OpenCloudOS-Kernel/drivers/video/fbdev/asiliantfb.c

625 lines
16 KiB
C
Raw Normal View History

/*
* drivers/video/asiliantfb.c
* frame buffer driver for Asiliant 69000 chip
* Copyright (C) 2001-2003 Saito.K & Jeanne
*
* from driver/video/chipsfb.c and,
*
* drivers/video/asiliantfb.c -- frame buffer device for
* Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
* Author: apc@agelectronics.co.uk
* Copyright (C) 2000 AG Electronics
* Note: the data sheets don't seem to be available from Asiliant.
* They are available by searching developer.intel.com, but are not otherwise
* linked to.
*
* This driver should be portable with minimal effort to the 69000 display
* chip, and to the twin-display mode of the 69030.
* Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
*
* Derived from the CT65550 driver chipsfb.c:
* Copyright (C) 1998 Paul Mackerras
* ...which was derived from the Powermac "chips" driver:
* Copyright (C) 1997 Fabio Riccardi.
* And from the frame buffer device for Open Firmware-initialized devices:
* Copyright (C) 1997 Geert Uytterhoeven.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/io.h>
/* Built in clock of the 69030 */
static const unsigned Fref = 14318180;
#define mmio_base (p->screen_base + 0x400000)
#define mm_write_ind(num, val, ap, dp) do { \
writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
} while (0)
static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7ac, 0x7ad);
}
#define write_xr(num, val) mm_write_xr(p, num, val)
static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7a0, 0x7a1);
}
#define write_fr(num, val) mm_write_fr(p, num, val)
static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x7a8, 0x7a9);
}
#define write_cr(num, val) mm_write_cr(p, num, val)
static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x79c, 0x79d);
}
#define write_gr(num, val) mm_write_gr(p, num, val)
static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
{
mm_write_ind(reg, data, 0x788, 0x789);
}
#define write_sr(num, val) mm_write_sr(p, num, val)
static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
{
readb(mmio_base + 0x7b4);
mm_write_ind(reg, data, 0x780, 0x780);
}
#define write_ar(num, val) mm_write_ar(p, num, val)
static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int asiliantfb_set_par(struct fb_info *info);
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static struct fb_ops asiliantfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = asiliantfb_check_var,
.fb_set_par = asiliantfb_set_par,
.fb_setcolreg = asiliantfb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/* Calculate the ratios for the dot clocks without using a single long long
* value */
static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
{
unsigned pixclock = *ppixclock;
unsigned Ftarget = 1000000 * (1000000 / pixclock);
unsigned n;
unsigned best_error = 0xffffffff;
unsigned best_m = 0xffffffff,
best_n = 0xffffffff;
unsigned ratio;
unsigned remainder;
unsigned char divisor = 0;
/* Calculate the frequency required. This is hard enough. */
ratio = 1000000 / pixclock;
remainder = 1000000 % pixclock;
Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
while (Ftarget < 100000000) {
divisor += 0x10;
Ftarget <<= 1;
}
ratio = Ftarget / Fref;
remainder = Ftarget % Fref;
/* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
* together with 3 <= n <= 257. */
for (n = 3; n <= 257; n++) {
unsigned m = n * ratio + (n * remainder) / Fref;
/* 3 <= m <= 257 */
if (m >= 3 && m <= 257) {
unsigned new_error = Ftarget * n >= Fref * m ?
((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
if (new_error < best_error) {
best_n = n;
best_m = m;
best_error = new_error;
}
}
/* But if VLD = 4, then 4m <= 1028 */
else if (m <= 1028) {
/* remember there are still only 8-bits of precision in m, so
* avoid over-optimistic error calculations */
unsigned new_error = Ftarget * n >= Fref * (m & ~3) ?
