OpenCloudOS-Kernel/drivers/gpu/drm/i2c/tda998x_drv.c

1725 lines
52 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/component.h>
#include <linux/hdmi.h>
#include <linux/module.h>
#include <linux/irq.h>
#include <sound/asoundef.h>
#include <sound/hdmi-codec.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/i2c/tda998x.h>
#define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
struct tda998x_audio_port {
u8 format; /* AFMT_xxx */
u8 config; /* AP value */
};
struct tda998x_priv {
struct i2c_client *cec;
struct i2c_client *hdmi;
struct mutex mutex;
u16 rev;
u8 current_page;
int dpms;
bool is_hdmi_sink;
u8 vip_cntrl_0;
u8 vip_cntrl_1;
u8 vip_cntrl_2;
struct tda998x_audio_params audio_params;
struct platform_device *audio_pdev;
struct mutex audio_mutex;
wait_queue_head_t wq_edid;
volatile int wq_edid_wait;
struct work_struct detect_work;
struct timer_list edid_delay_timer;
wait_queue_head_t edid_delay_waitq;
bool edid_delay_active;
struct drm_encoder encoder;
struct drm_connector connector;
struct tda998x_audio_port audio_port[2];
};
#define conn_to_tda998x_priv(x) \
container_of(x, struct tda998x_priv, connector)
#define enc_to_tda998x_priv(x) \
container_of(x, struct tda998x_priv, encoder)
/* The TDA9988 series of devices use a paged register scheme.. to simplify
* things we encode the page # in upper bits of the register #. To read/
* write a given register, we need to make sure CURPAGE register is set
* appropriately. Which implies reads/writes are not atomic. Fun!
*/
#define REG(page, addr) (((page) << 8) | (addr))
#define REG2ADDR(reg) ((reg) & 0xff)
#define REG2PAGE(reg) (((reg) >> 8) & 0xff)
#define REG_CURPAGE 0xff /* write */
/* Page 00h: General Control */
#define REG_VERSION_LSB REG(0x00, 0x00) /* read */
#define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
# define MAIN_CNTRL0_SR (1 << 0)
# define MAIN_CNTRL0_DECS (1 << 1)
# define MAIN_CNTRL0_DEHS (1 << 2)
# define MAIN_CNTRL0_CECS (1 << 3)
# define MAIN_CNTRL0_CEHS (1 << 4)
# define MAIN_CNTRL0_SCALER (1 << 7)
#define REG_VERSION_MSB REG(0x00, 0x02) /* read */
#define REG_SOFTRESET REG(0x00, 0x0a) /* write */
# define SOFTRESET_AUDIO (1 << 0)
# define SOFTRESET_I2C_MASTER (1 << 1)
#define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
#define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
#define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
# define I2C_MASTER_DIS_MM (1 << 0)
# define I2C_MASTER_DIS_FILT (1 << 1)
# define I2C_MASTER_APP_STRT_LAT (1 << 2)
#define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
# define FEAT_POWERDOWN_SPDIF (1 << 3)
#define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
#define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
#define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
# define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
#define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
#define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
#define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
#define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
#define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
#define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
# define VIP_CNTRL_0_MIRR_A (1 << 7)
# define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
# define VIP_CNTRL_0_MIRR_B (1 << 3)
# define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
# define VIP_CNTRL_1_MIRR_C (1 << 7)
# define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
# define VIP_CNTRL_1_MIRR_D (1 << 3)
# define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
# define VIP_CNTRL_2_MIRR_E (1 << 7)
# define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
# define VIP_CNTRL_2_MIRR_F (1 << 3)
# define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
# define VIP_CNTRL_3_X_TGL (1 << 0)
# define VIP_CNTRL_3_H_TGL (1 << 1)
# define VIP_CNTRL_3_V_TGL (1 << 2)
# define VIP_CNTRL_3_EMB (1 << 3)
# define VIP_CNTRL_3_SYNC_DE (1 << 4)
# define VIP_CNTRL_3_SYNC_HS (1 << 5)
# define VIP_CNTRL_3_DE_INT (1 << 6)
# define VIP_CNTRL_3_EDGE (1 << 7)
#define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
# define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
# define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
# define VIP_CNTRL_4_CCIR656 (1 << 4)
# define VIP_CNTRL_4_656_ALT (1 << 5)
# define VIP_CNTRL_4_TST_656 (1 << 6)
# define VIP_CNTRL_4_TST_PAT (1 << 7)
#define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
# define VIP_CNTRL_5_CKCASE (1 << 0)
# define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
#define REG_MUX_AP REG(0x00, 0x26) /* read/write */
# define MUX_AP_SELECT_I2S 0x64
# define MUX_AP_SELECT_SPDIF 0x40
#define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
#define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
# define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
# define MAT_CONTRL_MAT_BP (1 << 2)
#define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
#define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
#define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
#define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
#define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
#define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
#define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
#define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
#define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
#define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
#define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
#define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
#define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
#define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
#define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
#define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
#define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
#define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
#define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
#define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
#define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
#define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
#define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
#define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
