OpenCloudOS-Kernel/drivers/net/dsa/mt7530.h

866 lines
25 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
*/
#ifndef __MT7530_H
#define __MT7530_H
#define MT7530_NUM_PORTS 7
#define MT7530_NUM_PHYS 5
#define MT7530_NUM_FDB_RECORDS 2048
#define MT7530_ALL_MEMBERS 0xff
#define MTK_HDR_LEN 4
#define MT7530_MAX_MTU (15 * 1024 - ETH_HLEN - ETH_FCS_LEN - MTK_HDR_LEN)
enum mt753x_id {
ID_MT7530 = 0,
ID_MT7621 = 1,
ID_MT7531 = 2,
};
#define NUM_TRGMII_CTRL 5
#define TRGMII_BASE(x) (0x10000 + (x))
/* Registers to ethsys access */
#define ETHSYS_CLKCFG0 0x2c
#define ETHSYS_TRGMII_CLK_SEL362_5 BIT(11)
#define SYSC_REG_RSTCTRL 0x34
#define RESET_MCM BIT(2)
/* Registers to mac forward control for unknown frames */
#define MT7530_MFC 0x10
#define BC_FFP(x) (((x) & 0xff) << 24)
#define BC_FFP_MASK BC_FFP(~0)
#define UNM_FFP(x) (((x) & 0xff) << 16)
#define UNM_FFP_MASK UNM_FFP(~0)
#define UNU_FFP(x) (((x) & 0xff) << 8)
#define UNU_FFP_MASK UNU_FFP(~0)
#define CPU_EN BIT(7)
#define CPU_PORT(x) ((x) << 4)
#define CPU_MASK (0xf << 4)
#define MIRROR_EN BIT(3)
#define MIRROR_PORT(x) ((x) & 0x7)
#define MIRROR_MASK 0x7
/* Registers for CPU forward control */
#define MT7531_CFC 0x4
#define MT7531_MIRROR_EN BIT(19)
#define MT7531_MIRROR_MASK (MIRROR_MASK << 16)
#define MT7531_MIRROR_PORT_GET(x) (((x) >> 16) & MIRROR_MASK)
#define MT7531_MIRROR_PORT_SET(x) (((x) & MIRROR_MASK) << 16)
#define MT7531_CPU_PMAP_MASK GENMASK(7, 0)
#define MT753X_MIRROR_REG(id) (((id) == ID_MT7531) ? \
MT7531_CFC : MT7530_MFC)
#define MT753X_MIRROR_EN(id) (((id) == ID_MT7531) ? \
MT7531_MIRROR_EN : MIRROR_EN)
#define MT753X_MIRROR_MASK(id) (((id) == ID_MT7531) ? \
MT7531_MIRROR_MASK : MIRROR_MASK)
/* Registers for BPDU and PAE frame control*/
#define MT753X_BPC 0x24
#define MT753X_BPDU_PORT_FW_MASK GENMASK(2, 0)
enum mt753x_bpdu_port_fw {
MT753X_BPDU_FOLLOW_MFC,
MT753X_BPDU_CPU_EXCLUDE = 4,
MT753X_BPDU_CPU_INCLUDE = 5,
MT753X_BPDU_CPU_ONLY = 6,
MT753X_BPDU_DROP = 7,
};
/* Registers for address table access */
#define MT7530_ATA1 0x74
#define STATIC_EMP 0
#define STATIC_ENT 3
#define MT7530_ATA2 0x78
#define ATA2_IVL BIT(15)
#define ATA2_FID(x) (((x) & 0x7) << 12)
/* Register for address table write data */
#define MT7530_ATWD 0x7c
/* Register for address table control */
#define MT7530_ATC 0x80
#define ATC_HASH (((x) & 0xfff) << 16)
#define ATC_BUSY BIT(15)
#define ATC_SRCH_END BIT(14)
#define ATC_SRCH_HIT BIT(13)
#define ATC_INVALID BIT(12)
#define ATC_MAT(x) (((x) & 0xf) << 8)
#define ATC_MAT_MACTAB ATC_MAT(0)
enum mt7530_fdb_cmd {
MT7530_FDB_READ = 0,
MT7530_FDB_WRITE = 1,
MT7530_FDB_FLUSH = 2,
MT7530_FDB_START = 4,
MT7530_FDB_NEXT = 5,
};
/* Registers for table search read address */
#define MT7530_TSRA1 0x84
#define MAC_BYTE_0 24
#define MAC_BYTE_1 16
#define MAC_BYTE_2 8
#define MAC_BYTE_3 0
#define MAC_BYTE_MASK 0xff
#define MT7530_TSRA2 0x88
#define MAC_BYTE_4 24
#define MAC_BYTE_5 16
#define CVID 0
#define CVID_MASK 0xfff
#define MT7530_ATRD 0x8C
#define AGE_TIMER 24
#define AGE_TIMER_MASK 0xff
#define PORT_MAP 4
#define PORT_MAP_MASK 0xff
#define ENT_STATUS 2
#define ENT_STATUS_MASK 0x3
/* Register for vlan table control */
#define MT7530_VTCR 0x90
#define VTCR_BUSY BIT(31)
#define VTCR_INVALID BIT(16)
#define VTCR_FUNC(x) (((x) & 0xf) << 12)
#define VTCR_VID ((x) & 0xfff)
enum mt7530_vlan_cmd {
/* Read/Write the specified VID entry from VAWD register based
* on VID.
