OpenCloudOS-Kernel/arch/x86/kernel/early-quirks.c

773 lines
20 KiB
C
Raw Normal View History

/* Various workarounds for chipset bugs.
This code runs very early and can't use the regular PCI subsystem
The entries are keyed to PCI bridges which usually identify chipsets
uniquely.
This is only for whole classes of chipsets with specific problems which
need early invasive action (e.g. before the timers are initialized).
Most PCI device specific workarounds can be done later and should be
in standard PCI quirks
Mainboard specific bugs should be handled by DMI entries.
CPU specific bugs in setup.c */
#include <linux/pci.h>
#include <linux/acpi.h>
x86/quirks: Add early quirk to reset Apple AirPort card The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
#include <linux/delay.h>
#include <linux/dmi.h>
#include <linux/pci_ids.h>
x86/quirks: Add early quirk to reset Apple AirPort card The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
#include <linux/bcma/bcma.h>
#include <linux/bcma/bcma_regs.h>
#include <drm/i915_drm.h>
#include <asm/pci-direct.h>
#include <asm/dma.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hpet.h>
#include <asm/iommu.h>
#include <asm/gart.h>
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
#include <asm/irq_remapping.h>
x86/quirks: Add early quirk to reset Apple AirPort card The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
#include <asm/early_ioremap.h>
#define dev_err(msg) pr_err("pci 0000:%02x:%02x.%d: %s", bus, slot, func, msg)
static void __init fix_hypertransport_config(int num, int slot, int func)
{
u32 htcfg;
/*
* we found a hypertransport bus
* make sure that we are broadcasting
* interrupts to all cpus on the ht bus
* if we're using extended apic ids
*/
htcfg = read_pci_config(num, slot, func, 0x68);
if (htcfg & (1 << 18)) {
printk(KERN_INFO "Detected use of extended apic ids "
"on hypertransport bus\n");
if ((htcfg & (1 << 17)) == 0) {
printk(KERN_INFO "Enabling hypertransport extended "
"apic interrupt broadcast\n");
printk(KERN_INFO "Note this is a bios bug, "
"please contact your hw vendor\n");
htcfg |= (1 << 17);
write_pci_config(num, slot, func, 0x68, htcfg);
}
}
}
static void __init via_bugs(int num, int slot, int func)
{
#ifdef CONFIG_GART_IOMMU
if ((max_pfn > MAX_DMA32_PFN || force_iommu) &&
!gart_iommu_aperture_allowed) {
printk(KERN_INFO
"Looks like a VIA chipset. Disabling IOMMU."
" Override with iommu=allowed\n");
gart_iommu_aperture_disabled = 1;
}
#endif
}
#ifdef CONFIG_ACPI
#ifdef CONFIG_X86_IO_APIC
static int __init nvidia_hpet_check(struct acpi_table_header *header)
{
return 0;
}
#endif /* CONFIG_X86_IO_APIC */
#endif /* CONFIG_ACPI */
static void __init nvidia_bugs(int num, int slot, int func)
{
#ifdef CONFIG_ACPI
#ifdef CONFIG_X86_IO_APIC
/*
* Only applies to Nvidia root ports (bus 0) and not to
* Nvidia graphics cards with PCI ports on secondary buses.
*/
if (num)
return;
/*
* All timer overrides on Nvidia are
* wrong unless HPET is enabled.
* Unfortunately that's not true on many Asus boards.
* We don't know yet how to detect this automatically, but
* at least allow a command line override.