#define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
#define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
#define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
#define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
#define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
#define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
#define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
#define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
#define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
#define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
#define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
#define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
#define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
#define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
#define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
#define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
#define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
#define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
# define TBG_CNTRL_0_TOP_TGL (1 << 0)
# define TBG_CNTRL_0_TOP_SEL (1 << 1)
# define TBG_CNTRL_0_DE_EXT (1 << 2)
# define TBG_CNTRL_0_TOP_EXT (1 << 3)
# define TBG_CNTRL_0_FRAME_DIS (1 << 5)
# define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
# define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
#define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
# define TBG_CNTRL_1_H_TGL (1 << 0)
# define TBG_CNTRL_1_V_TGL (1 << 1)
# define TBG_CNTRL_1_TGL_EN (1 << 2)
# define TBG_CNTRL_1_X_EXT (1 << 3)
# define TBG_CNTRL_1_H_EXT (1 << 4)
# define TBG_CNTRL_1_V_EXT (1 << 5)
# define TBG_CNTRL_1_DWIN_DIS (1 << 6)
#define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
#define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
# define HVF_CNTRL_0_SM (1 << 7)
# define HVF_CNTRL_0_RWB (1 << 6)
# define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
# define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
#define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
# define HVF_CNTRL_1_FOR (1 << 0)
# define HVF_CNTRL_1_YUVBLK (1 << 1)
# define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
# define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
# define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
#define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
#define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
# define I2S_FORMAT(x) (((x) & 3) << 0)
#define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
# define AIP_CLKSEL_AIP_SPDIF (0 << 3)
# define AIP_CLKSEL_AIP_I2S (1 << 3)
# define AIP_CLKSEL_FS_ACLK (0 << 0)
# define AIP_CLKSEL_FS_MCLK (1 << 0)
# define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
/* Page 02h: PLL settings */
#define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
# define PLL_SERIAL_1_SRL_FDN (1 << 0)
# define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
# define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
#define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
# define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
# define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
#define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
# define PLL_SERIAL_3_SRL_CCIR (1 << 0)
# define PLL_SERIAL_3_SRL_DE (1 << 2)
# define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
#define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
#define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
#define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
#define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
#define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
#define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
#define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
#define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
#define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
# define AUDIO_DIV_SERCLK_1 0
# define AUDIO_DIV_SERCLK_2 1
# define AUDIO_DIV_SERCLK_4 2
# define AUDIO_DIV_SERCLK_8 3
# define AUDIO_DIV_SERCLK_16 4
# define AUDIO_DIV_SERCLK_32 5
#define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
# define SEL_CLK_SEL_CLK1 (1 << 0)
# define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
# define SEL_CLK_ENA_SC_CLK (1 << 3)
#define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
/* Page 09h: EDID Control */
#define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
/* next 127 successive registers are the EDID block */
#define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
#define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
#define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
#define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
#define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
/* Page 10h: information frames and packets */
#define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
#define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
#define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
#define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
#define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
/* Page 11h: audio settings and content info packets */
#define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
# define AIP_CNTRL_0_RST_FIFO (1 << 0)
# define AIP_CNTRL_0_SWAP (1 << 1)
# define AIP_CNTRL_0_LAYOUT (1 << 2)
# define AIP_CNTRL_0_ACR_MAN (1 << 5)
# define AIP_CNTRL_0_RST_CTS (1 << 6)
#define REG_CA_I2S REG(0x11, 0x01) /* read/write */
# define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
# define CA_I2S_HBR_CHSTAT (1 << 6)
#define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
#define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
#define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
#define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
#define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
#define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
#define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
#define REG_CTS_N REG(0x11, 0x0c) /* read/write */
# define CTS_N_K(x) (((x) & 7) << 0)
# define CTS_N_M(x) (((x) & 3) << 4)
#define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
# define ENC_CNTRL_RST_ENC (1 << 0)
# define ENC_CNTRL_RST_SEL (1 << 1)
# define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
#define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
