549 lines
12 KiB
C
549 lines
12 KiB
C
|
/*
|
||
|
* Ram backed block device driver.
|
||
|
*
|
||
|
* Copyright (C) 2007 Nick Piggin
|
||
|
* Copyright (C) 2007 Novell Inc.
|
||
|
*
|
||
|
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
|
||
|
* of their respective owners.
|
||
|
*/
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/major.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/bio.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/radix-tree.h>
|
||
|
#include <linux/buffer_head.h> /* invalidate_bh_lrus() */
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
|
||
|
#define SECTOR_SHIFT 9
|
||
|
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
|
||
|
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
|
||
|
|
||
|
/*
|
||
|
* Each block ramdisk device has a radix_tree brd_pages of pages that stores
|
||
|
* the pages containing the block device's contents. A brd page's ->index is
|
||
|
* its offset in PAGE_SIZE units. This is similar to, but in no way connected
|
||
|
* with, the kernel's pagecache or buffer cache (which sit above our block
|
||
|
* device).
|
||
|
*/
|
||
|
struct brd_device {
|
||
|
int brd_number;
|
||
|
int brd_refcnt;
|
||
|
loff_t brd_offset;
|
||
|
loff_t brd_sizelimit;
|
||
|
unsigned brd_blocksize;
|
||
|
|
||
|
struct request_queue *brd_queue;
|
||
|
struct gendisk *brd_disk;
|
||
|
struct list_head brd_list;
|
||
|
|
||
|
/*
|
||
|
* Backing store of pages and lock to protect it. This is the contents
|
||
|
* of the block device.
|
||
|
*/
|
||
|
spinlock_t brd_lock;
|
||
|
struct radix_tree_root brd_pages;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Look up and return a brd's page for a given sector.
|
||
|
*/
|
||
|
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
|
||
|
{
|
||
|
pgoff_t idx;
|
||
|
struct page *page;
|
||
|
|
||
|
/*
|
||
|
* The page lifetime is protected by the fact that we have opened the
|
||
|
* device node -- brd pages will never be deleted under us, so we
|
||
|
* don't need any further locking or refcounting.
|
||
|
*
|
||
|
* This is strictly true for the radix-tree nodes as well (ie. we
|
||
|
* don't actually need the rcu_read_lock()), however that is not a
|
||
|
* documented feature of the radix-tree API so it is better to be
|
||
|
* safe here (we don't have total exclusion from radix tree updates
|
||
|
* here, only deletes).
|
||
|
*/
|
||
|
rcu_read_lock();
|
||
|
idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
|
||
|
page = radix_tree_lookup(&brd->brd_pages, idx);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
BUG_ON(page && page->index != idx);
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Look up and return a brd's page for a given sector.
|
||
|
* If one does not exist, allocate an empty page, and insert that. Then
|
||
|
* return it.
|
||
|
*/
|
||
|
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
|
||
|
{
|
||
|
pgoff_t idx;
|
||
|
struct page *page;
|
||
|
|
||
|
page = brd_lookup_page(brd, sector);
|
||
|
if (page)
|
||
|
return page;
|
||
|
|
||
|
/*
|
||
|
* Must use NOIO because we don't want to recurse back into the
|
||
|
* block or filesystem layers from page reclaim.
|
||
|
*/
|
||
|
page = alloc_page(GFP_NOIO | __GFP_HIGHMEM | __GFP_ZERO);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
if (radix_tree_preload(GFP_NOIO)) {
|
||
|
__free_page(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
spin_lock(&brd->brd_lock);
|
||
|
idx = sector >> PAGE_SECTORS_SHIFT;
|
||
|
if (radix_tree_insert(&brd->brd_pages, idx, page)) {
|
||
|
__free_page(page);
|
||
|
page = radix_tree_lookup(&brd->brd_pages, idx);
|
||
|
BUG_ON(!page);
|
||
|
BUG_ON(page->index != idx);
|
||
|
} else
|
||
|
page->index = idx;
|
||
|
spin_unlock(&brd->brd_lock);
|
||
|
|
||
|
radix_tree_preload_end();
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free all backing store pages and radix tree. This must only be called when
|
||
|
* there are no other users of the device.
|
||
|
*/
|
||
|
#define FREE_BATCH 16
|
||
|
static void brd_free_pages(struct brd_device *brd)
|
||
|
{
|
||
|
unsigned long pos = 0;
|
||
|
struct page *pages[FREE_BATCH];
|
||
|
int nr_pages;
|
||
|
|
||
|
do {
|
||
|
int i;
|
||
|
|
||
|
nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
|
||
|
(void **)pages, pos, FREE_BATCH);
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
void *ret;
|
||
|
|
||
|
BUG_ON(pages[i]->index < pos);
|
||
|
pos = pages[i]->index;
|
||
|
ret = radix_tree_delete(&brd->brd_pages, pos);
|
||
|
BUG_ON(!ret || ret != pages[i]);
|
||
|
__free_page(pages[i]);
|
||
|
}
|
||
|
|
||
|
pos++;
|
||
|
|
||
|
/*
|
||
|
* This assumes radix_tree_gang_lookup always returns as
|
||
|
* many pages as possible. If the radix-tree code changes,
|
||
|
* so will this have to.