*/
if (acpi_use_timer_override)
return;
if (acpi_table_parse(ACPI_SIG_HPET, nvidia_hpet_check)) {
acpi_skip_timer_override = 1;
printk(KERN_INFO "Nvidia board "
"detected. Ignoring ACPI "
"timer override.\n");
printk(KERN_INFO "If you got timer trouble "
"try acpi_use_timer_override\n");
}
#endif
#endif
/* RED-PEN skip them on mptables too? */
}
#if defined(CONFIG_ACPI) && defined(CONFIG_X86_IO_APIC)
static u32 __init ati_ixp4x0_rev(int num, int slot, int func)
{
u32 d;
u8 b;
b = read_pci_config_byte(num, slot, func, 0xac);
b &= ~(1<<5);
write_pci_config_byte(num, slot, func, 0xac, b);
d = read_pci_config(num, slot, func, 0x70);
d |= 1<<8;
write_pci_config(num, slot, func, 0x70, d);
d = read_pci_config(num, slot, func, 0x8);
d &= 0xff;
return d;
}
static void __init ati_bugs(int num, int slot, int func)
{
u32 d;
u8 b;
if (acpi_use_timer_override)
return;
d = ati_ixp4x0_rev(num, slot, func);
if (d < 0x82)
acpi_skip_timer_override = 1;
else {
/* check for IRQ0 interrupt swap */
outb(0x72, 0xcd6); b = inb(0xcd7);
if (!(b & 0x2))
acpi_skip_timer_override = 1;
}
if (acpi_skip_timer_override) {
printk(KERN_INFO "SB4X0 revision 0x%x\n", d);
printk(KERN_INFO "Ignoring ACPI timer override.\n");
printk(KERN_INFO "If you got timer trouble "
"try acpi_use_timer_override\n");
}
}
static u32 __init ati_sbx00_rev(int num, int slot, int func)
{
u32 d;
d = read_pci_config(num, slot, func, 0x8);
d &= 0xff;
return d;
}
static void __init ati_bugs_contd(int num, int slot, int func)
{
u32 d, rev;
rev = ati_sbx00_rev(num, slot, func);
if (rev >= 0x40)
acpi_fix_pin2_polarity = 1;
/*
* SB600: revisions 0x11, 0x12, 0x13, 0x14, ...
* SB700: revisions 0x39, 0x3a, ...
* SB800: revisions 0x40, 0x41, ...
*/
if (rev >= 0x39)
return;
if (acpi_use_timer_override)
return;
/* check for IRQ0 interrupt swap */
d = read_pci_config(num, slot, func, 0x64);
if (!(d & (1<<14)))
acpi_skip_timer_override = 1;
if (acpi_skip_timer_override) {
printk(KERN_INFO "SB600 revision 0x%x\n", rev);
printk(KERN_INFO "Ignoring ACPI timer override.\n");
printk(KERN_INFO "If you got timer trouble "
"try acpi_use_timer_override\n");
}
}
#else
static void __init ati_bugs(int num, int slot, int func)
{
}
static void __init ati_bugs_contd(int num, int slot, int func)
{
}
#endif
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
static void __init intel_remapping_check(int num, int slot, int func)
{
u8 revision;
u16 device;
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
device = read_pci_config_16(num, slot, func, PCI_DEVICE_ID);
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
revision = read_pci_config_byte(num, slot, func, PCI_REVISION_ID);
/*
* Revision <= 13 of all triggering devices id in this quirk
* have a problem draining interrupts when irq remapping is
* enabled, and should be flagged as broken. Additionally
* revision 0x22 of device id 0x3405 has this problem.
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
*/
if (revision <= 0x13)
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
set_irq_remapping_broken();
else if (device == 0x3405 && revision == 0x22)
set_irq_remapping_broken();
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
}
/*
* Systems with Intel graphics controllers set aside memory exclusively
* for gfx driver use. This memory is not marked in the E820 as reserved
* or as RAM, and so is subject to overlap from E820 manipulation later
* in the boot process. On some systems, MMIO space is allocated on top,
* despite the efforts of the "RAM buffer" approach, which simply rounds
* memory boundaries up to 64M to try to catch space that may decode
* as RAM and so is not suitable for MMIO.