((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
if (new_error < best_error) {
best_n = n;
best_m = m;
best_error = new_error;
}
}
}
if (best_m > 257)
best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
else
divisor |= 4; /* or set VCO loop divide to 1 */
*dclk2_m = best_m - 2;
*dclk2_n = best_n - 2;
*dclk2_div = divisor;
*ppixclock = pixclock;
return;
}
static void asiliant_set_timing(struct fb_info *p)
{
unsigned hd = p->var.xres / 8;
unsigned hs = (p->var.xres + p->var.right_margin) / 8;
unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
unsigned vd = p->var.yres;
unsigned vs = p->var.yres + p->var.lower_margin;
unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
write_fr(0x01, 0x02); /* LCD */
} else {
write_fr(0x01, 0x01); /* CRT */
}
write_cr(0x11, (ve - 1) & 0x0f);
write_cr(0x00, (ht - 5) & 0xff);
write_cr(0x01, hd - 1);
write_cr(0x02, hd);
write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
write_cr(0x04, hs);
write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
write_cr(0x3c, (ht - 1) & 0xc0);
write_cr(0x06, (vt - 2) & 0xff);
write_cr(0x30, (vt - 2) >> 8);
write_cr(0x07, 0x00);
write_cr(0x08, 0x00);
write_cr(0x09, 0x00);
write_cr(0x10, (vs - 1) & 0xff);
write_cr(0x32, ((vs - 1) >> 8) & 0xf);
write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
write_cr(0x12, (vd - 1) & 0xff);
write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
write_cr(0x13, wd & 0xff);
write_cr(0x41, (wd & 0xf00) >> 8);
write_cr(0x15, (vs - 1) & 0xff);
write_cr(0x33, ((vs - 1) >> 8) & 0xf);
write_cr(0x38, ((ht - 5) & 0x100) >> 8);
write_cr(0x16, (vt - 1) & 0xff);
write_cr(0x18, 0x00);
if (p->var.xres == 640) {
writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
} else {
writeb(0x07, mmio_base + 0x784); /* set misc output reg */
}
}
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *p)
{
unsigned long Ftarget, ratio, remainder;
ratio = 1000000 / var->pixclock;
remainder = 1000000 % var->pixclock;
Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
/* First check the constraint that the maximum post-VCO divisor is 32,
* and the maximum Fvco is 220MHz */
if (Ftarget > 220000000 || Ftarget < 3125000) {
printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
return -ENXIO;
}
var->xres_virtual = var->xres;
var->yres_virtual = var->yres;
if (var->bits_per_pixel == 24) {
var->red.offset = 16;
var->green.offset = 8;
var->blue.offset = 0;
var->red.length = var->blue.length = var->green.length = 8;
} else if (var->bits_per_pixel == 16) {
switch (var->red.offset) {
case 11:
var->green.length = 6;
break;
case 10:
var->green.length = 5;
break;
default:
return -EINVAL;
}
var->green.offset = 5;
var->blue.offset = 0;
var->red.length = var->blue.length = 5;
} else if (var->bits_per_pixel == 8) {
var->red.offset = var->green.offset = var->blue.offset = 0;
var->red.length = var->green.length = var->blue.length = 8;
}
return 0;
}
static int asiliantfb_set_par(struct fb_info *p)
{
u8 dclk2_m; /* Holds m-2 value for register */
u8 dclk2_n; /* Holds n-2 value for register */
u8 dclk2_div; /* Holds divisor bitmask */
/* Set pixclock */
asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
/* Set color depth */
if (p->var.bits_per_pixel == 24) {
write_xr(0x81, 0x16); /* 24 bit packed color mode */
write_xr(0x82, 0x00); /* Disable palettes */
write_xr(0x20, 0x20); /* 24 bit blitter mode */
} else if (p->var.bits_per_pixel == 16) {