# define DIP_FLAGS_ACR (1 << 0)
# define DIP_FLAGS_GC (1 << 1)
#define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
# define DIP_IF_FLAGS_IF1 (1 << 1)
# define DIP_IF_FLAGS_IF2 (1 << 2)
# define DIP_IF_FLAGS_IF3 (1 << 3)
# define DIP_IF_FLAGS_IF4 (1 << 4)
# define DIP_IF_FLAGS_IF5 (1 << 5)
#define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
/* Page 12h: HDCP and OTP */
#define REG_TX3 REG(0x12, 0x9a) /* read/write */
#define REG_TX4 REG(0x12, 0x9b) /* read/write */
# define TX4_PD_RAM (1 << 1)
#define REG_TX33 REG(0x12, 0xb8) /* read/write */
# define TX33_HDMI (1 << 1)
/* Page 13h: Gamut related metadata packets */
/* CEC registers: (not paged)
*/
#define REG_CEC_INTSTATUS 0xee /* read */
# define CEC_INTSTATUS_CEC (1 << 0)
# define CEC_INTSTATUS_HDMI (1 << 1)
#define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
# define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
# define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
# define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
# define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
#define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
#define REG_CEC_RXSHPDINT 0xfd /* read */
# define CEC_RXSHPDINT_RXSENS BIT(0)
# define CEC_RXSHPDINT_HPD BIT(1)
#define REG_CEC_RXSHPDLEV 0xfe /* read */
# define CEC_RXSHPDLEV_RXSENS (1 << 0)
# define CEC_RXSHPDLEV_HPD (1 << 1)
#define REG_CEC_ENAMODS 0xff /* read/write */
# define CEC_ENAMODS_DIS_FRO (1 << 6)
# define CEC_ENAMODS_DIS_CCLK (1 << 5)
# define CEC_ENAMODS_EN_RXSENS (1 << 2)
# define CEC_ENAMODS_EN_HDMI (1 << 1)
# define CEC_ENAMODS_EN_CEC (1 << 0)
/* Device versions: */
#define TDA9989N2 0x0101
#define TDA19989 0x0201
#define TDA19989N2 0x0202
#define TDA19988 0x0301
static void
cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
{
struct i2c_client *client = priv->cec;
u8 buf[] = {addr, val};
int ret;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
}
static u8
cec_read(struct tda998x_priv *priv, u8 addr)
{
struct i2c_client *client = priv->cec;
u8 val;
int ret;
ret = i2c_master_send(client, &addr, sizeof(addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(client, &val, sizeof(val));
if (ret < 0)
goto fail;
return val;
fail:
dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
return 0;
}
static int
set_page(struct tda998x_priv *priv, u16 reg)
{
if (REG2PAGE(reg) != priv->current_page) {
struct i2c_client *client = priv->hdmi;
u8 buf[] = {
REG_CURPAGE, REG2PAGE(reg)
};
int ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0) {
dev_err(&client->dev, "%s %04x err %d\n", __func__,
reg, ret);
return ret;
}
priv->current_page = REG2PAGE(reg);
}
return 0;
}
static int
reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
{
struct i2c_client *client = priv->hdmi;
u8 addr = REG2ADDR(reg);
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, &addr, sizeof(addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(client, buf, cnt);
if (ret < 0)
goto fail;
goto out;
fail:
dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
return ret;
}
static void
reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
{
struct i2c_client *client = priv->hdmi;
u8 buf[cnt+1];
int ret;
buf[0] = REG2ADDR(reg);
memcpy(&buf[1], p, cnt);
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, cnt + 1);
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static int
reg_read(struct tda998x_priv *priv, u16 reg)
{
u8 val = 0;
int ret;
ret = reg_read_range(priv, reg, &val, sizeof(val));
if (ret < 0)
return ret;
return val;
}
static void
reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
{
struct i2c_client *client = priv->hdmi;
u8 buf[] = {REG2ADDR(reg), val};
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static void
reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
{
struct i2c_client *client = priv->hdmi;
u8 buf[] = {REG2ADDR(reg), val >> 8, val};
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static void
reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
{
int old_val;
old_val = reg_read(priv, reg);
if (old_val >= 0)
reg_write(priv, reg, old_val | val);
}
static void
reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
{
int old_val;
old_val = reg_read(priv, reg);
if (old_val >= 0)
reg_write(priv, reg, old_val & ~val);
}
static void
tda998x_reset(struct tda998x_priv *priv)
{
/* reset audio and i2c master: */
reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
msleep(50);
reg_write(priv, REG_SOFTRESET, 0);
msleep(50);
/* reset transmitter: */
reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
/* PLL registers common configuration */
reg_write(priv, REG_PLL_SERIAL_1, 0x00);
reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
reg_write(priv, REG_PLL_SERIAL_3, 0x00);
reg_write(priv, REG_SERIALIZER, 0x00);
reg_write(priv, REG_BUFFER_OUT, 0x00);
reg_write(priv, REG_PLL_SCG1, 0x00);
reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
reg_write(priv, REG_PLL_SCGN1, 0xfa);
reg_write(priv, REG_PLL_SCGN2, 0x00);
reg_write(priv, REG_PLL_SCGR1, 0x5b);
reg_write(priv, REG_PLL_SCGR2, 0x00);
reg_write(priv, REG_PLL_SCG2, 0x10);
/* Write the default value MUX register */
reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
}
/*
* The TDA998x has a problem when trying to read the EDID close to a
* HPD assertion: it needs a delay of 100ms to avoid timing out while
* trying to read EDID data.
*
* However, tda998x_encoder_get_modes() may be called at any moment
* after tda998x_connector_detect() indicates that we are connected, so
* we need to delay probing modes in tda998x_encoder_get_modes() after
* we have seen a HPD inactive->active transition. This code implements
* that delay.
*/
static void tda998x_edid_delay_done(unsigned long data)
{
struct tda998x_priv *priv = (struct tda998x_priv *)data;
priv->edid_delay_active = false;
wake_up(&priv->edid_delay_waitq);
schedule_work(&priv->detect_work);
}
static void tda998x_edid_delay_start(struct tda998x_priv *priv)
{
priv->edid_delay_active = true;
mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
}
static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
{
return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
}
/*
* We need to run the KMS hotplug event helper outside of our threaded
* interrupt routine as this can call back into our get_modes method,
* which will want to make use of interrupts.