*/
MT7530_VTCR_RD_VID = 0,
MT7530_VTCR_WR_VID = 1,
};
/* Register for setup vlan and acl write data */
#define MT7530_VAWD1 0x94
#define PORT_STAG BIT(31)
/* Independent VLAN Learning */
#define IVL_MAC BIT(30)
/* Egress Tag Consistent */
#define EG_CON BIT(29)
/* Per VLAN Egress Tag Control */
#define VTAG_EN BIT(28)
/* VLAN Member Control */
#define PORT_MEM(x) (((x) & 0xff) << 16)
net: dsa: mt7530: use independent VLAN learning on VLAN-unaware bridges Consider the following bridge configuration, where bond0 is not offloaded: +-- br0 --+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 . . . . . . A B C Ideally, when the switch receives a packet from swp3 or swp4, it should forward the packet to the CPU, according to the port matrix and unknown unicast flood settings. But packet loss will happen if the destination address is at one of the offloaded ports (swp0~2). For example, when client C sends a packet to A, the FDB lookup will indicate that it should be forwarded to swp0, but the port matrix of swp3 and swp4 is configured to only allow the CPU to be its destination, so it is dropped. However, this issue does not happen if the bridge is VLAN-aware. That is because VLAN-aware bridges use independent VLAN learning, i.e. use VID for FDB lookup, on offloaded ports. As swp3 and swp4 are not offloaded, shared VLAN learning with default filter ID of 0 is used instead. So the lookup for A with filter ID 0 never hits and the packet can be forwarded to the CPU. In the current code, only two combinations were used to toggle user ports' VLAN awareness: one is PCR.PORT_VLAN set to port matrix mode with PVC.VLAN_ATTR set to transparent port, the other is PCR.PORT_VLAN set to security mode with PVC.VLAN_ATTR set to user port. It turns out that only PVC.VLAN_ATTR contributes to VLAN awareness, and port matrix mode just skips the VLAN table lookup. The reference manual is somehow misleading when describing PORT_VLAN modes. It states that PORT_MEM (VLAN port member) is used for destination if the VLAN table lookup hits, but actually **PORT_MEM & PORT_MATRIX** (bitwise AND of VLAN port member and port matrix) is used instead, which means we can have two or more separate VLAN-aware bridges with the same PVID and traffic won't leak between them. Therefore, to solve this, enable independent VLAN learning with PVID 0 on VLAN-unaware bridges, by setting their PCR.PORT_VLAN to fallback mode, while leaving standalone ports in port matrix mode. The CPU port is always set to fallback mode to serve those bridges. During testing, it is found that FDB lookup with filter ID of 0 will also hit entries with VID 0 even with independent VLAN learning. To avoid that, install all VLANs with filter ID of 1. Signed-off-by: DENG Qingfang <dqfext@gmail.com> Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-04 00:04:02 +08:00
/* Filter ID */
#define FID(x) (((x) & 0x7) << 1)
/* VLAN Entry Valid */
#define VLAN_VALID BIT(0)
#define PORT_MEM_SHFT 16
#define PORT_MEM_MASK 0xff
net: dsa: mt7530: use independent VLAN learning on VLAN-unaware bridges Consider the following bridge configuration, where bond0 is not offloaded: +-- br0 --+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 . . . . . . A B C Ideally, when the switch receives a packet from swp3 or swp4, it should forward the packet to the CPU, according to the port matrix and unknown unicast flood settings. But packet loss will happen if the destination address is at one of the offloaded ports (swp0~2). For example, when client C sends a packet to A, the FDB lookup will indicate that it should be forwarded to swp0, but the port matrix of swp3 and swp4 is configured to only allow the CPU to be its destination, so it is dropped. However, this issue does not happen if the bridge is VLAN-aware. That is because VLAN-aware bridges use independent VLAN learning, i.e. use VID for FDB lookup, on offloaded ports. As swp3 and swp4 are not offloaded, shared VLAN