if (p->var.red.offset == 11)
write_xr(0x81, 0x15); /* 16 bit color mode */
else
write_xr(0x81, 0x14); /* 15 bit color mode */
write_xr(0x82, 0x00); /* Disable palettes */
write_xr(0x20, 0x10); /* 16 bit blitter mode */
} else if (p->var.bits_per_pixel == 8) {
write_xr(0x0a, 0x02); /* Linear */
write_xr(0x81, 0x12); /* 8 bit color mode */
write_xr(0x82, 0x00); /* Graphics gamma enable */
write_xr(0x20, 0x00); /* 8 bit blitter mode */
}
p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
write_xr(0xc4, dclk2_m);
write_xr(0xc5, dclk2_n);
write_xr(0xc7, dclk2_div);
/* Set up the CR registers */
asiliant_set_timing(p);
return 0;
}
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *p)
{
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
/* Set hardware palete */
writeb(regno, mmio_base + 0x790);
udelay(1);
writeb(red, mmio_base + 0x791);
writeb(green, mmio_base + 0x791);
writeb(blue, mmio_base + 0x791);
if (regno < 16) {
switch(p->var.red.offset) {
case 10: /* RGB 555 */
((u32 *)(p->pseudo_palette))[regno] =
((red & 0xf8) << 7) |
((green & 0xf8) << 2) |
((blue & 0xf8) >> 3);
break;
case 11: /* RGB 565 */
((u32 *)(p->pseudo_palette))[regno] =
((red & 0xf8) << 8) |
((green & 0xfc) << 3) |
((blue & 0xf8) >> 3);
break;
case 16: /* RGB 888 */
((u32 *)(p->pseudo_palette))[regno] =
(red << 16) |
(green << 8) |
(blue);
break;
}
}
return 0;
}
struct chips_init_reg {
unsigned char addr;
unsigned char data;
};
static struct chips_init_reg chips_init_sr[] =
{
{0x00, 0x03}, /* Reset register */
{0x01, 0x01}, /* Clocking mode */
{0x02, 0x0f}, /* Plane mask */
{0x04, 0x0e} /* Memory mode */
};
static struct chips_init_reg chips_init_gr[] =
{
{0x03, 0x00}, /* Data rotate */
{0x05, 0x00}, /* Graphics mode */
{0x06, 0x01}, /* Miscellaneous */
{0x08, 0x00} /* Bit mask */
};
static struct chips_init_reg chips_init_ar[] =
{
{0x10, 0x01}, /* Mode control */
{0x11, 0x00}, /* Overscan */
{0x12, 0x0f}, /* Memory plane enable */
{0x13, 0x00} /* Horizontal pixel panning */
};
static struct chips_init_reg chips_init_cr[] =
{
{0x0c, 0x00}, /* Start address high */
{0x0d, 0x00}, /* Start address low */
{0x40, 0x00}, /* Extended Start Address */
{0x41, 0x00}, /* Extended Start Address */
{0x14, 0x00}, /* Underline location */
{0x17, 0xe3}, /* CRT mode control */
{0x70, 0x00} /* Interlace control */
};
static struct chips_init_reg chips_init_fr[] =
{
{0x01, 0x02},
{0x03, 0x08},
{0x08, 0xcc},
{0x0a, 0x08},
{0x18, 0x00},
{0x1e, 0x80},
{0x40, 0x83},
{0x41, 0x00},
{0x48, 0x13},
{0x4d, 0x60},
{0x4e, 0x0f},
{0x0b, 0x01},
{0x21, 0x51},
{0x22, 0x1d},
{0x23, 0x5f},
{0x20, 0x4f},
{0x34, 0x00},
{0x24, 0x51},
{0x25, 0x00},
{0x27, 0x0b},
{0x26, 0x00},
{0x37, 0x80},
{0x33, 0x0b},
{0x35, 0x11},
{0x36, 0x02},
{0x31, 0xea},
{0x32, 0x0c},
{0x30, 0xdf},
{0x10, 0x0c},
{0x11, 0xe0},
{0x12, 0x50},
{0x13, 0x00},
{0x16, 0x03},
{0x17, 0xbd},
{0x1a, 0x00},
};
static struct chips_init_reg chips_init_xr[] =
{
{0xce, 0x00}, /* set default memory clock */
{0xcc, 200 }, /* MCLK ratio M */
{0xcd, 18 }, /* MCLK ratio N */
{0xce, 0x90}, /* MCLK divisor = 2 */
{0xc4, 209 },
{0xc5, 118 },
{0xc7, 32 },
{0xcf, 0x06},
{0x09, 0x01}, /* IO Control - CRT controller extensions */
{0x0a, 0x02}, /* Frame buffer mapping */
{0x0b, 0x01}, /* PCI burst write */
{0x40, 0x03}, /* Memory access control */
{0x80, 0x82}, /* Pixel pipeline configuration 0 */
{0x81, 0x12}, /* Pixel pipeline configuration 1 */
{0x82, 0x08}, /* Pixel pipeline configuration 2 */