*/
static void tda998x_detect_work(struct work_struct *work)
{
struct tda998x_priv *priv =
container_of(work, struct tda998x_priv, detect_work);
struct drm_device *dev = priv->encoder.dev;
if (dev)
drm_kms_helper_hotplug_event(dev);
}
/*
* only 2 interrupts may occur: screen plug/unplug and EDID read
*/
static irqreturn_t tda998x_irq_thread(int irq, void *data)
{
struct tda998x_priv *priv = data;
u8 sta, cec, lvl, flag0, flag1, flag2;
bool handled = false;
sta = cec_read(priv, REG_CEC_INTSTATUS);
cec = cec_read(priv, REG_CEC_RXSHPDINT);
lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
flag0 = reg_read(priv, REG_INT_FLAGS_0);
flag1 = reg_read(priv, REG_INT_FLAGS_1);
flag2 = reg_read(priv, REG_INT_FLAGS_2);
DRM_DEBUG_DRIVER(
"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
sta, cec, lvl, flag0, flag1, flag2);
if (cec & CEC_RXSHPDINT_HPD) {
if (lvl & CEC_RXSHPDLEV_HPD)
tda998x_edid_delay_start(priv);
else
schedule_work(&priv->detect_work);
handled = true;
}
if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
priv->wq_edid_wait = 0;
wake_up(&priv->wq_edid);
handled = true;
}
return IRQ_RETVAL(handled);
}
static void
tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
union hdmi_infoframe *frame)
{
u8 buf[32];
ssize_t len;
len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
if (len < 0) {
dev_err(&priv->hdmi->dev,
"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
frame->any.type, len);
return;
}
reg_clear(priv, REG_DIP_IF_FLAGS, bit);
reg_write_range(priv, addr, buf, len);
reg_set(priv, REG_DIP_IF_FLAGS, bit);
}
static int tda998x_write_aif(struct tda998x_priv *priv,
struct hdmi_audio_infoframe *cea)
{
union hdmi_infoframe frame;
frame.audio = *cea;
tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
return 0;
}
static void
tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
{
union hdmi_infoframe frame;
drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
}
static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
{
if (on) {
reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
} else {
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
}
}
static int
tda998x_configure_audio(struct tda998x_priv *priv,
struct tda998x_audio_params *params,
unsigned mode_clock)
{
u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
u32 n;
/* Enable audio ports */
reg_write(priv, REG_ENA_AP, params->config);
/* Set audio input source */
switch (params->format) {
case AFMT_SPDIF:
reg_write(priv, REG_ENA_ACLK, 0);
reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
clksel_aip = AIP_CLKSEL_AIP_SPDIF;
clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
cts_n = CTS_N_M(3) | CTS_N_K(3);
break;
case AFMT_I2S:
reg_write(priv, REG_ENA_ACLK, 1);
reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
clksel_aip = AIP_CLKSEL_AIP_I2S;
clksel_fs = AIP_CLKSEL_FS_ACLK;
switch (params->sample_width) {
case 16:
cts_n = CTS_N_M(3) | CTS_N_K(1);
break;
case 18:
case 20:
case 24:
cts_n = CTS_N_M(3) | CTS_N_K(2);
break;
default:
case 32:
cts_n = CTS_N_M(3) | CTS_N_K(3);
break;
}
break;
default:
dev_err(&priv->hdmi->dev, "Unsupported I2S format\n");
return -EINVAL;
}
reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
AIP_CNTRL_0_ACR_MAN); /* auto CTS */
reg_write(priv, REG_CTS_N, cts_n);
/*
* Audio input somehow depends on HDMI line rate which is
* related to pixclk. Testing showed that modes with pixclk
* >100MHz need a larger divider while <40MHz need the default.
* There is no detailed info in the datasheet, so we just
* assume 100MHz requires larger divider.
*/
adiv = AUDIO_DIV_SERCLK_8;
if (mode_clock > 100000)
adiv++; /* AUDIO_DIV_SERCLK_16 */
/* S/PDIF asks for a larger divider */
if (params->format == AFMT_SPDIF)
adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
reg_write(priv, REG_AUDIO_DIV, adiv);
/*
* This is the approximate value of N, which happens to be
* the recommended values for non-coherent clocks.
*/
n = 128 * params->sample_rate / 1000;
/* Write the CTS and N values */
buf[0] = 0x44;
buf[1] = 0x42;
buf[2] = 0x01;
buf[3] = n;
buf[4] = n >> 8;
buf[5] = n >> 16;
reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
/* Set CTS clock reference */
reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
/* Reset CTS generator */
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
/* Write the channel status
* The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
* there is a separate register for each I2S wire.