learning with default filter ID of 0 is used instead. So the lookup for A with filter ID 0 never hits and the packet can be forwarded to the CPU. In the current code, only two combinations were used to toggle user ports' VLAN awareness: one is PCR.PORT_VLAN set to port matrix mode with PVC.VLAN_ATTR set to transparent port, the other is PCR.PORT_VLAN set to security mode with PVC.VLAN_ATTR set to user port. It turns out that only PVC.VLAN_ATTR contributes to VLAN awareness, and port matrix mode just skips the VLAN table lookup. The reference manual is somehow misleading when describing PORT_VLAN modes. It states that PORT_MEM (VLAN port member) is used for destination if the VLAN table lookup hits, but actually **PORT_MEM & PORT_MATRIX** (bitwise AND of VLAN port member and port matrix) is used instead, which means we can have two or more separate VLAN-aware bridges with the same PVID and traffic won't leak between them. Therefore, to solve this, enable independent VLAN learning with PVID 0 on VLAN-unaware bridges, by setting their PCR.PORT_VLAN to fallback mode, while leaving standalone ports in port matrix mode. The CPU port is always set to fallback mode to serve those bridges. During testing, it is found that FDB lookup with filter ID of 0 will also hit entries with VID 0 even with independent VLAN learning. To avoid that, install all VLANs with filter ID of 1. Signed-off-by: DENG Qingfang <dqfext@gmail.com> Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-04 00:04:02 +08:00
enum mt7530_fid {
FID_STANDALONE = 0,
FID_BRIDGED = 1,
};
#define MT7530_VAWD2 0x98
/* Egress Tag Control */
#define ETAG_CTRL_P(p, x) (((x) & 0x3) << ((p) << 1))
#define ETAG_CTRL_P_MASK(p) ETAG_CTRL_P(p, 3)
enum mt7530_vlan_egress_attr {
MT7530_VLAN_EGRESS_UNTAG = 0,
MT7530_VLAN_EGRESS_TAG = 2,
MT7530_VLAN_EGRESS_STACK = 3,
};
/* Register for address age control */
#define MT7530_AAC 0xa0
/* Disable ageing */
#define AGE_DIS BIT(20)
/* Age count */
#define AGE_CNT_MASK GENMASK(19, 12)
#define AGE_CNT_MAX 0xff
#define AGE_CNT(x) (AGE_CNT_MASK & ((x) << 12))
/* Age unit */
#define AGE_UNIT_MASK GENMASK(11, 0)
#define AGE_UNIT_MAX 0xfff
#define AGE_UNIT(x) (AGE_UNIT_MASK & (x))
/* Register for port STP state control */
#define MT7530_SSP_P(x) (0x2000 + ((x) * 0x100))
#define FID_PST(fid, state) (((state) & 0x3) << ((fid) * 2))
#define FID_PST_MASK(fid) FID_PST(fid, 0x3)
enum mt7530_stp_state {
MT7530_STP_DISABLED = 0,
MT7530_STP_BLOCKING = 1,
MT7530_STP_LISTENING = 1,
MT7530_STP_LEARNING = 2,
MT7530_STP_FORWARDING = 3
};
/* Register for port control */
#define MT7530_PCR_P(x) (0x2004 + ((x) * 0x100))
#define PORT_TX_MIR BIT(9)
#define PORT_RX_MIR BIT(8)
#define PORT_VLAN(x) ((x) & 0x3)
enum mt7530_port_mode {
/* Port Matrix Mode: Frames are forwarded by the PCR_MATRIX members. */
MT7530_PORT_MATRIX_MODE = PORT_VLAN(0),
/* Fallback Mode: Forward received frames with ingress ports that do
* not belong to the VLAN member. Frames whose VID is not listed on
* the VLAN table are forwarded by the PCR_MATRIX members.
*/
MT7530_PORT_FALLBACK_MODE = PORT_VLAN(1),
/* Security Mode: Discard any frame due to ingress membership
* violation or VID missed on the VLAN table.
*/
MT7530_PORT_SECURITY_MODE = PORT_VLAN(3),
};
#define PCR_MATRIX(x) (((x) & 0xff) << 16)
#define PORT_PRI(x) (((x) & 0x7) << 24)
#define EG_TAG(x) (((x) & 0x3) << 28)
#define PCR_MATRIX_MASK PCR_MATRIX(0xff)
#define PCR_MATRIX_CLR PCR_MATRIX(0)
#define PCR_PORT_VLAN_MASK PORT_VLAN(3)
/* Register for port security control */
#define MT7530_PSC_P(x) (0x200c + ((x) * 0x100))
#define SA_DIS BIT(4)
/* Register for port vlan control */
#define MT7530_PVC_P(x) (0x2010 + ((x) * 0x100))
#define PORT_SPEC_TAG BIT(5)
#define PVC_EG_TAG(x) (((x) & 0x7) << 8)
#define PVC_EG_TAG_MASK PVC_EG_TAG(7)
#define VLAN_ATTR(x) (((x) & 0x3) << 6)
#define VLAN_ATTR_MASK VLAN_ATTR(3)
#define ACC_FRM_MASK GENMASK(1, 0)
enum mt7530_vlan_port_eg_tag {
MT7530_VLAN_EG_DISABLED = 0,
