61883-6:2002, then this difference should be handles as device quirk in additional work. About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe 0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED', 'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1, 2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation procedure' and 'encapsulation details' but there is no specifications for them. So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows to pick up 1-3 bytes for capturing. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:44:47 +08:00
if (s->midi_ports)
amdtp_pull_midi(s, buffer, data_blocks);
}
if (s->flags & CIP_DBC_IS_END_EVENT)
s->data_block_counter = data_block_counter;
else
s->data_block_counter =
(data_block_counter + data_blocks) & 0xff;
end:
if (queue_in_packet(s) < 0)
goto err;
if (pcm)
update_pcm_pointers(s, pcm, data_blocks);
return;
err:
s->packet_index = -1;
amdtp_stream_pcm_abort(s);
}
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int i, syt, packets = header_length / 4;
/*
* Compute the cycle of the last queued packet.
* (We need only the four lowest bits for the SYT, so we can ignore
* that bits 0-11 must wrap around at 3072.)
*/
cycle += QUEUE_LENGTH - packets;
for (i = 0; i < packets; ++i) {
syt = calculate_syt(s, ++cycle);
handle_out_packet(s, syt);
}
fw_iso_context_queue_flush(s->context);
}
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
struct amdtp_stream *s = private_data;
unsigned int p, syt, packets, payload_quadlets;
__be32 *buffer, *headers = header;
/* The number of packets in buffer */
packets = header_length / IN_PACKET_HEADER_SIZE;
for (p = 0; p < packets; p++) {
if (s->packet_index < 0)
break;
buffer = s->buffer.packets[s->packet_index].buffer;
/* Process sync slave stream */
if (s->sync_slave && s->sync_slave->callbacked) {
syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
handle_out_packet(s->sync_slave, syt);
}
/* The number of quadlets in this packet */
payload_quadlets =
(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
handle_in_packet(s, payload_quadlets, buffer);
}
/* Queueing error or detecting discontinuity */
if (s->packet_index < 0) {
/* Abort sync slave. */
if (s->sync_slave) {
s->sync_slave->packet_index = -1;
amdtp_stream_pcm_abort(s->sync_slave);
}
return;
}
/* when sync to device, flush the packets for slave stream */
if (s->sync_slave && s->sync_slave->callbacked)
fw_iso_context_queue_flush(s->sync_slave->context);
fw_iso_context_queue_flush(s->context);
}
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header,
void *private_data)
{
return;
}
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
u32 cycle, size_t header_length,
void *header, void *private_data)
{
struct amdtp_stream *s = private_data;
/*
* For in-stream, first packet has come.
* For out-stream, prepared to transmit first packet
*/
s->callbacked = true;
wake_up(&s->callback_wait);
if (s->direction == AMDTP_IN_STREAM)
context->callback.sc = in_stream_callback;
else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
context->callback.sc = slave_stream_callback;
else
context->callback.sc = out_stream_callback;
context->callback.sc(context, cycle, header_length, header, s);
}
/**
* amdtp_stream_start - start transferring packets
* @s: the AMDTP stream to start
* @channel: the isochronous channel on the bus
* @speed: firewire speed code
*
* The stream cannot be started until it has been configured with
* amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
* device can be started.
*/
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
{
static const struct {
unsigned int data_block;
unsigned int syt_offset;
} initial_state[] = {
[CIP_SFC_32000] = { 4, 3072 },
[CIP_SFC_48000] = { 6, 1024 },
[CIP_SFC_96000] = { 12, 1024 },
[CIP_SFC_192000] = { 24, 1024 },
[CIP_SFC_44100] = { 0, 67 },
[CIP_SFC_88200] = { 0, 67 },
[CIP_SFC_176400] = { 0, 67 },
};
unsigned int header_size;
enum dma_data_direction dir;
int type, tag, err;
mutex_lock(&s->mutex);
if (WARN_ON(amdtp_stream_running(s) ||
(s->data_block_quadlets < 1))) {
err = -EBADFD;
goto err_unlock;
}