*/
buf[0] = params->status[0];
buf[1] = params->status[1];
buf[2] = params->status[3];
buf[3] = params->status[4];
reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
tda998x_audio_mute(priv, true);
msleep(20);
tda998x_audio_mute(priv, false);
return tda998x_write_aif(priv, &params->cea);
}
/* DRM encoder functions */
static void tda998x_encoder_set_config(struct tda998x_priv *priv,
const struct tda998x_encoder_params *p)
{
priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
(p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
VIP_CNTRL_0_SWAP_B(p->swap_b) |
(p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
(p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
VIP_CNTRL_1_SWAP_D(p->swap_d) |
(p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
(p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
VIP_CNTRL_2_SWAP_F(p->swap_f) |
(p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
priv->audio_params = p->audio_params;
}
static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
/* we only care about on or off: */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == priv->dpms)
return;
switch (mode) {
case DRM_MODE_DPMS_ON:
/* enable video ports, audio will be enabled later */
reg_write(priv, REG_ENA_VP_0, 0xff);
reg_write(priv, REG_ENA_VP_1, 0xff);
reg_write(priv, REG_ENA_VP_2, 0xff);
/* set muxing after enabling ports: */
reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
break;
case DRM_MODE_DPMS_OFF:
/* disable video ports */
reg_write(priv, REG_ENA_VP_0, 0x00);
reg_write(priv, REG_ENA_VP_1, 0x00);
reg_write(priv, REG_ENA_VP_2, 0x00);
break;
}
priv->dpms = mode;
}
static int tda998x_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
/* TDA19988 dotclock can go up to 165MHz */
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
return MODE_CLOCK_HIGH;
if (mode->htotal >= BIT(13))
return MODE_BAD_HVALUE;
if (mode->vtotal >= BIT(11))
return MODE_BAD_VVALUE;
return MODE_OK;
}
static void
tda998x_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
u16 ref_pix, ref_line, n_pix, n_line;
u16 hs_pix_s, hs_pix_e;
u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
u16 vwin1_line_s, vwin1_line_e;
u16 vwin2_line_s, vwin2_line_e;
u16 de_pix_s, de_pix_e;
u8 reg, div, rep;
/*
* Internally TDA998x is using ITU-R BT.656 style sync but
* we get VESA style sync. TDA998x is using a reference pixel
* relative to ITU to sync to the input frame and for output
* sync generation. Currently, we are using reference detection
* from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
* which is position of rising VS with coincident rising HS.
*
* Now there is some issues to take care of:
* - HDMI data islands require sync-before-active
* - TDA998x register values must be > 0 to be enabled
* - REFLINE needs an additional offset of +1
* - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
*
* So we add +1 to all horizontal and vertical register values,
* plus an additional +3 for REFPIX as we are using RGB input only.
*/
n_pix = mode->htotal;
n_line = mode->vtotal;
hs_pix_e = mode->hsync_end - mode->hdisplay;
hs_pix_s = mode->hsync_start - mode->hdisplay;
de_pix_e = mode->htotal;
de_pix_s = mode->htotal - mode->hdisplay;
ref_pix = 3 + hs_pix_s;
/*
* Attached LCD controllers may generate broken sync. Allow
* those to adjust the position of the rising VS edge by adding
* HSKEW to ref_pix.
*/
if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
ref_pix += adjusted_mode->hskew;
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
ref_line = 1 + mode->vsync_start - mode->vdisplay;
vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
vwin1_line_e = vwin1_line_s + mode->vdisplay;
vs1_pix_s = vs1_pix_e = hs_pix_s;
vs1_line_s = mode->vsync_start - mode->vdisplay;
vs1_line_e = vs1_line_s +
mode->vsync_end - mode->vsync_start;
vwin2_line_s = vwin2_line_e = 0;
vs2_pix_s = vs2_pix_e = 0;
vs2_line_s = vs2_line_e = 0;
} else {
ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
vs1_pix_s = vs1_pix_e = hs_pix_s;
vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
vs1_line_e = vs1_line_s +
(mode->vsync_end - mode->vsync_start)/2;
vwin2_line_s = vwin1_line_s + mode->vtotal/2;
vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
vs2_line_s = vs1_line_s + mode->vtotal/2 ;
vs2_line_e = vs2_line_s +
(mode->vsync_end - mode->vsync_start)/2;
}
div = 148500 / mode->clock;
if (div != 0) {
div--;
if (div > 3)
div = 3;
}
/* mute the audio FIFO: */
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
/* set HDMI HDCP mode off: */
reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
reg_clear(priv, REG_TX33, TX33_HDMI);
reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
/* no pre-filter or interpolator: */
reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
HVF_CNTRL_0_INTPOL(0));
reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
VIP_CNTRL_4_BLC(0));
reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
PLL_SERIAL_3_SRL_DE);
reg_write(priv, REG_SERIALIZER, 0);
reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
rep = 0;
reg_write(priv, REG_RPT_CNTRL, 0);
reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
PLL_SERIAL_2_SRL_PR(rep));
/* set color matrix bypass flag: */
reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
MAT_CONTRL_MAT_SC(1));
/* set BIAS tmds value: */