MT7530_VLAN_EG_CONSISTENT = 1,
};
enum mt7530_vlan_port_attr {
MT7530_VLAN_USER = 0,
MT7530_VLAN_TRANSPARENT = 3,
};
enum mt7530_vlan_port_acc_frm {
MT7530_VLAN_ACC_ALL = 0,
MT7530_VLAN_ACC_TAGGED = 1,
MT7530_VLAN_ACC_UNTAGGED = 2,
};
#define STAG_VPID (((x) & 0xffff) << 16)
/* Register for port port-and-protocol based vlan 1 control */
#define MT7530_PPBV1_P(x) (0x2014 + ((x) * 0x100))
#define G0_PORT_VID(x) (((x) & 0xfff) << 0)
#define G0_PORT_VID_MASK G0_PORT_VID(0xfff)
net: dsa: mt7530: use independent VLAN learning on VLAN-unaware bridges Consider the following bridge configuration, where bond0 is not offloaded: +-- br0 --+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 . . . . . . A B C Ideally, when the switch receives a packet from swp3 or swp4, it should forward the packet to the CPU, according to the port matrix and unknown unicast flood settings. But packet loss will happen if the destination address is at one of the offloaded ports (swp0~2). For example, when client C sends a packet to A, the FDB lookup will indicate that it should be forwarded to swp0, but the port matrix of swp3 and swp4 is configured to only allow the CPU to be its destination, so it is dropped. However, this issue does not happen if the bridge is VLAN-aware. That is because VLAN-aware bridges use independent VLAN learning, i.e. use VID for FDB lookup, on offloaded ports. As swp3 and swp4 are not offloaded, shared VLAN learning with default filter ID of 0 is used instead. So the lookup for A with filter ID 0 never hits and the packet can be forwarded to the CPU. In the current code, only two combinations were used to toggle user ports' VLAN awareness: one is PCR.PORT_VLAN set to port matrix mode with PVC.VLAN_ATTR set to transparent port, the other is PCR.PORT_VLAN set to security mode with PVC.VLAN_ATTR set to user port. It turns out that only PVC.VLAN_ATTR contributes to VLAN awareness, and port matrix mode just skips the VLAN table lookup. The reference manual is somehow misleading when describing PORT_VLAN modes. It states that PORT_MEM (VLAN port member) is used for destination if the VLAN table lookup hits, but actually **PORT_MEM & PORT_MATRIX** (bitwise AND of VLAN port member and port matrix) is used instead, which means we can have two or more separate VLAN-aware bridges with the same PVID and traffic won't leak between them. Therefore, to solve this, enable independent VLAN learning with PVID 0 on VLAN-unaware bridges, by setting their PCR.PORT_VLAN to fallback mode, while leaving standalone ports in port matrix mode. The CPU port is always set to fallback mode to serve those bridges. During testing, it is found that FDB lookup with filter ID of 0 will also hit entries with VID 0 even with independent VLAN learning. To avoid that, install all VLANs with filter ID of 1. Signed-off-by: DENG Qingfang <dqfext@gmail.com> Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-04 00:04:02 +08:00
#define G0_PORT_VID_DEF G0_PORT_VID(0)
/* Register for port MAC control register */
#define MT7530_PMCR_P(x) (0x3000 + ((x) * 0x100))
#define PMCR_IFG_XMIT(x) (((x) & 0x3) << 18)
#define PMCR_EXT_PHY BIT(17)
#define PMCR_MAC_MODE BIT(16)
#define PMCR_FORCE_MODE BIT(15)
#define PMCR_TX_EN BIT(14)
#define PMCR_RX_EN BIT(13)
#define PMCR_BACKOFF_EN BIT(9)
#define PMCR_BACKPR_EN BIT(8)
#define PMCR_FORCE_EEE1G BIT(7)
#define PMCR_FORCE_EEE100 BIT(6)
#define PMCR_TX_FC_EN BIT(5)
#define PMCR_RX_FC_EN BIT(4)
#define PMCR_FORCE_SPEED_1000 BIT(3)
#define PMCR_FORCE_SPEED_100 BIT(2)
#define PMCR_FORCE_FDX BIT(1)
#define PMCR_FORCE_LNK BIT(0)
#define PMCR_SPEED_MASK (PMCR_FORCE_SPEED_100 | \
PMCR_FORCE_SPEED_1000)
#define MT7531_FORCE_LNK BIT(31)
#define MT7531_FORCE_SPD BIT(30)
#define MT7531_FORCE_DPX BIT(29)
#define MT7531_FORCE_RX_FC BIT(28)
#define MT7531_FORCE_TX_FC BIT(27)
#define MT7531_FORCE_MODE (MT7531_FORCE_LNK | \
MT7531_FORCE_SPD | \
MT7531_FORCE_DPX | \
MT7531_FORCE_RX_FC | \
MT7531_FORCE_TX_FC)