*/
#define KB(x) ((x) * 1024UL)
#define MB(x) (KB (KB (x)))
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
static size_t __init i830_tseg_size(void)
{
u8 esmramc = read_pci_config_byte(0, 0, 0, I830_ESMRAMC);
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
if (!(esmramc & TSEG_ENABLE))
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
return 0;
if (esmramc & I830_TSEG_SIZE_1M)
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
return MB(1);
else
return KB(512);
}
static size_t __init i845_tseg_size(void)
{
u8 esmramc = read_pci_config_byte(0, 0, 0, I845_ESMRAMC);
u8 tseg_size = esmramc & I845_TSEG_SIZE_MASK;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
if (!(esmramc & TSEG_ENABLE))
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
return 0;
switch (tseg_size) {
case I845_TSEG_SIZE_512K: return KB(512);
case I845_TSEG_SIZE_1M: return MB(1);
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
default:
WARN(1, "Unknown ESMRAMC value: %x!\n", esmramc);
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
return 0;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static size_t __init i85x_tseg_size(void)
{
u8 esmramc = read_pci_config_byte(0, 0, 0, I85X_ESMRAMC);
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
if (!(esmramc & TSEG_ENABLE))
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
return 0;
return MB(1);
}
static size_t __init i830_mem_size(void)
{
return read_pci_config_byte(0, 0, 0, I830_DRB3) * MB(32);
}
static size_t __init i85x_mem_size(void)
{
return read_pci_config_byte(0, 0, 1, I85X_DRB3) * MB(32);
}
/*
* On 830/845/85x the stolen memory base isn't available in any
* register. We need to calculate it as TOM-TSEG_SIZE-stolen_size.
*/
static phys_addr_t __init i830_stolen_base(int num, int slot, int func,
size_t stolen_size)
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
{
return (phys_addr_t)i830_mem_size() - i830_tseg_size() - stolen_size;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static phys_addr_t __init i845_stolen_base(int num, int slot, int func,
size_t stolen_size)
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
{
return (phys_addr_t)i830_mem_size() - i845_tseg_size() - stolen_size;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static phys_addr_t __init i85x_stolen_base(int num, int slot, int func,
size_t stolen_size)
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
{
return (phys_addr_t)i85x_mem_size() - i85x_tseg_size() - stolen_size;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static phys_addr_t __init i865_stolen_base(int num, int slot, int func,
size_t stolen_size)
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
{
u16 toud;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
/*
* FIXME is the graphics stolen memory region
* always at TOUD? Ie. is it always the last
* one to be allocated by the BIOS?
*/
toud = read_pci_config_16(0, 0, 0, I865_TOUD);
return (phys_addr_t)toud << 16;
}
static phys_addr_t __init gen3_stolen_base(int num, int slot, int func,
size_t stolen_size)
{
u32 bsm;
/* Almost universally we can find the Graphics Base of Stolen Memory
* at register BSM (0x5c) in the igfx configuration space. On a few
* (desktop) machines this is also mirrored in the bridge device at
* different locations, or in the MCHBAR.
*/
bsm = read_pci_config(num, slot, func, INTEL_BSM);
return (phys_addr_t)bsm & INTEL_BSM_MASK;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static size_t __init i830_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
gmch_ctrl = read_pci_config_16(0, 0, 0, I830_GMCH_CTRL);
gms = gmch_ctrl & I830_GMCH_GMS_MASK;