reg_write(priv, REG_ANA_GENERAL, 0x09);
/*
* Sync on rising HSYNC/VSYNC
*/
reg = VIP_CNTRL_3_SYNC_HS;
/*
* TDA19988 requires high-active sync at input stage,
* so invert low-active sync provided by master encoder here
*/
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
reg |= VIP_CNTRL_3_H_TGL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
reg |= VIP_CNTRL_3_V_TGL;
reg_write(priv, REG_VIP_CNTRL_3, reg);
reg_write(priv, REG_VIDFORMAT, 0x00);
reg_write16(priv, REG_REFPIX_MSB, ref_pix);
reg_write16(priv, REG_REFLINE_MSB, ref_line);
reg_write16(priv, REG_NPIX_MSB, n_pix);
reg_write16(priv, REG_NLINE_MSB, n_line);
reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
reg_write16(priv, REG_DE_START_MSB, de_pix_s);
reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
if (priv->rev == TDA19988) {
/* let incoming pixels fill the active space (if any) */
reg_write(priv, REG_ENABLE_SPACE, 0x00);
}
/*
* Always generate sync polarity relative to input sync and
* revert input stage toggled sync at output stage
*/
reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
reg |= TBG_CNTRL_1_H_TGL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
reg |= TBG_CNTRL_1_V_TGL;
reg_write(priv, REG_TBG_CNTRL_1, reg);
/* must be last register set: */
reg_write(priv, REG_TBG_CNTRL_0, 0);
/* Only setup the info frames if the sink is HDMI */
if (priv->is_hdmi_sink) {
/* We need to turn HDMI HDCP stuff on to get audio through */
reg &= ~TBG_CNTRL_1_DWIN_DIS;
reg_write(priv, REG_TBG_CNTRL_1, reg);
reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
reg_set(priv, REG_TX33, TX33_HDMI);
tda998x_write_avi(priv, adjusted_mode);
if (priv->audio_params.format != AFMT_UNUSED) {
mutex_lock(&priv->audio_mutex);
tda998x_configure_audio(priv,
&priv->audio_params,
adjusted_mode->clock);
mutex_unlock(&priv->audio_mutex);
}
}
}
static enum drm_connector_status
tda998x_connector_detect(struct drm_connector *connector, bool force)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
connector_status_disconnected;
}
static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
{
struct tda998x_priv *priv = data;
u8 offset, segptr;
int ret, i;
offset = (blk & 1) ? 128 : 0;
segptr = blk / 2;
reg_write(priv, REG_DDC_ADDR, 0xa0);
reg_write(priv, REG_DDC_OFFS, offset);
reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
reg_write(priv, REG_DDC_SEGM, segptr);
/* enable reading EDID: */
priv->wq_edid_wait = 1;
reg_write(priv, REG_EDID_CTRL, 0x1);
/* flag must be cleared by sw: */
reg_write(priv, REG_EDID_CTRL, 0x0);
/* wait for block read to complete: */
if (priv->hdmi->irq) {
i = wait_event_timeout(priv->wq_edid,
!priv->wq_edid_wait,
msecs_to_jiffies(100));
if (i < 0) {
dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
return i;
}
} else {
for (i = 100; i > 0; i--) {
msleep(1);
ret = reg_read(priv, REG_INT_FLAGS_2);
if (ret < 0)
return ret;
if (ret & INT_FLAGS_2_EDID_BLK_RD)
break;
}
}
if (i == 0) {
dev_err(&priv->hdmi->dev, "read edid timeout\n");
return -ETIMEDOUT;
}
ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
if (ret != length) {
dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
blk, ret);
return ret;
}
return 0;
}
static int tda998x_connector_get_modes(struct drm_connector *connector)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
struct edid *edid;
int n;
/*
* If we get killed while waiting for the HPD timeout, return
* no modes found: we are not in a restartable path, so we
* can't handle signals gracefully.
*/
if (tda998x_edid_delay_wait(priv))
return 0;
if (priv->rev == TDA19988)
reg_clear(priv, REG_TX4, TX4_PD_RAM);
edid = drm_do_get_edid(connector, read_edid_block, priv);
if (priv->rev == TDA19988)
reg_set(priv, REG_TX4, TX4_PD_RAM);
if (!edid) {
dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
return 0;
}
drm_mode_connector_update_edid_property(connector, edid);
n = drm_add_edid_modes(connector, edid);
priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
drm_edid_to_eld(connector, edid);
kfree(edid);
return n;
}
static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
struct drm_connector *connector)
{
if (priv->hdmi->irq)
connector->polled = DRM_CONNECTOR_POLL_HPD;
else
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
static void tda998x_destroy(struct tda998x_priv *priv)
{
/* disable all IRQs and free the IRQ handler */
cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
if (priv->audio_pdev)
platform_device_unregister(priv->audio_pdev);
if (priv->hdmi->irq)
free_irq(priv->hdmi->irq, priv);
del_timer_sync(&priv->edid_delay_timer);
cancel_work_sync(&priv->detect_work);
i2c_unregister_device(priv->cec);
}
static int tda998x_audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
int i, ret;
struct tda998x_audio_params audio = {
.sample_width = params->sample_width,
.sample_rate = params->sample_rate,
.cea = params->cea,
};
if (!priv->encoder.crtc)
return -ENODEV;
memcpy(audio.status, params->iec.status,
min(sizeof(audio.status), sizeof(params->iec.status)));
switch (daifmt->fmt) {
case HDMI_I2S:
if (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
daifmt->bit_clk_master || daifmt->frame_clk_master) {
dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
daifmt->bit_clk_inv, daifmt->frame_clk_inv,
daifmt->bit_clk_master,