|
||
|
*/
|
||
|
} while (nr_pages == FREE_BATCH);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
|
||
|
*/
|
||
|
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
|
||
|
{
|
||
|
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
|
||
|
size_t copy;
|
||
|
|
||
|
copy = min_t(size_t, n, PAGE_SIZE - offset);
|
||
|
if (!brd_insert_page(brd, sector))
|
||
|
return -ENOMEM;
|
||
|
if (copy < n) {
|
||
|
sector += copy >> SECTOR_SHIFT;
|
||
|
if (!brd_insert_page(brd, sector))
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy n bytes from src to the brd starting at sector. Does not sleep.
|
||
|
*/
|
||
|
static void copy_to_brd(struct brd_device *brd, const void *src,
|
||
|
sector_t sector, size_t n)
|
||
|
{
|
||
|
struct page *page;
|
||
|
void *dst;
|
||
|
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
|
||
|
size_t copy;
|
||
|
|
||
|
copy = min_t(size_t, n, PAGE_SIZE - offset);
|
||
|
page = brd_lookup_page(brd, sector);
|
||
|
BUG_ON(!page);
|
||
|
|
||
|
dst = kmap_atomic(page, KM_USER1);
|
||
|
memcpy(dst + offset, src, copy);
|
||
|
kunmap_atomic(dst, KM_USER1);
|
||
|
|
||
|
if (copy < n) {
|
||
|
src += copy;
|
||
|
sector += copy >> SECTOR_SHIFT;
|
||
|
copy = n - copy;
|
||
|
page = brd_lookup_page(brd, sector);
|
||
|
BUG_ON(!page);
|
||
|
|
||
|
dst = kmap_atomic(page, KM_USER1);
|
||
|
memcpy(dst, src, copy);
|
||
|
kunmap_atomic(dst, KM_USER1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy n bytes to dst from the brd starting at sector. Does not sleep.
|
||
|
*/
|
||
|
static void copy_from_brd(void *dst, struct brd_device *brd,
|
||
|
sector_t sector, size_t n)
|
||
|
{
|
||
|
struct page *page;
|
||
|
void *src;
|
||
|
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
|
||
|
size_t copy;
|
||
|
|
||
|
copy = min_t(size_t, n, PAGE_SIZE - offset);
|
||
|
page = brd_lookup_page(brd, sector);
|
||
|
if (page) {
|
||
|
src = kmap_atomic(page, KM_USER1);
|
||
|
memcpy(dst, src + offset, copy);
|
||
|
kunmap_atomic(src, KM_USER1);
|
||
|
} else
|
||
|
memset(dst, 0, copy);
|
||
|
|
||
|
if (copy < n) {
|
||
|
dst += copy;
|
||
|
sector += copy >> SECTOR_SHIFT;
|
||
|
copy = n - copy;
|
||
|
page = brd_lookup_page(brd, sector);
|
||
|
if (page) {
|
||
|
src = kmap_atomic(page, KM_USER1);
|
||
|
memcpy(dst, src, copy);
|
||
|
kunmap_atomic(src, KM_USER1);
|
||
|
} else
|
||
|
memset(dst, 0, copy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process a single bvec of a bio.