switch (gms) {
case I830_GMCH_GMS_STOLEN_512: return KB(512);
case I830_GMCH_GMS_STOLEN_1024: return MB(1);
case I830_GMCH_GMS_STOLEN_8192: return MB(8);
/* local memory isn't part of the normal address space */
case I830_GMCH_GMS_LOCAL: return 0;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
default:
WARN(1, "Unknown GMCH_CTRL value: %x!\n", gmch_ctrl);
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
return 0;
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
}
static size_t __init gen3_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
gmch_ctrl = read_pci_config_16(0, 0, 0, I830_GMCH_CTRL);
gms = gmch_ctrl & I855_GMCH_GMS_MASK;
switch (gms) {
case I855_GMCH_GMS_STOLEN_1M: return MB(1);
case I855_GMCH_GMS_STOLEN_4M: return MB(4);
case I855_GMCH_GMS_STOLEN_8M: return MB(8);
case I855_GMCH_GMS_STOLEN_16M: return MB(16);
case I855_GMCH_GMS_STOLEN_32M: return MB(32);
case I915_GMCH_GMS_STOLEN_48M: return MB(48);
case I915_GMCH_GMS_STOLEN_64M: return MB(64);
case G33_GMCH_GMS_STOLEN_128M: return MB(128);
case G33_GMCH_GMS_STOLEN_256M: return MB(256);
case INTEL_GMCH_GMS_STOLEN_96M: return MB(96);
case INTEL_GMCH_GMS_STOLEN_160M:return MB(160);
case INTEL_GMCH_GMS_STOLEN_224M:return MB(224);
case INTEL_GMCH_GMS_STOLEN_352M:return MB(352);
default:
WARN(1, "Unknown GMCH_CTRL value: %x!\n", gmch_ctrl);
}
return 0;
}
static size_t __init gen6_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
gmch_ctrl = read_pci_config_16(num, slot, func, SNB_GMCH_CTRL);
gms = (gmch_ctrl >> SNB_GMCH_GMS_SHIFT) & SNB_GMCH_GMS_MASK;
return (size_t)gms * MB(32);
}
static size_t __init gen8_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
gmch_ctrl = read_pci_config_16(num, slot, func, SNB_GMCH_CTRL);
gms = (gmch_ctrl >> BDW_GMCH_GMS_SHIFT) & BDW_GMCH_GMS_MASK;
return (size_t)gms * MB(32);
}
static size_t __init chv_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
gmch_ctrl = read_pci_config_16(num, slot, func, SNB_GMCH_CTRL);
gms = (gmch_ctrl >> SNB_GMCH_GMS_SHIFT) & SNB_GMCH_GMS_MASK;
/*
* 0x0 to 0x10: 32MB increments starting at 0MB
* 0x11 to 0x16: 4MB increments starting at 8MB
* 0x17 to 0x1d: 4MB increments start at 36MB
*/
if (gms < 0x11)
return (size_t)gms * MB(32);
else if (gms < 0x17)
return (size_t)(gms - 0x11 + 2) * MB(4);
else
return (size_t)(gms - 0x17 + 9) * MB(4);
}
static size_t __init gen9_stolen_size(int num, int slot, int func)
{
u16 gmch_ctrl;
u16 gms;
gmch_ctrl = read_pci_config_16(num, slot, func, SNB_GMCH_CTRL);
gms = (gmch_ctrl >> BDW_GMCH_GMS_SHIFT) & BDW_GMCH_GMS_MASK;
/* 0x0 to 0xef: 32MB increments starting at 0MB */
/* 0xf0 to 0xfe: 4MB increments starting at 4MB */
if (gms < 0xf0)
return (size_t)gms * MB(32);
else
return (size_t)(gms - 0xf0 + 1) * MB(4);
}
struct intel_early_ops {
size_t (*stolen_size)(int num, int slot, int func);
phys_addr_t (*stolen_base)(int num, int slot, int func, size_t size);
};
static const struct intel_early_ops i830_early_ops __initconst = {
.stolen_base = i830_stolen_base,
.stolen_size = i830_stolen_size,
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
};
static const struct intel_early_ops i845_early_ops __initconst = {
.stolen_base = i845_stolen_base,
.stolen_size = i830_stolen_size,
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
};
static const struct intel_early_ops i85x_early_ops __initconst = {
.stolen_base = i85x_stolen_base,
.stolen_size = gen3_stolen_size,
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
};
static const struct intel_early_ops i865_early_ops __initconst = {
.stolen_base = i865_stolen_base,
.stolen_size = gen3_stolen_size,