ALSA: bebob/firewire-lib: Add a quirk for discontinuity at bus reset Normal BeBoB firmware has a quirk. When receiving bus reset, it transmits packets with discontinuous value in dbc field. This causes two situation, one is to abort streaming by firewire-lib as a result of detecting the discontinuity. Another is to call driver's .update() because of bus reset. These two is generated independently. (The former depends on isochronous stream and the latter depends on IEEE1394 bus driver.) When BeBoB driver works with XRUN-recoverable applications, this situation looks like stream_start_duplex() call followed by stream_update_duplex() call because applications will call snd_pcm_prepare() immediately at XRUN. To update connections and streams at first, this commit use completion. When queueing error occurs, stream_start_duplex() is forced to wait maximum 1000msec. During this, when .update() is called, the completion is waken and stream_start_duplex() is processed without breaking connections. At bus reset, stream_start_duplex() shouldn't break/establish connections and stream_update_duplex() should update connections because a caller of fw_iso_resources_allocate() is responsible for calling fw_iso_resources_update() on bus reset. This commit also adds a flag, which has an effect to skip checking continuity for first packet. This flag is useful for BeBoB quirk to start handling packets during streaming. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:16 +08:00
if (s->direction == AMDTP_IN_STREAM &&
s->flags & CIP_SKIP_INIT_DBC_CHECK)
s->data_block_counter = UINT_MAX;
else
s->data_block_counter = 0;
s->data_block_state = initial_state[s->sfc].data_block;
s->syt_offset_state = initial_state[s->sfc].syt_offset;
s->last_syt_offset = TICKS_PER_CYCLE;
/* initialize packet buffer */
if (s->direction == AMDTP_IN_STREAM) {
dir = DMA_FROM_DEVICE;
type = FW_ISO_CONTEXT_RECEIVE;
header_size = IN_PACKET_HEADER_SIZE;
} else {
dir = DMA_TO_DEVICE;
type = FW_ISO_CONTEXT_TRANSMIT;
header_size = OUT_PACKET_HEADER_SIZE;
}
err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
amdtp_stream_get_max_payload(s), dir);
if (err < 0)
goto err_unlock;
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
type, channel, speed, header_size,
amdtp_stream_first_callback, s);
if (IS_ERR(s->context)) {
err = PTR_ERR(s->context);
if (err == -EBUSY)
dev_err(&s->unit->device,
"no free stream on this controller\n");
goto err_buffer;
}
amdtp_stream_update(s);
s->packet_index = 0;
do {
if (s->direction == AMDTP_IN_STREAM)
err = queue_in_packet(s);
else
err = queue_out_packet(s, 0, true);
if (err < 0)
goto err_context;
} while (s->packet_index > 0);
/* NOTE: TAG1 matches CIP. This just affects in stream. */
tag = FW_ISO_CONTEXT_MATCH_TAG1;
if (s->flags & CIP_EMPTY_WITH_TAG0)
tag |= FW_ISO_CONTEXT_MATCH_TAG0;
s->callbacked = false;
err = fw_iso_context_start(s->context, -1, 0, tag);
if (err < 0)
goto err_context;
mutex_unlock(&s->mutex);
return 0;
err_context:
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
err_buffer:
iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
mutex_unlock(&s->mutex);
return err;
}
EXPORT_SYMBOL(amdtp_stream_start);
/**
* amdtp_stream_pcm_pointer - get the PCM buffer position
* @s: the AMDTP stream that transports the PCM data
*
* Returns the current buffer position, in frames.
*/
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
{
/* this optimization is allowed to be racy */
if (s->pointer_flush && amdtp_stream_running(s))
fw_iso_context_flush_completions(s->context);
else
s->pointer_flush = true;
return ACCESS_ONCE(s->pcm_buffer_pointer);
}
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
/**
* amdtp_stream_update - update the stream after a bus reset
* @s: the AMDTP stream
*/
void amdtp_stream_update(struct amdtp_stream *s)
{
ACCESS_ONCE(s->source_node_id_field) =
(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
EXPORT_SYMBOL(amdtp_stream_update);
/**
* amdtp_stream_stop - stop sending packets
* @s: the AMDTP stream to stop
*
* All PCM and MIDI devices of the stream must be stopped before the stream
* itself can be stopped.
*/
void amdtp_stream_stop(struct amdtp_stream *s)
{
mutex_lock(&s->mutex);
if (!amdtp_stream_running(s)) {
mutex_unlock(&s->mutex);
return;
}
tasklet_kill(&s->period_tasklet);
fw_iso_context_stop(s->context);
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
iso_packets_buffer_destroy(&s->buffer, s->unit);
s->callbacked = false;
mutex_unlock(&s->mutex);
}
EXPORT_SYMBOL(amdtp_stream_stop);
/**
* amdtp_stream_pcm_abort - abort the running PCM device
* @s: the AMDTP stream about to be stopped
*
* If the isochronous stream needs to be stopped asynchronously, call this
* function first to stop the PCM device.
*/
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
{
struct snd_pcm_substream *pcm;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
snd_pcm_stop_xrun(pcm);
}
EXPORT_SYMBOL(amdtp_stream_pcm_abort);