#define PMCR_FORCE_MODE_ID(id) (((id) == ID_MT7531) ? \
MT7531_FORCE_MODE : \
PMCR_FORCE_MODE)
#define PMCR_LINK_SETTINGS_MASK (PMCR_TX_EN | PMCR_FORCE_SPEED_1000 | \
PMCR_RX_EN | PMCR_FORCE_SPEED_100 | \
PMCR_TX_FC_EN | PMCR_RX_FC_EN | \
PMCR_FORCE_FDX | PMCR_FORCE_LNK | \
PMCR_FORCE_EEE1G | PMCR_FORCE_EEE100)
#define PMCR_CPU_PORT_SETTING(id) (PMCR_FORCE_MODE_ID((id)) | \
PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | \
PMCR_BACKOFF_EN | PMCR_BACKPR_EN | \
PMCR_TX_EN | PMCR_RX_EN | \
PMCR_TX_FC_EN | PMCR_RX_FC_EN | \
PMCR_FORCE_SPEED_1000 | \
PMCR_FORCE_FDX | PMCR_FORCE_LNK)
#define MT7530_PMEEECR_P(x) (0x3004 + (x) * 0x100)
#define WAKEUP_TIME_1000(x) (((x) & 0xFF) << 24)
#define WAKEUP_TIME_100(x) (((x) & 0xFF) << 16)
#define LPI_THRESH_MASK GENMASK(15, 4)
#define LPI_THRESH_SHT 4
#define SET_LPI_THRESH(x) (((x) << LPI_THRESH_SHT) & LPI_THRESH_MASK)
#define GET_LPI_THRESH(x) (((x) & LPI_THRESH_MASK) >> LPI_THRESH_SHT)
#define LPI_MODE_EN BIT(0)
#define MT7530_PMSR_P(x) (0x3008 + (x) * 0x100)
#define PMSR_EEE1G BIT(7)
#define PMSR_EEE100M BIT(6)
#define PMSR_RX_FC BIT(5)
#define PMSR_TX_FC BIT(4)
#define PMSR_SPEED_1000 BIT(3)
#define PMSR_SPEED_100 BIT(2)
#define PMSR_SPEED_10 0x00
#define PMSR_SPEED_MASK (PMSR_SPEED_100 | PMSR_SPEED_1000)
#define PMSR_DPX BIT(1)
#define PMSR_LINK BIT(0)
/* Register for port debug count */
#define MT7531_DBG_CNT(x) (0x3018 + (x) * 0x100)
#define MT7531_DIS_CLR BIT(31)
#define MT7530_GMACCR 0x30e0
#define MAX_RX_JUMBO(x) ((x) << 2)
#define MAX_RX_JUMBO_MASK GENMASK(5, 2)
#define MAX_RX_PKT_LEN_MASK GENMASK(1, 0)
#define MAX_RX_PKT_LEN_1522 0x0
#define MAX_RX_PKT_LEN_1536 0x1
#define MAX_RX_PKT_LEN_1552 0x2
#define MAX_RX_PKT_LEN_JUMBO 0x3
/* Register for MIB */
#define MT7530_PORT_MIB_COUNTER(x) (0x4000 + (x) * 0x100)
#define MT7530_MIB_CCR 0x4fe0
#define CCR_MIB_ENABLE BIT(31)
#define CCR_RX_OCT_CNT_GOOD BIT(7)
#define CCR_RX_OCT_CNT_BAD BIT(6)
#define CCR_TX_OCT_CNT_GOOD BIT(5)
#define CCR_TX_OCT_CNT_BAD BIT(4)
#define CCR_MIB_FLUSH (CCR_RX_OCT_CNT_GOOD | \
CCR_RX_OCT_CNT_BAD | \
CCR_TX_OCT_CNT_GOOD | \
CCR_TX_OCT_CNT_BAD)
#define CCR_MIB_ACTIVATE (CCR_MIB_ENABLE | \
CCR_RX_OCT_CNT_GOOD | \
CCR_RX_OCT_CNT_BAD | \
CCR_TX_OCT_CNT_GOOD | \
CCR_TX_OCT_CNT_BAD)
/* MT7531 SGMII register group */
#define MT7531_SGMII_REG_BASE 0x5000
#define MT7531_SGMII_REG(p, r) (MT7531_SGMII_REG_BASE + \
((p) - 5) * 0x1000 + (r))
/* Register forSGMII PCS_CONTROL_1 */
#define MT7531_PCS_CONTROL_1(p) MT7531_SGMII_REG(p, 0x00)
#define MT7531_SGMII_LINK_STATUS BIT(18)
#define MT7531_SGMII_AN_ENABLE BIT(12)
#define MT7531_SGMII_AN_RESTART BIT(9)
#define MT7531_SGMII_AN_COMPLETE BIT(21)
/* Register for SGMII PCS_SPPED_ABILITY */
#define MT7531_PCS_SPEED_ABILITY(p) MT7531_SGMII_REG(p, 0x08)
#define MT7531_SGMII_TX_CONFIG_MASK GENMASK(15, 0)
#define MT7531_SGMII_TX_CONFIG BIT(0)
/* Register for SGMII_MODE */
#define MT7531_SGMII_MODE(p) MT7531_SGMII_REG(p, 0x20)
#define MT7531_SGMII_REMOTE_FAULT_DIS BIT(8)
#define MT7531_SGMII_IF_MODE_MASK GENMASK(5, 1)
#define MT7531_SGMII_FORCE_DUPLEX BIT(4)
#define MT7531_SGMII_FORCE_SPEED_MASK GENMASK(3, 2)
#define MT7531_SGMII_FORCE_SPEED_1000 BIT(3)
#define MT7531_SGMII_FORCE_SPEED_100 BIT(2)
#define MT7531_SGMII_FORCE_SPEED_10 0
#define MT7531_SGMII_SPEED_DUPLEX_AN BIT(1)
enum mt7531_sgmii_force_duplex {
MT7531_SGMII_FORCE_FULL_DUPLEX = 0,
MT7531_SGMII_FORCE_HALF_DUPLEX = 0x10,
};
/* Fields of QPHY_PWR_STATE_CTRL */
#define MT7531_QPHY_PWR_STATE_CTRL(p) MT7531_SGMII_REG(p, 0xe8)
#define MT7531_SGMII_PHYA_PWD BIT(4)
/* Values of SGMII SPEED */
#define MT7531_PHYA_CTRL_SIGNAL3(p) MT7531_SGMII_REG(p, 0x128)
#define MT7531_RG_TPHY_SPEED_MASK (BIT(2) | BIT(3))
#define MT7531_RG_TPHY_SPEED_1_25G 0x0
#define MT7531_RG_TPHY_SPEED_3_125G BIT(2)
/* Register for system reset */
#define MT7530_SYS_CTRL 0x7000
#define SYS_CTRL_PHY_RST BIT(2)
#define SYS_CTRL_SW_RST BIT(1)
#define SYS_CTRL_REG_RST BIT(0)
/* Register for system interrupt */