x86/gpu: Add Intel graphics stolen memory quirk for gen2 platforms There isn't an explicit stolen memory base register on gen2. Some old comment in the i915 code suggests we should get it via max_low_pfn_mapped, but that's clearly a bad idea on my MGM. The e820 map in said machine looks like this: BIOS-e820: [mem 0x0000000000000000-0x000000000009f7ff] usable BIOS-e820: [mem 0x000000000009f800-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000ce000-0x00000000000cffff] reserved BIOS-e820: [mem 0x00000000000dc000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x000000001f6effff] usable BIOS-e820: [mem 0x000000001f6f0000-0x000000001f6f7fff] ACPI data BIOS-e820: [mem 0x000000001f6f8000-0x000000001f6fffff] ACPI NVS BIOS-e820: [mem 0x000000001f700000-0x000000001fffffff] reserved BIOS-e820: [mem 0x00000000fec10000-0x00000000fec1ffff] reserved BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffbfffff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved That makes max_low_pfn_mapped = 1f6f0000, so assuming our stolen memory would start there would place it on top of some ACPI memory regions. So not a good idea as already stated. The 9MB region after the ACPI regions at 0x1f700000 however looks promising given that the macine reports the stolen memory size to be 8MB. Looking at the PGTBL_CTL register, the GTT entries are at offset 0x1fee00000, and given that the GTT entries occupy 128KB, it looks like the stolen memory could start at 0x1f700000 and the GTT entries would occupy the last 128KB of the stolen memory. After some more digging through chipset documentation, I've determined the BIOS first allocates space for something called TSEG (something to do with SMM) from the top of memory, and then it allocates the graphics stolen memory below that. Accordind to the chipset documentation TSEG has a fixed size of 1MB on 855. So that explains the top 1MB in the e820 region. And it also confirms that the GTT entries are in fact at the end of the the stolen memory region. Derive the stolen memory base address on gen2 the same as the BIOS does (TOM-TSEG_SIZE-stolen_size). There are a few differences between the registers on various gen2 chipsets, so a few different codepaths are required. 865G is again bit more special since it seems to support enough memory to hit 4GB address space issues. This means the PCI allocations will also affect the location of the stolen memory. Fortunately there appears to be the TOUD register which may give us the correct answer directly. But the chipset docs are a bit unclear, so I'm not 100% sure that the graphics stolen memory is always the last thing the BIOS steals. Someone would need to verify it on a real system. I tested this on the my 830 and 855 machines, and so far everything looks peachy. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1391628540-23072-3-git-send-email-ville.syrjala@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-06 03:28:59 +08:00
};
static const struct intel_early_ops gen3_early_ops __initconst = {
.stolen_base = gen3_stolen_base,
.stolen_size = gen3_stolen_size,
};
static const struct intel_early_ops gen6_early_ops __initconst = {
.stolen_base = gen3_stolen_base,
.stolen_size = gen6_stolen_size,
};
static const struct intel_early_ops gen8_early_ops __initconst = {
.stolen_base = gen3_stolen_base,
.stolen_size = gen8_stolen_size,
};
static const struct intel_early_ops gen9_early_ops __initconst = {
.stolen_base = gen3_stolen_base,
.stolen_size = gen9_stolen_size,
};
static const struct intel_early_ops chv_early_ops __initconst = {
.stolen_base = gen3_stolen_base,
.stolen_size = chv_stolen_size,
};