{0xd0, 0x0f},
{0xd1, 0x01},
};
static void chips_hw_init(struct fb_info *p)
{
int i;
for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
write_xr(0x81, 0x12);
write_xr(0x82, 0x08);
write_xr(0x20, 0x00);
for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
/* Enable video output in attribute index register */
writeb(0x20, mmio_base + 0x780);
for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
}
static struct fb_fix_screeninfo asiliantfb_fix = {
.id = "Asiliant 69000",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.accel = FB_ACCEL_NONE,
.line_length = 640,
.smem_len = 0x200000, /* 2MB */
};
static struct fb_var_screeninfo asiliantfb_var = {
.xres = 640,
.yres = 480,
.xres_virtual = 640,
.yres_virtual = 480,
.bits_per_pixel = 8,
.red = { .length = 8 },
.green = { .length = 8 },
.blue = { .length = 8 },
.height = -1,
.width = -1,
.vmode = FB_VMODE_NONINTERLACED,
.pixclock = 39722,
.left_margin = 48,
.right_margin = 16,
.upper_margin = 33,
.lower_margin = 10,
.hsync_len = 96,
.vsync_len = 2,
};
static int init_asiliant(struct fb_info *p, unsigned long addr)
{
int err;
p->fix = asiliantfb_fix;
p->fix.smem_start = addr;
p->var = asiliantfb_var;
p->fbops = &asiliantfb_ops;
p->flags = FBINFO_DEFAULT;
err = fb_alloc_cmap(&p->cmap, 256, 0);
if (err) {
printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n");
return err;
}
err = register_framebuffer(p);
if (err < 0) {
printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
fb_dealloc_cmap(&p->cmap);
return err;
}
fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n",
p->fix.smem_len / 1024);
writeb(0xff, mmio_base + 0x78c);
chips_hw_init(p);
return 0;
}
static int asiliantfb_pci_init(struct pci_dev *dp,
const struct pci_device_id *ent)
{
unsigned long addr, size;
struct fb_info *p;
int err;
if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
return -ENODEV;
addr = pci_resource_start(dp, 0);
size = pci_resource_len(dp, 0);
if (addr == 0)
return -ENODEV;
if (!request_mem_region(addr, size, "asiliantfb"))
return -EBUSY;
p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev);
if (!p) {
release_mem_region(addr, size);
return -ENOMEM;
}
p->pseudo_palette = p->par;
p->par = NULL;
p->screen_base = ioremap(addr, 0x800000);
if (p->screen_base == NULL) {
release_mem_region(addr, size);
framebuffer_release(p);
return -ENOMEM;
}
pci_write_config_dword(dp, 4, 0x02800083);
writeb(3, p->screen_base + 0x400784);
err = init_asiliant(p, addr);
if (err) {
iounmap(p->screen_base);
release_mem_region(addr, size);
framebuffer_release(p);
return err;
}
pci_set_drvdata(dp, p);
return 0;
}
static void asiliantfb_remove(struct pci_dev *dp)
{
struct fb_info *p = pci_get_drvdata(dp);
unregister_framebuffer(p);
fb_dealloc_cmap(&p->cmap);
iounmap(p->screen_base);
release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
framebuffer_release(p);
}
static struct pci_device_id asiliantfb_pci_tbl[] = {
{ PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
static struct pci_driver asiliantfb_driver = {
.name = "asiliantfb",
.id_table = asiliantfb_pci_tbl,
.probe = asiliantfb_pci_init,
.remove = asiliantfb_remove,
};
static int __init asiliantfb_init(void)
{
if (fb_get_options("asiliantfb", NULL))
return -ENODEV;
return pci_register_driver(&asiliantfb_driver);
}
module_init(asiliantfb_init);
static void __exit asiliantfb_exit(void)
{
pci_unregister_driver(&asiliantfb_driver);
}
MODULE_LICENSE("GPL");