daifmt->frame_clk_master);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
if (priv->audio_port[i].format == AFMT_I2S)
audio.config = priv->audio_port[i].config;
audio.format = AFMT_I2S;
break;
case HDMI_SPDIF:
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
if (priv->audio_port[i].format == AFMT_SPDIF)
audio.config = priv->audio_port[i].config;
audio.format = AFMT_SPDIF;
break;
default:
dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
return -EINVAL;
}
if (audio.config == 0) {
dev_err(dev, "%s: No audio configutation found\n", __func__);
return -EINVAL;
}
mutex_lock(&priv->audio_mutex);
ret = tda998x_configure_audio(priv,
&audio,
priv->encoder.crtc->hwmode.clock);
if (ret == 0)
priv->audio_params = audio;
mutex_unlock(&priv->audio_mutex);
return ret;
}
static void tda998x_audio_shutdown(struct device *dev, void *data)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
mutex_lock(&priv->audio_mutex);
reg_write(priv, REG_ENA_AP, 0);
priv->audio_params.format = AFMT_UNUSED;
mutex_unlock(&priv->audio_mutex);
}
int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
mutex_lock(&priv->audio_mutex);
tda998x_audio_mute(priv, enable);
mutex_unlock(&priv->audio_mutex);
return 0;
}
static int tda998x_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
struct drm_mode_config *config = &priv->encoder.dev->mode_config;
struct drm_connector *connector;
int ret = -ENODEV;
mutex_lock(&config->mutex);
list_for_each_entry(connector, &config->connector_list, head) {
if (&priv->encoder == connector->encoder) {
memcpy(buf, connector->eld,
min(sizeof(connector->eld), len));
ret = 0;
}
}
mutex_unlock(&config->mutex);
return ret;
}
static const struct hdmi_codec_ops audio_codec_ops = {
.hw_params = tda998x_audio_hw_params,
.audio_shutdown = tda998x_audio_shutdown,
.digital_mute = tda998x_audio_digital_mute,
.get_eld = tda998x_audio_get_eld,
};
static int tda998x_audio_codec_init(struct tda998x_priv *priv,
struct device *dev)
{
struct hdmi_codec_pdata codec_data = {
.ops = &audio_codec_ops,
.max_i2s_channels = 2,
};
int i;
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) {
if (priv->audio_port[i].format == AFMT_I2S &&
priv->audio_port[i].config != 0)
codec_data.i2s = 1;
if (priv->audio_port[i].format == AFMT_SPDIF &&
priv->audio_port[i].config != 0)
codec_data.spdif = 1;
}
priv->audio_pdev = platform_device_register_data(
dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
&codec_data, sizeof(codec_data));
return PTR_ERR_OR_ZERO(priv->audio_pdev);
}
/* I2C driver functions */
static int tda998x_get_audio_ports(struct tda998x_priv *priv,
struct device_node *np)
{
const u32 *port_data;
u32 size;
int i;
port_data = of_get_property(np, "audio-ports", &size);
if (!port_data)
return 0;
size /= sizeof(u32);
if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) {
dev_err(&priv->hdmi->dev,
"Bad number of elements in audio-ports dt-property\n");
return -EINVAL;
}
size /= 2;
for (i = 0; i < size; i++) {
u8 afmt = be32_to_cpup(&port_data[2*i]);
u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) {
dev_err(&priv->hdmi->dev,
"Bad audio format %u\n", afmt);
return -EINVAL;
}
priv->audio_port[i].format = afmt;
priv->audio_port[i].config = ena_ap;
}
if (priv->audio_port[0].format == priv->audio_port[1].format) {
dev_err(&priv->hdmi->dev,
"There can only be on I2S port and one SPDIF port\n");
return -EINVAL;
}
return 0;
}
static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
{
struct device_node *np = client->dev.of_node;
u32 video;
int rev_lo, rev_hi, ret;
unsigned short cec_addr;
priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
priv->current_page = 0xff;
priv->hdmi = client;
/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
cec_addr = 0x34 + (client->addr & 0x03);
priv->cec = i2c_new_dummy(client->adapter, cec_addr);
if (!priv->cec)
return -ENODEV;
priv->dpms = DRM_MODE_DPMS_OFF;
mutex_init(&priv->mutex); /* protect the page access */
init_waitqueue_head(&priv->edid_delay_waitq);
setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done,
(unsigned long)priv);
INIT_WORK(&priv->detect_work, tda998x_detect_work);
/* wake up the device: */
cec_write(priv, REG_CEC_ENAMODS,
CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
tda998x_reset(priv);
/* read version: */
rev_lo = reg_read(priv, REG_VERSION_LSB);
rev_hi = reg_read(priv, REG_VERSION_MSB);
if (rev_lo < 0 || rev_hi < 0) {
ret = rev_lo < 0 ? rev_lo : rev_hi;
goto fail;
}
priv->rev = rev_lo | rev_hi << 8;
/* mask off feature bits: */
priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
switch (priv->rev) {
case TDA9989N2:
dev_info(&client->dev, "found TDA9989 n2");
break;
case TDA19989:
dev_info(&client->dev, "found TDA19989");
break;
case TDA19989N2:
dev_info(&client->dev, "found TDA19989 n2");
break;
case TDA19988:
dev_info(&client->dev, "found TDA19988");
break;
default:
dev_err(&client->dev, "found unsupported device: %04x\n",
priv->rev);
goto fail;
}
/* after reset, enable DDC: */
reg_write(priv, REG_DDC_DISABLE, 0x00);
/* set clock on DDC channel: */
reg_write(priv, REG_TX3, 39);
/* if necessary, disable multi-master: */
if (priv->rev == TDA19989)
reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
/* initialize the optional IRQ */
if (client->irq) {
int irqf_trigger;
/* init read EDID waitqueue and HDP work */
init_waitqueue_head(&priv->wq_edid);