static const struct pci_device_id intel_early_ids[] __initconst = {
INTEL_I830_IDS(&i830_early_ops),
INTEL_I845G_IDS(&i845_early_ops),
INTEL_I85X_IDS(&i85x_early_ops),
INTEL_I865G_IDS(&i865_early_ops),
INTEL_I915G_IDS(&gen3_early_ops),
INTEL_I915GM_IDS(&gen3_early_ops),
INTEL_I945G_IDS(&gen3_early_ops),
INTEL_I945GM_IDS(&gen3_early_ops),
INTEL_VLV_M_IDS(&gen6_early_ops),
INTEL_VLV_D_IDS(&gen6_early_ops),
INTEL_PINEVIEW_IDS(&gen3_early_ops),
INTEL_I965G_IDS(&gen3_early_ops),
INTEL_G33_IDS(&gen3_early_ops),
INTEL_I965GM_IDS(&gen3_early_ops),
INTEL_GM45_IDS(&gen3_early_ops),
INTEL_G45_IDS(&gen3_early_ops),
INTEL_IRONLAKE_D_IDS(&gen3_early_ops),
INTEL_IRONLAKE_M_IDS(&gen3_early_ops),
INTEL_SNB_D_IDS(&gen6_early_ops),
INTEL_SNB_M_IDS(&gen6_early_ops),
INTEL_IVB_M_IDS(&gen6_early_ops),
INTEL_IVB_D_IDS(&gen6_early_ops),
INTEL_HSW_D_IDS(&gen6_early_ops),
INTEL_HSW_M_IDS(&gen6_early_ops),
INTEL_BDW_M_IDS(&gen8_early_ops),
INTEL_BDW_D_IDS(&gen8_early_ops),
INTEL_CHV_IDS(&chv_early_ops),
INTEL_SKL_IDS(&gen9_early_ops),
INTEL_BXT_IDS(&gen9_early_ops),
INTEL_KBL_IDS(&gen9_early_ops),
};
static void __init
intel_graphics_stolen(int num, int slot, int func,
const struct intel_early_ops *early_ops)
{
phys_addr_t base, end;
size_t size;
size = early_ops->stolen_size(num, slot, func);
base = early_ops->stolen_base(num, slot, func, size);
if (!size || !base)
return;
end = base + size - 1;
printk(KERN_INFO "Reserving Intel graphics memory at %pa-%pa\n",
&base, &end);
/* Mark this space as reserved */
e820_add_region(base, size, E820_RESERVED);
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
}
static void __init intel_graphics_quirks(int num, int slot, int func)
{
const struct intel_early_ops *early_ops;
u16 device;
int i;
device = read_pci_config_16(num, slot, func, PCI_DEVICE_ID);
for (i = 0; i < ARRAY_SIZE(intel_early_ids); i++) {
kernel_ulong_t driver_data = intel_early_ids[i].driver_data;
if (intel_early_ids[i].device != device)
continue;
early_ops = (typeof(early_ops))driver_data;
intel_graphics_stolen(num, slot, func, early_ops);
return;
}
}
static void __init force_disable_hpet(int num, int slot, int func)
{
#ifdef CONFIG_HPET_TIMER
boot_hpet_disable = true;
pr_info("x86/hpet: Will disable the HPET for this platform because it's not reliable\n");
#endif
}
x86/quirks: Add early quirk to reset Apple AirPort card The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
#define BCM4331_MMIO_SIZE 16384
#define BCM4331_PM_CAP 0x40
#define bcma_aread32(reg) ioread32(mmio + 1 * BCMA_CORE_SIZE + reg)
#define bcma_awrite32(reg, val) iowrite32(val, mmio + 1 * BCMA_CORE_SIZE + reg)
static void __init apple_airport_reset(int bus, int slot, int func)
{
void __iomem *mmio;
u16 pmcsr;
u64 addr;
int i;
if (!dmi_match(DMI_SYS_VENDOR, "Apple Inc."))
return;
/* Card may have been put into PCI_D3hot by grub quirk */
pmcsr = read_pci_config_16(bus, slot, func, BCM4331_PM_CAP + PCI_PM_CTRL);
if ((pmcsr & PCI_PM_CTRL_STATE_MASK) != PCI_D0) {
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
write_pci_config_16(bus, slot, func, BCM4331_PM_CAP + PCI_PM_CTRL, pmcsr);
mdelay(10);
pmcsr = read_pci_config_16(bus, slot, func, BCM4331_PM_CAP + PCI_PM_CTRL);
if ((pmcsr & PCI_PM_CTRL_STATE_MASK) != PCI_D0) {
dev_err("Cannot power up Apple AirPort card\n");
return;
}
}
addr = read_pci_config(bus, slot, func, PCI_BASE_ADDRESS_0);
addr |= (u64)read_pci_config(bus, slot, func, PCI_BASE_ADDRESS_1) << 32;
addr &= PCI_BASE_ADDRESS_MEM_MASK;
mmio = early_ioremap(addr, BCM4331_MMIO_SIZE);
if (!mmio) {
dev_err("Cannot iomap Apple AirPort card\n");
return;
}
pr_info("Resetting Apple AirPort card (left enabled by EFI)\n");