|
||
|
*/
|
||
|
static int brd_do_bvec(struct brd_device *brd, struct page *page,
|
||
|
unsigned int len, unsigned int off, int rw,
|
||
|
sector_t sector)
|
||
|
{
|
||
|
void *mem;
|
||
|
int err = 0;
|
||
|
|
||
|
if (rw != READ) {
|
||
|
err = copy_to_brd_setup(brd, sector, len);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mem = kmap_atomic(page, KM_USER0);
|
||
|
if (rw == READ) {
|
||
|
copy_from_brd(mem + off, brd, sector, len);
|
||
|
flush_dcache_page(page);
|
||
|
} else
|
||
|
copy_to_brd(brd, mem + off, sector, len);
|
||
|
kunmap_atomic(mem, KM_USER0);
|
||
|
|
||
|
out:
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int brd_make_request(struct request_queue *q, struct bio *bio)
|
||
|
{
|
||
|
struct block_device *bdev = bio->bi_bdev;
|
||
|
struct brd_device *brd = bdev->bd_disk->private_data;
|
||
|
int rw;
|
||
|
struct bio_vec *bvec;
|
||
|
sector_t sector;
|
||
|
int i;
|
||
|
int err = -EIO;
|
||
|
|
||
|
sector = bio->bi_sector;
|
||
|
if (sector + (bio->bi_size >> SECTOR_SHIFT) >
|
||
|
get_capacity(bdev->bd_disk))
|
||
|
goto out;
|
||
|
|
||
|
rw = bio_rw(bio);
|
||
|
if (rw == READA)
|
||
|
rw = READ;
|
||
|
|
||
|
bio_for_each_segment(bvec, bio, i) {
|
||
|
unsigned int len = bvec->bv_len;
|
||
|
err = brd_do_bvec(brd, bvec->bv_page, len,
|
||
|
bvec->bv_offset, rw, sector);
|
||
|
if (err)
|
||
|
break;
|
||
|
sector += len >> SECTOR_SHIFT;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
bio_endio(bio, err);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int brd_ioctl(struct inode *inode, struct file *file,
|
||
|
unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
int error;
|
||
|
struct block_device *bdev = inode->i_bdev;
|
||
|
struct brd_device *brd = bdev->bd_disk->private_data;
|
||
|
|
||
|
if (cmd != BLKFLSBUF)
|
||
|
return -ENOTTY;
|
||
|
|
||
|
/*
|
||
|
* ram device BLKFLSBUF has special semantics, we want to actually
|
||
|
* release and destroy the ramdisk data.
|
||
|
*/
|
||
|
mutex_lock(&bdev->bd_mutex);
|
||
|
error = -EBUSY;
|
||
|
if (bdev->bd_openers <= 1) {
|
||
|
/*
|
||
|
* Invalidate the cache first, so it isn't written
|
||
|
* back to the device.
|
||
|
*
|
||
|
* Another thread might instantiate more buffercache here,
|
||
|
* but there is not much we can do to close that race.
|
||
|
*/
|
||
|
invalidate_bh_lrus();
|
||
|
truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
|
||
|
brd_free_pages(brd);
|
||
|
error = 0;
|
||
|
}
|
||
|
mutex_unlock(&bdev->bd_mutex);
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static struct block_device_operations brd_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.ioctl = brd_ioctl,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* And now the modules code and kernel interface.
|
||
|
*/
|
||
|
static int rd_nr;
|
||
|
int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
|
||
|
module_param(rd_nr, int, 0);
|
||
|
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
|
||
|
module_param(rd_size, int, 0);
|
||
|
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
|
||
|
|
||
|
#ifndef MODULE
|
||
|
/* Legacy boot options - nonmodular */
|
||
|
static int __init ramdisk_size(char *str)
|
||
|
{
|
||
|
rd_size = simple_strtol(str, NULL, 0);
|
||
|
return 1;
|
||
|
}
|
||
|
static int __init ramdisk_size2(char *str)
|
||
|
{
|
||
|
return ramdisk_size(str);
|
||
|
}
|
||
|
__setup("ramdisk=", ramdisk_size);
|
||
|
__setup("ramdisk_size=", ramdisk_size2);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The device scheme is derived from loop.c. Keep them in synch where possible
|
||
|
* (should share code eventually).
|
||
|
*/
|
||
|
static LIST_HEAD(brd_devices);
|
||
|
static DEFINE_MUTEX(brd_devices_mutex);
|
||
|
|
||
|
static struct brd_device *brd_alloc(int i)
|
||
|
{
|
||
|
struct brd_device *brd;
|
||
|
struct gendisk *disk;
|
||
|
|
||
|
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
|
||
|
if (!brd)
|
||
|
goto out;
|
||
|
brd->brd_number = i;
|
||
|
spin_lock_init(&brd->brd_lock);
|
||
|
INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
|
||
|
|
||
|
brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
|
||
|
if (!brd->brd_queue)
|
||
|
goto out_free_dev;
|
||
|
blk_queue_make_request(brd->brd_queue, brd_make_request);