/* clear pending interrupts */
reg_read(priv, REG_INT_FLAGS_0);
reg_read(priv, REG_INT_FLAGS_1);
reg_read(priv, REG_INT_FLAGS_2);
irqf_trigger =
irqd_get_trigger_type(irq_get_irq_data(client->irq));
ret = request_threaded_irq(client->irq, NULL,
tda998x_irq_thread,
irqf_trigger | IRQF_ONESHOT,
"tda998x", priv);
if (ret) {
dev_err(&client->dev,
"failed to request IRQ#%u: %d\n",
client->irq, ret);
goto fail;
}
/* enable HPD irq */
cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
}
/* enable EDID read irq: */
reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
if (!np)
return 0; /* non-DT */
/* get the device tree parameters */
ret = of_property_read_u32(np, "video-ports", &video);
if (ret == 0) {
priv->vip_cntrl_0 = video >> 16;
priv->vip_cntrl_1 = video >> 8;
priv->vip_cntrl_2 = video;
}
mutex_init(&priv->audio_mutex); /* Protect access from audio thread */
ret = tda998x_get_audio_ports(priv, np);
if (ret)
goto fail;
if (priv->audio_port[0].format != AFMT_UNUSED)
tda998x_audio_codec_init(priv, &client->dev);
return 0;
fail:
/* if encoder_init fails, the encoder slave is never registered,
* so cleanup here:
*/
if (priv->cec)
i2c_unregister_device(priv->cec);
return -ENXIO;
}
static void tda998x_encoder_prepare(struct drm_encoder *encoder)
{
tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
}
static void tda998x_encoder_commit(struct drm_encoder *encoder)
{
tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
}
static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
.dpms = tda998x_encoder_dpms,
.prepare = tda998x_encoder_prepare,
.commit = tda998x_encoder_commit,
.mode_set = tda998x_encoder_mode_set,
};
static void tda998x_encoder_destroy(struct drm_encoder *encoder)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
tda998x_destroy(priv);
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs tda998x_encoder_funcs = {
.destroy = tda998x_encoder_destroy,
};
static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector *connector)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
return &priv->encoder;
}
static
const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
.get_modes = tda998x_connector_get_modes,
.mode_valid = tda998x_connector_mode_valid,
.best_encoder = tda998x_connector_best_encoder,
};
static void tda998x_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static int tda998x_connector_dpms(struct drm_connector *connector, int mode)
{
if (drm_core_check_feature(connector->dev, DRIVER_ATOMIC))
return drm_atomic_helper_connector_dpms(connector, mode);
else
return drm_helper_connector_dpms(connector, mode);
}
static const struct drm_connector_funcs tda998x_connector_funcs = {
.dpms = tda998x_connector_dpms,
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = tda998x_connector_detect,
.destroy = tda998x_connector_destroy,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tda998x_bind(struct device *dev, struct device *master, void *data)
{
struct tda998x_encoder_params *params = dev->platform_data;
struct i2c_client *client = to_i2c_client(dev);
struct drm_device *drm = data;
struct tda998x_priv *priv;
u32 crtcs = 0;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
if (dev->of_node)
crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
/* If no CRTCs were found, fall back to our old behaviour */
if (crtcs == 0) {
dev_warn(dev, "Falling back to first CRTC\n");
crtcs = 1 << 0;
}
priv->connector.interlace_allowed = 1;
priv->encoder.possible_crtcs = crtcs;
ret = tda998x_create(client, priv);
if (ret)
return ret;
if (!dev->of_node && params)
tda998x_encoder_set_config(priv, params);
tda998x_encoder_set_polling(priv, &priv->connector);
drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
if (ret)
goto err_encoder;
drm_connector_helper_add(&priv->connector,
&tda998x_connector_helper_funcs);
ret = drm_connector_init(drm, &priv->connector,
&tda998x_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
if (ret)
goto err_connector;
drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
return 0;
err_connector:
drm_encoder_cleanup(&priv->encoder);
err_encoder:
tda998x_destroy(priv);
return ret;
}
static void tda998x_unbind(struct device *dev, struct device *master,
void *data)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
drm_connector_cleanup(&priv->connector);
drm_encoder_cleanup(&priv->encoder);
tda998x_destroy(priv);
}
static const struct component_ops tda998x_ops = {
.bind = tda998x_bind,
.unbind = tda998x_unbind,
};
static int
tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
return component_add(&client->dev, &tda998x_ops);
}
static int tda998x_remove(struct i2c_client *client)
{
component_del(&client->dev, &tda998x_ops);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id tda998x_dt_ids[] = {
{ .compatible = "nxp,tda998x", },
{ }
};
MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
#endif
static struct i2c_device_id tda998x_ids[] = {
{ "tda998x", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tda998x_ids);
static struct i2c_driver tda998x_driver = {
.probe = tda998x_probe,
.remove = tda998x_remove,
.driver = {
.name = "tda998x",
.of_match_table = of_match_ptr(tda998x_dt_ids),
},
.id_table = tda998x_ids,
};
module_i2c_driver(tda998x_driver);
MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
MODULE_LICENSE("GPL");