for (i = 0; bcma_aread32(BCMA_RESET_ST) && i < 30; i++)
udelay(10);
bcma_awrite32(BCMA_RESET_CTL, BCMA_RESET_CTL_RESET);
bcma_aread32(BCMA_RESET_CTL);
udelay(1);
bcma_awrite32(BCMA_RESET_CTL, 0);
bcma_aread32(BCMA_RESET_CTL);
udelay(10);
early_iounmap(mmio, BCM4331_MMIO_SIZE);
}
#define QFLAG_APPLY_ONCE 0x1
#define QFLAG_APPLIED 0x2
#define QFLAG_DONE (QFLAG_APPLY_ONCE|QFLAG_APPLIED)
struct chipset {
u32 vendor;
u32 device;
u32 class;
u32 class_mask;
u32 flags;
void (*f)(int num, int slot, int func);
};
static struct chipset early_qrk[] __initdata = {
{ PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID,
PCI_CLASS_BRIDGE_PCI, PCI_ANY_ID, QFLAG_APPLY_ONCE, nvidia_bugs },
{ PCI_VENDOR_ID_VIA, PCI_ANY_ID,
PCI_CLASS_BRIDGE_PCI, PCI_ANY_ID, QFLAG_APPLY_ONCE, via_bugs },
{ PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_K8_NB,
PCI_CLASS_BRIDGE_HOST, PCI_ANY_ID, 0, fix_hypertransport_config },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_IXP400_SMBUS,
PCI_CLASS_SERIAL_SMBUS, PCI_ANY_ID, 0, ati_bugs },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_SBX00_SMBUS,
PCI_CLASS_SERIAL_SMBUS, PCI_ANY_ID, 0, ati_bugs_contd },
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
{ PCI_VENDOR_ID_INTEL, 0x3403, PCI_CLASS_BRIDGE_HOST,
PCI_BASE_CLASS_BRIDGE, 0, intel_remapping_check },
{ PCI_VENDOR_ID_INTEL, 0x3405, PCI_CLASS_BRIDGE_HOST,
PCI_BASE_CLASS_BRIDGE, 0, intel_remapping_check },
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets A few years back intel published a spec update: http://www.intel.com/content/dam/doc/specification-update/5520-and-5500-chipset-ioh-specification-update.pdf For the 5520 and 5500 chipsets which contained an errata (specificially errata 53), which noted that these chipsets can't properly do interrupt remapping, and as a result the recommend that interrupt remapping be disabled in bios. While many vendors have a bios update to do exactly that, not all do, and of course not all users update their bios to a level that corrects the problem. As a result, occasionally interrupts can arrive at a cpu even after affinity for that interrupt has be moved, leading to lost or spurrious interrupts (usually characterized by the message: kernel: do_IRQ: 7.71 No irq handler for vector (irq -1) There have been several incidents recently of people seeing this error, and investigation has shown that they have system for which their BIOS level is such that this feature was not properly turned off. As such, it would be good to give them a reminder that their systems are vulnurable to this problem. For details of those that reported the problem, please see: https://bugzilla.redhat.com/show_bug.cgi?id=887006 [ Joerg: Removed CONFIG_IRQ_REMAP ifdef from early-quirks.c ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Prarit Bhargava <prarit@redhat.com> CC: Don Zickus <dzickus@redhat.com> CC: Don Dutile <ddutile@redhat.com> CC: Bjorn Helgaas <bhelgaas@google.com> CC: Asit Mallick <asit.k.mallick@intel.com> CC: David Woodhouse <dwmw2@infradead.org> CC: linux-pci@vger.kernel.org CC: Joerg Roedel <joro@8bytes.org> CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> CC: Arkadiusz Miśkiewicz <arekm@maven.pl> Signed-off-by: Joerg Roedel <joro@8bytes.org>
2013-04-17 04:38:32 +08:00
{ PCI_VENDOR_ID_INTEL, 0x3406, PCI_CLASS_BRIDGE_HOST,
PCI_BASE_CLASS_BRIDGE, 0, intel_remapping_check },
{ PCI_VENDOR_ID_INTEL, PCI_ANY_ID, PCI_CLASS_DISPLAY_VGA, PCI_ANY_ID,
QFLAG_APPLY_ONCE, intel_graphics_quirks },
/*
* HPET on the current version of the Baytrail platform has accuracy
* problems: it will halt in deep idle state - so we disable it.