|
||
|
blk_queue_max_sectors(brd->brd_queue, 1024);
|
||
|
blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
|
||
|
|
||
|
disk = brd->brd_disk = alloc_disk(1);
|
||
|
if (!disk)
|
||
|
goto out_free_queue;
|
||
|
disk->major = RAMDISK_MAJOR;
|
||
|
disk->first_minor = i;
|
||
|
disk->fops = &brd_fops;
|
||
|
disk->private_data = brd;
|
||
|
disk->queue = brd->brd_queue;
|
||
|
sprintf(disk->disk_name, "ram%d", i);
|
||
|
set_capacity(disk, rd_size * 2);
|
||
|
|
||
|
return brd;
|
||
|
|
||
|
out_free_queue:
|
||
|
blk_cleanup_queue(brd->brd_queue);
|
||
|
out_free_dev:
|
||
|
kfree(brd);
|
||
|
out:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void brd_free(struct brd_device *brd)
|
||
|
{
|
||
|
put_disk(brd->brd_disk);
|
||
|
blk_cleanup_queue(brd->brd_queue);
|
||
|
brd_free_pages(brd);
|
||
|
kfree(brd);
|
||
|
}
|
||
|
|
||
|
static struct brd_device *brd_init_one(int i)
|
||
|
{
|
||
|
struct brd_device *brd;
|
||
|
|
||
|
list_for_each_entry(brd, &brd_devices, brd_list) {
|
||
|
if (brd->brd_number == i)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
brd = brd_alloc(i);
|
||
|
if (brd) {
|
||
|
add_disk(brd->brd_disk);
|
||
|
list_add_tail(&brd->brd_list, &brd_devices);
|
||
|
}
|
||
|
out:
|
||
|
return brd;
|
||
|
}
|
||
|
|
||
|
static void brd_del_one(struct brd_device *brd)
|
||
|
{
|
||
|
list_del(&brd->brd_list);
|
||
|
del_gendisk(brd->brd_disk);
|
||
|
brd_free(brd);
|
||
|
}
|
||
|
|
||
|
static struct kobject *brd_probe(dev_t dev, int *part, void *data)
|
||
|
{
|
||
|
struct brd_device *brd;
|
||
|
struct kobject *kobj;
|
||
|
|
||
|
mutex_lock(&brd_devices_mutex);
|
||
|
brd = brd_init_one(dev & MINORMASK);
|
||
|
kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
|
||
|
mutex_unlock(&brd_devices_mutex);
|
||
|
|
||
|
*part = 0;
|
||
|
return kobj;
|
||
|
}
|
||
|
|
||
|
static int __init brd_init(void)
|
||
|
{
|
||
|
int i, nr;
|
||
|
unsigned long range;
|
||
|
struct brd_device *brd, *next;
|
||
|
|
||
|
/*
|
||
|
* brd module now has a feature to instantiate underlying device
|
||
|
* structure on-demand, provided that there is an access dev node.
|
||
|
* However, this will not work well with user space tool that doesn't
|
||
|
* know about such "feature". In order to not break any existing
|
||
|
* tool, we do the following:
|
||
|
*
|
||
|
* (1) if rd_nr is specified, create that many upfront, and this
|
||
|
* also becomes a hard limit.
|
||
|
* (2) if rd_nr is not specified, create 1 rd device on module
|
||
|
* load, user can further extend brd device by create dev node
|
||
|
* themselves and have kernel automatically instantiate actual
|
||
|
* device on-demand.
|
||
|
*/
|
||
|
if (rd_nr > 1UL << MINORBITS)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (rd_nr) {
|
||
|
nr = rd_nr;
|
||
|
range = rd_nr;
|
||
|
} else {
|
||
|
nr = CONFIG_BLK_DEV_RAM_COUNT;
|
||
|
range = 1UL << MINORBITS;
|
||
|
}
|
||
|
|
||
|
if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
|
||
|
return -EIO;
|
||
|
|
||
|
for (i = 0; i < nr; i++) {
|
||
|
brd = brd_alloc(i);
|
||
|
if (!brd)
|
||
|
goto out_free;
|
||
|
list_add_tail(&brd->brd_list, &brd_devices);
|
||
|
}
|
||
|
|
||
|
/* point of no return */
|
||
|
|
||
|
list_for_each_entry(brd, &brd_devices, brd_list)
|
||
|
add_disk(brd->brd_disk);
|
||
|
|
||
|
blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
|
||
|
THIS_MODULE, brd_probe, NULL, NULL);
|
||
|
|
||
|
printk(KERN_INFO "brd: module loaded\n");
|
||
|
return 0;
|
||
|
|
||
|
out_free:
|
||
|
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
|
||
|
list_del(&brd->brd_list);
|
||
|
brd_free(brd);
|
||
|
}
|
||
|
|
||
|
unregister_blkdev(RAMDISK_MAJOR, "brd");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void __exit brd_exit(void)
|
||
|
{
|
||
|
unsigned long range;
|
||
|
struct brd_device *brd, *next;
|
||
|
|
||
|
range = rd_nr ? rd_nr : 1UL << MINORBITS;
|
||
|
|
||
|
list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
|
||
|
brd_del_one(brd);
|
||
|
|
||
|
blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
|
||
|
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
|
||
|
}
|
||
|
|
||
|
module_init(brd_init);
|
||
|
module_exit(brd_exit);
|
||
|
|