#define MT7530_SYS_INT_EN 0x7008
/* Register for system interrupt status */
#define MT7530_SYS_INT_STS 0x700c
/* Register for PHY Indirect Access Control */
#define MT7531_PHY_IAC 0x701C
#define MT7531_PHY_ACS_ST BIT(31)
#define MT7531_MDIO_REG_ADDR_MASK (0x1f << 25)
#define MT7531_MDIO_PHY_ADDR_MASK (0x1f << 20)
#define MT7531_MDIO_CMD_MASK (0x3 << 18)
#define MT7531_MDIO_ST_MASK (0x3 << 16)
#define MT7531_MDIO_RW_DATA_MASK (0xffff)
#define MT7531_MDIO_REG_ADDR(x) (((x) & 0x1f) << 25)
#define MT7531_MDIO_DEV_ADDR(x) (((x) & 0x1f) << 25)
#define MT7531_MDIO_PHY_ADDR(x) (((x) & 0x1f) << 20)
#define MT7531_MDIO_CMD(x) (((x) & 0x3) << 18)
#define MT7531_MDIO_ST(x) (((x) & 0x3) << 16)
enum mt7531_phy_iac_cmd {
MT7531_MDIO_ADDR = 0,
MT7531_MDIO_WRITE = 1,
MT7531_MDIO_READ = 2,
MT7531_MDIO_READ_CL45 = 3,
};
/* MDIO_ST: MDIO start field */
enum mt7531_mdio_st {
MT7531_MDIO_ST_CL45 = 0,
MT7531_MDIO_ST_CL22 = 1,
};
#define MT7531_MDIO_CL22_READ (MT7531_MDIO_ST(MT7531_MDIO_ST_CL22) | \
MT7531_MDIO_CMD(MT7531_MDIO_READ))
#define MT7531_MDIO_CL22_WRITE (MT7531_MDIO_ST(MT7531_MDIO_ST_CL22) | \
MT7531_MDIO_CMD(MT7531_MDIO_WRITE))
#define MT7531_MDIO_CL45_ADDR (MT7531_MDIO_ST(MT7531_MDIO_ST_CL45) | \
MT7531_MDIO_CMD(MT7531_MDIO_ADDR))
#define MT7531_MDIO_CL45_READ (MT7531_MDIO_ST(MT7531_MDIO_ST_CL45) | \
MT7531_MDIO_CMD(MT7531_MDIO_READ))
#define MT7531_MDIO_CL45_WRITE (MT7531_MDIO_ST(MT7531_MDIO_ST_CL45) | \
MT7531_MDIO_CMD(MT7531_MDIO_WRITE))
/* Register for RGMII clock phase */
#define MT7531_CLKGEN_CTRL 0x7500
#define CLK_SKEW_OUT(x) (((x) & 0x3) << 8)
#define CLK_SKEW_OUT_MASK GENMASK(9, 8)
#define CLK_SKEW_IN(x) (((x) & 0x3) << 6)
#define CLK_SKEW_IN_MASK GENMASK(7, 6)
#define RXCLK_NO_DELAY BIT(5)
#define TXCLK_NO_REVERSE BIT(4)
#define GP_MODE(x) (((x) & 0x3) << 1)
#define GP_MODE_MASK GENMASK(2, 1)
#define GP_CLK_EN BIT(0)
enum mt7531_gp_mode {
MT7531_GP_MODE_RGMII = 0,
MT7531_GP_MODE_MII = 1,
MT7531_GP_MODE_REV_MII = 2
};
enum mt7531_clk_skew {
MT7531_CLK_SKEW_NO_CHG = 0,
MT7531_CLK_SKEW_DLY_100PPS = 1,
MT7531_CLK_SKEW_DLY_200PPS = 2,
MT7531_CLK_SKEW_REVERSE = 3,
};
/* Register for hw trap status */
#define MT7530_HWTRAP 0x7800
#define HWTRAP_XTAL_MASK (BIT(10) | BIT(9))
#define HWTRAP_XTAL_25MHZ (BIT(10) | BIT(9))
#define HWTRAP_XTAL_40MHZ (BIT(10))
#define HWTRAP_XTAL_20MHZ (BIT(9))
#define MT7531_HWTRAP 0x7800
#define HWTRAP_XTAL_FSEL_MASK BIT(7)
#define HWTRAP_XTAL_FSEL_25MHZ BIT(7)
#define HWTRAP_XTAL_FSEL_40MHZ 0
/* Unique fields of (M)HWSTRAP for MT7531 */
#define XTAL_FSEL_S 7
#define XTAL_FSEL_M BIT(7)
#define PHY_EN BIT(6)
#define CHG_STRAP BIT(8)
/* Register for hw trap modification */
#define MT7530_MHWTRAP 0x7804
#define MHWTRAP_PHY0_SEL BIT(20)
#define MHWTRAP_MANUAL BIT(16)
#define MHWTRAP_P5_MAC_SEL BIT(13)
#define MHWTRAP_P6_DIS BIT(8)
#define MHWTRAP_P5_RGMII_MODE BIT(7)
#define MHWTRAP_P5_DIS BIT(6)
#define MHWTRAP_PHY_ACCESS BIT(5)
/* Register for TOP signal control */
#define MT7530_TOP_SIG_CTRL 0x7808
#define TOP_SIG_CTRL_NORMAL (BIT(17) | BIT(16))
#define MT7531_TOP_SIG_SR 0x780c
#define PAD_DUAL_SGMII_EN BIT(1)
#define PAD_MCM_SMI_EN BIT(0)
#define MT7530_IO_DRV_CR 0x7810
#define P5_IO_CLK_DRV(x) ((x) & 0x3)
#define P5_IO_DATA_DRV(x) (((x) & 0x3) << 4)
#define MT7531_CHIP_REV 0x781C
#define MT7531_PLLGP_EN 0x7820
#define EN_COREPLL BIT(2)
#define SW_CLKSW BIT(1)
#define SW_PLLGP BIT(0)
#define MT7530_P6ECR 0x7830
#define P6_INTF_MODE_MASK 0x3
#define P6_INTF_MODE(x) ((x) & 0x3)
#define MT7531_PLLGP_CR0 0x78a8
#define RG_COREPLL_EN BIT(22)
#define RG_COREPLL_POSDIV_S 23
#define RG_COREPLL_POSDIV_M 0x3800000
#define RG_COREPLL_SDM_PCW_S 1
#define RG_COREPLL_SDM_PCW_M 0x3ffffe
#define RG_COREPLL_SDM_PCW_CHG BIT(0)
/* Registers for RGMII and SGMII PLL clock */
#define MT7531_ANA_PLLGP_CR2 0x78b0
#define MT7531_ANA_PLLGP_CR5 0x78bc
/* Registers for TRGMII on the both side */
#define MT7530_TRGMII_RCK_CTRL 0x7a00
#define RX_RST BIT(31)
#define RXC_DQSISEL BIT(30)