*
* More details can be found in section 18.10.1.3 of the datasheet:
*
* http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-z8000-datasheet-vol-1.pdf
*/
{ PCI_VENDOR_ID_INTEL, 0x0f00,
PCI_CLASS_BRIDGE_HOST, PCI_ANY_ID, 0, force_disable_hpet},
x86/quirks: Add early quirk to reset Apple AirPort card The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
{ PCI_VENDOR_ID_BROADCOM, 0x4331,
PCI_CLASS_NETWORK_OTHER, PCI_ANY_ID, 0, apple_airport_reset},
{}
};
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
static void __init early_pci_scan_bus(int bus);
/**
* check_dev_quirk - apply early quirks to a given PCI device
* @num: bus number
* @slot: slot number
* @func: PCI function
*
* Check the vendor & device ID against the early quirks table.
*
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
* If the device is single function, let early_pci_scan_bus() know so we don't
* poke at this device again.
*/
static int __init check_dev_quirk(int num, int slot, int func)
{
u16 class;
u16 vendor;
u16 device;
u8 type;
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
u8 sec;
int i;
class = read_pci_config_16(num, slot, func, PCI_CLASS_DEVICE);
if (class == 0xffff)
return -1; /* no class, treat as single function */
vendor = read_pci_config_16(num, slot, func, PCI_VENDOR_ID);
device = read_pci_config_16(num, slot, func, PCI_DEVICE_ID);
for (i = 0; early_qrk[i].f != NULL; i++) {
if (((early_qrk[i].vendor == PCI_ANY_ID) ||
(early_qrk[i].vendor == vendor)) &&
((early_qrk[i].device == PCI_ANY_ID) ||
(early_qrk[i].device == device)) &&
(!((early_qrk[i].class ^ class) &
early_qrk[i].class_mask))) {
if ((early_qrk[i].flags &
QFLAG_DONE) != QFLAG_DONE)
early_qrk[i].f(num, slot, func);
early_qrk[i].flags |= QFLAG_APPLIED;
}
}
type = read_pci_config_byte(num, slot, func,
PCI_HEADER_TYPE);
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
if ((type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
sec = read_pci_config_byte(num, slot, func, PCI_SECONDARY_BUS);
if (sec > num)
early_pci_scan_bus(sec);
}
if (!(type & 0x80))
return -1;
return 0;
}
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
static void __init early_pci_scan_bus(int bus)
{
int slot, func;
/* Poor man's PCI discovery */
for (slot = 0; slot < 32; slot++)
for (func = 0; func < 8; func++) {
/* Only probe function 0 on single fn devices */
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
if (check_dev_quirk(bus, slot, func))
break;
}
}
x86/quirks: Reintroduce scanning of secondary buses We used to scan secondary buses until the following commit that was applied in 2009: 8659c406ade3 ("x86: only scan the root bus in early PCI quirks") which commit constrained early quirks to the root bus only. Its motivation was to prevent application of the nvidia_bugs quirk on secondary buses. We're about to add a quirk to reset the Broadcom 4331 wireless card on 2011/2012 Macs, which is located on a secondary bus behind a PCIe root port. To facilitate that, reintroduce scanning of secondary buses. The commit message of 8659c406ade3 notes that scanning only the root bus "saves quite some unnecessary scanning work". The algorithm used prior to 8659c406ade3 was particularly time consuming because it scanned buses 0 to 31 brute force. To avoid lengthening boot time, employ a recursive strategy which only scans buses that are actually reachable from the root bus. Yinghai Lu pointed out that the secondary bus number read from a bridge's config space may be invalid, in particular a value of 0 would cause an infinite loop. The PCI core goes beyond that and recurses to a child bus only if its bus number is greater than the parent bus number (see pci_scan_bridge()). Since the root bus is numbered 0, this implies that secondary buses may not be 0. Do the same on early scanning. If this algorithm is found to significantly impact boot time or cause infinite loops on broken hardware, it would be possible to limit its recursion depth: The Broadcom 4331 quirk applies at depth 1, all others at depth 0, so the bus need not be scanned deeper than that for now. An alternative approach would be to revert to scanning only the root bus, and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12 and 8086:1e16. Apple always positioned the card behind either of these three ports. The quirk would then check presence of the card in slot 0 below the root port and do its deed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-pci@vger.kernel.org Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-12 18:31:53 +08:00
void __init early_quirks(void)
{
if (!early_pci_allowed())
return;
early_pci_scan_bus(0);
}