#define DQSI1_TAP_MASK (0x7f << 8)
#define DQSI0_TAP_MASK 0x7f
#define DQSI1_TAP(x) (((x) & 0x7f) << 8)
#define DQSI0_TAP(x) ((x) & 0x7f)
#define MT7530_TRGMII_RCK_RTT 0x7a04
#define DQS1_GATE BIT(31)
#define DQS0_GATE BIT(30)
#define MT7530_TRGMII_RD(x) (0x7a10 + (x) * 8)
#define BSLIP_EN BIT(31)
#define EDGE_CHK BIT(30)
#define RD_TAP_MASK 0x7f
#define RD_TAP(x) ((x) & 0x7f)
#define MT7530_TRGMII_TXCTRL 0x7a40
#define TRAIN_TXEN BIT(31)
#define TXC_INV BIT(30)
#define TX_RST BIT(28)
#define MT7530_TRGMII_TD_ODT(i) (0x7a54 + 8 * (i))
#define TD_DM_DRVP(x) ((x) & 0xf)
#define TD_DM_DRVN(x) (((x) & 0xf) << 4)
#define MT7530_TRGMII_TCK_CTRL 0x7a78
#define TCK_TAP(x) (((x) & 0xf) << 8)
#define MT7530_P5RGMIIRXCR 0x7b00
#define CSR_RGMII_EDGE_ALIGN BIT(8)
#define CSR_RGMII_RXC_0DEG_CFG(x) ((x) & 0xf)
#define MT7530_P5RGMIITXCR 0x7b04
#define CSR_RGMII_TXC_CFG(x) ((x) & 0x1f)
/* Registers for GPIO mode */
#define MT7531_GPIO_MODE0 0x7c0c
#define MT7531_GPIO0_MASK GENMASK(3, 0)
#define MT7531_GPIO0_INTERRUPT 1
#define MT7531_GPIO_MODE1 0x7c10
#define MT7531_GPIO11_RG_RXD2_MASK GENMASK(15, 12)
#define MT7531_EXT_P_MDC_11 (2 << 12)
#define MT7531_GPIO12_RG_RXD3_MASK GENMASK(19, 16)
#define MT7531_EXT_P_MDIO_12 (2 << 16)
/* Registers for LED GPIO control (MT7530 only)
* All registers follow this pattern:
* [ 2: 0] port 0
* [ 6: 4] port 1
* [10: 8] port 2
* [14:12] port 3
* [18:16] port 4
*/
/* LED enable, 0: Disable, 1: Enable (Default) */
#define MT7530_LED_EN 0x7d00
/* LED mode, 0: GPIO mode, 1: PHY mode (Default) */
#define MT7530_LED_IO_MODE 0x7d04
/* GPIO direction, 0: Input, 1: Output */
#define MT7530_LED_GPIO_DIR 0x7d10
/* GPIO output enable, 0: Disable, 1: Enable */
#define MT7530_LED_GPIO_OE 0x7d14
/* GPIO value, 0: Low, 1: High */
#define MT7530_LED_GPIO_DATA 0x7d18
#define MT7530_CREV 0x7ffc
#define CHIP_NAME_SHIFT 16
#define MT7530_ID 0x7530
#define MT7531_CREV 0x781C
#define CHIP_REV_M 0x0f
#define MT7531_ID 0x7531
/* Registers for core PLL access through mmd indirect */
#define CORE_PLL_GROUP2 0x401
#define RG_SYSPLL_EN_NORMAL BIT(15)
#define RG_SYSPLL_VODEN BIT(14)
#define RG_SYSPLL_LF BIT(13)
#define RG_SYSPLL_RST_DLY(x) (((x) & 0x3) << 12)
#define RG_SYSPLL_LVROD_EN BIT(10)
#define RG_SYSPLL_PREDIV(x) (((x) & 0x3) << 8)
#define RG_SYSPLL_POSDIV(x) (((x) & 0x3) << 5)
#define RG_SYSPLL_FBKSEL BIT(4)
#define RT_SYSPLL_EN_AFE_OLT BIT(0)
#define CORE_PLL_GROUP4 0x403
#define RG_SYSPLL_DDSFBK_EN BIT(12)
#define RG_SYSPLL_BIAS_EN BIT(11)
#define RG_SYSPLL_BIAS_LPF_EN BIT(10)
#define MT7531_PHY_PLL_OFF BIT(5)
#define MT7531_PHY_PLL_BYPASS_MODE BIT(4)
#define MT753X_CTRL_PHY_ADDR 0
#define CORE_PLL_GROUP5 0x404
#define RG_LCDDS_PCW_NCPO1(x) ((x) & 0xffff)
#define CORE_PLL_GROUP6 0x405
#define RG_LCDDS_PCW_NCPO0(x) ((x) & 0xffff)
#define CORE_PLL_GROUP7 0x406
#define RG_LCDDS_PWDB BIT(15)
#define RG_LCDDS_ISO_EN BIT(13)
#define RG_LCCDS_C(x) (((x) & 0x7) << 4)
#define RG_LCDDS_PCW_NCPO_CHG BIT(3)
#define CORE_PLL_GROUP10 0x409
#define RG_LCDDS_SSC_DELTA(x) ((x) & 0xfff)
#define CORE_PLL_GROUP11 0x40a
#define RG_LCDDS_SSC_DELTA1(x) ((x) & 0xfff)
#define CORE_GSWPLL_GRP1 0x40d
#define RG_GSWPLL_PREDIV(x) (((x) & 0x3) << 14)
#define RG_GSWPLL_POSDIV_200M(x) (((x) & 0x3) << 12)
#define RG_GSWPLL_EN_PRE BIT(11)
#define RG_GSWPLL_FBKSEL BIT(10)
#define RG_GSWPLL_BP BIT(9)
#define RG_GSWPLL_BR BIT(8)
#define RG_GSWPLL_FBKDIV_200M(x) ((x) & 0xff)
#define CORE_GSWPLL_GRP2 0x40e
#define RG_GSWPLL_POSDIV_500M(x) (((x) & 0x3) << 8)
#define RG_GSWPLL_FBKDIV_500M(x) ((x) & 0xff)
#define CORE_TRGMII_GSW_CLK_CG 0x410
#define REG_GSWCK_EN BIT(0)
#define REG_TRGMIICK_EN BIT(1)
#define MIB_DESC(_s, _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
struct mt7530_mib_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
struct mt7530_fdb {
u16 vid;
u8 port_mask;
u8 aging;
u8 mac[6];
bool noarp;
};
/* struct mt7530_port - This is the main data structure for holding the state
* of the port.
* @enable: The status used for show port is enabled or not.
* @pm: The matrix used to show all connections with the port.
* @pvid: The VLAN specified is to be considered a PVID at ingress. Any
* untagged frames will be assigned to the related VLAN.
* @vlan_filtering: The flags indicating whether the port that can recognize
* VLAN-tagged frames.
*/
struct mt7530_port {
bool enable;
u32 pm;
u16 pvid;
};
/* Port 5 interface select definitions */
enum p5_interface_select {
P5_DISABLED = 0,
P5_INTF_SEL_PHY_P0,
P5_INTF_SEL_PHY_P4,
P5_INTF_SEL_GMAC5,
P5_INTF_SEL_GMAC5_SGMII,
};
static const char *p5_intf_modes(unsigned int p5_interface)
{
switch (p5_interface) {
case P5_DISABLED:
return "DISABLED";
case P5_INTF_SEL_PHY_P0:
return "PHY P0";
case P5_INTF_SEL_PHY_P4:
return "PHY P4";
case P5_INTF_SEL_GMAC5:
return "GMAC5";
case P5_INTF_SEL_GMAC5_SGMII:
return "GMAC5_SGMII";
default:
return "unknown";
}
}
struct mt7530_priv;
struct mt753x_pcs {
struct phylink_pcs pcs;
struct mt7530_priv *priv;
int port;
};
/* struct mt753x_info - This is the main data structure for holding the specific
* part for each supported device
* @sw_setup: Holding the handler to a device initialization
* @phy_read: Holding the way reading PHY port
* @phy_write: Holding the way writing PHY port
* @pad_setup: Holding the way setting up the bus pad for a certain
* MAC port
* @phy_mode_supported: Check if the PHY type is being supported on a certain
* port
* @mac_port_validate: Holding the way to set addition validate type for a
* certan MAC port
* @mac_port_config: Holding the way setting up the PHY attribute to a
* certain MAC port
*/
struct mt753x_info {
enum mt753x_id id;
const struct phylink_pcs_ops *pcs_ops;
int (*sw_setup)(struct dsa_switch *ds);
int (*phy_read)(struct mt7530_priv *priv, int port, int regnum);
int (*phy_write)(struct mt7530_priv *priv, int port, int regnum, u16 val);
int (*pad_setup)(struct dsa_switch *ds, phy_interface_t interface);
int (*cpu_port_config)(struct dsa_switch *ds, int port);
void (*mac_port_get_caps)(struct dsa_switch *ds, int port,
struct phylink_config *config);
void (*mac_port_validate)(struct dsa_switch *ds, int port,
phy_interface_t interface,
unsigned long *supported);
int (*mac_port_config)(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface);
};
/* struct mt7530_priv - This is the main data structure for holding the state
* of the driver
* @dev: The device pointer
* @ds: The pointer to the dsa core structure
* @bus: The bus used for the device and built-in PHY
* @rstc: The pointer to reset control used by MCM
* @core_pwr: The power supplied into the core
* @io_pwr: The power supplied into the I/O
* @reset: The descriptor for GPIO line tied to its reset pin
* @mcm: Flag for distinguishing if standalone IC or module
* coupling
* @ports: Holding the state among ports
* @reg_mutex: The lock for protecting among process accessing
* registers
* @p6_interface Holding the current port 6 interface
* @p5_intf_sel: Holding the current port 5 interface select
*
* @irq: IRQ number of the switch
* @irq_domain: IRQ domain of the switch irq_chip
* @irq_enable: IRQ enable bits, synced to SYS_INT_EN
*/
struct mt7530_priv {
struct device *dev;
struct dsa_switch *ds;
struct mii_bus *bus;
struct reset_control *rstc;
struct regulator *core_pwr;
struct regulator *io_pwr;
struct gpio_desc *reset;
const struct mt753x_info *info;
unsigned int id;
bool mcm;
phy_interface_t p6_interface;
phy_interface_t p5_interface;
unsigned int p5_intf_sel;
u8 mirror_rx;
u8 mirror_tx;
struct mt7530_port ports[MT7530_NUM_PORTS];
struct mt753x_pcs pcs[MT7530_NUM_PORTS];
/* protect among processes for registers access*/
struct mutex reg_mutex;
int irq;
struct irq_domain *irq_domain;
u32 irq_enable;
};
struct mt7530_hw_vlan_entry {
int port;
u8 old_members;
bool untagged;
};
static inline void mt7530_hw_vlan_entry_init(struct mt7530_hw_vlan_entry *e,
int port, bool untagged)
{
e->port = port;
e->untagged = untagged;
}
typedef void (*mt7530_vlan_op)(struct mt7530_priv *,
struct mt7530_hw_vlan_entry *);
struct mt7530_hw_stats {
const char *string;
u16 reg;
u8 sizeof_stat;
};
struct mt7530_dummy_poll {
struct mt7530_priv *priv;
u32 reg;
};
static inline void INIT_MT7530_DUMMY_POLL(struct mt7530_dummy_poll *p,
struct mt7530_priv *priv, u32 reg)
{
p->priv = priv;
p->reg = reg;
}
#endif /* __MT7530_H */