OpenCloudOS-Kernel/drivers/tty/serial/mfd.c

1518 lines
37 KiB
C
Raw Normal View History

/*
* mfd.c: driver for High Speed UART device of Intel Medfield platform
*
* Refer pxa.c, 8250.c and some other drivers in drivers/serial/
*
* (C) Copyright 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
/* Notes:
* 1. DMA channel allocation: 0/1 channel are assigned to port 0,
* 2/3 chan to port 1, 4/5 chan to port 3. Even number chans
* are used for RX, odd chans for TX
*
* 2. The RI/DSR/DCD/DTR are not pinned out, DCD & DSR are always
* asserted, only when the HW is reset the DDCD and DDSR will
* be triggered
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/serial_reg.h>
#include <linux/circ_buf.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial_mfd.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/pm_runtime.h>
#define HSU_DMA_BUF_SIZE 2048
#define chan_readl(chan, offset) readl(chan->reg + offset)
#define chan_writel(chan, offset, val) writel(val, chan->reg + offset)
#define mfd_readl(obj, offset) readl(obj->reg + offset)
#define mfd_writel(obj, offset, val) writel(val, obj->reg + offset)
static int hsu_dma_enable;
module_param(hsu_dma_enable, int, 0);
MODULE_PARM_DESC(hsu_dma_enable,
"It is a bitmap to set working mode, if bit[x] is 1, then port[x] will work in DMA mode, otherwise in PIO mode.");
struct hsu_dma_buffer {
u8 *buf;
dma_addr_t dma_addr;
u32 dma_size;
u32 ofs;
};
struct hsu_dma_chan {
u32 id;
enum dma_data_direction dirt;
struct uart_hsu_port *uport;
void __iomem *reg;
};
struct uart_hsu_port {
struct uart_port port;
unsigned char ier;
unsigned char lcr;
unsigned char mcr;
unsigned int lsr_break_flag;
char name[12];
int index;
struct device *dev;
struct hsu_dma_chan *txc;
struct hsu_dma_chan *rxc;
struct hsu_dma_buffer txbuf;
struct hsu_dma_buffer rxbuf;
int use_dma; /* flag for DMA/PIO */
int running;
int dma_tx_on;
};
/* Top level data structure of HSU */
struct hsu_port {
void __iomem *reg;
unsigned long paddr;
unsigned long iolen;
u32 irq;
struct uart_hsu_port port[3];
struct hsu_dma_chan chans[10];
struct dentry *debugfs;
};
static inline unsigned int serial_in(struct uart_hsu_port *up, int offset)
{
unsigned int val;
if (offset > UART_MSR) {
offset <<= 2;
val = readl(up->port.membase + offset);
} else
val = (unsigned int)readb(up->port.membase + offset);
return val;
}
static inline void serial_out(struct uart_hsu_port *up, int offset, int value)
{
if (offset > UART_MSR) {
offset <<= 2;
writel(value, up->port.membase + offset);
} else {
unsigned char val = value & 0xff;
writeb(val, up->port.membase + offset);
}
}
#ifdef CONFIG_DEBUG_FS
#define HSU_REGS_BUFSIZE 1024
static int hsu_show_regs_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t port_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct uart_hsu_port *up = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
buf = kzalloc(HSU_REGS_BUFSIZE, GFP_KERNEL);
if (!buf)
return 0;
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MFD HSU port[%d] regs:\n", up->index);
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"=================================\n");
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"IER: \t\t0x%08x\n", serial_in(up, UART_IER));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"IIR: \t\t0x%08x\n", serial_in(up, UART_IIR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"LCR: \t\t0x%08x\n", serial_in(up, UART_LCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MCR: \t\t0x%08x\n", serial_in(up, UART_MCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"LSR: \t\t0x%08x\n", serial_in(up, UART_LSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MSR: \t\t0x%08x\n", serial_in(up, UART_MSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"FOR: \t\t0x%08x\n", serial_in(up, UART_FOR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"PS: \t\t0x%08x\n", serial_in(up, UART_PS));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MUL: \t\t0x%08x\n", serial_in(up, UART_MUL));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"DIV: \t\t0x%08x\n", serial_in(up, UART_DIV));
if (len > HSU_REGS_BUFSIZE)
len = HSU_REGS_BUFSIZE;
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
}
static ssize_t dma_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct hsu_dma_chan *chan = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
buf = kzalloc(HSU_REGS_BUFSIZE, GFP_KERNEL);
if (!buf)
return 0;
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MFD HSU DMA channel [%d] regs:\n", chan->id);
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"=================================\n");
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"CR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_CR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"DCR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_DCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"BSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_BSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MOTSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_MOTSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D0SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D0TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D1SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D1TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D2SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D2TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D3SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D3TSR));
if (len > HSU_REGS_BUFSIZE)
len = HSU_REGS_BUFSIZE;
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
}
static const struct file_operations port_regs_ops = {
.owner = THIS_MODULE,
.open = hsu_show_regs_open,
.read = port_show_regs,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
static const struct file_operations dma_regs_ops = {
.owner = THIS_MODULE,
.open = hsu_show_regs_open,
.read = dma_show_regs,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
static int hsu_debugfs_init(struct hsu_port *hsu)
{
int i;
char name[32];
hsu->debugfs = debugfs_create_dir("hsu", NULL);
if (!hsu->debugfs)
return -ENOMEM;
for (i = 0; i < 3; i++) {
snprintf(name, sizeof(name), "port_%d_regs", i);
debugfs_create_file(name, S_IFREG | S_IRUGO,
hsu->debugfs, (void *)(&hsu->port[i]), &port_regs_ops);
}
for (i = 0; i < 6; i++) {
snprintf(name, sizeof(name), "dma_chan_%d_regs", i);
debugfs_create_file(name, S_IFREG | S_IRUGO,
hsu->debugfs, (void *)&hsu->chans[i], &dma_regs_ops);
}
return 0;
}
static void hsu_debugfs_remove(struct hsu_port *hsu)
{
if (hsu->debugfs)
debugfs_remove_recursive(hsu->debugfs);
}
#else
static inline int hsu_debugfs_init(struct hsu_port *hsu)
{
return 0;
}
static inline void hsu_debugfs_remove(struct hsu_port *hsu)
{
}
#endif /* CONFIG_DEBUG_FS */
static void serial_hsu_enable_ms(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
up->ier |= UART_IER_MSI;
serial_out(up, UART_IER, up->ier);
}
void hsu_dma_tx(struct uart_hsu_port *up)
{
struct circ_buf *xmit = &up->port.state->xmit;
struct hsu_dma_buffer *dbuf = &up->txbuf;
int count;
/* test_and_set_bit may be better, but anyway it's in lock protected mode */
if (up->dma_tx_on)
return;
/* Update the circ buf info */
xmit->tail += dbuf->ofs;
xmit->tail &= UART_XMIT_SIZE - 1;
up->port.icount.tx += dbuf->ofs;
dbuf->ofs = 0;
/* Disable the channel */
chan_writel(up->txc, HSU_CH_CR, 0x0);
if (!uart_circ_empty(xmit) && !uart_tx_stopped(&up->port)) {
dma_sync_single_for_device(up->port.dev,
dbuf->dma_addr,
dbuf->dma_size,
DMA_TO_DEVICE);
count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
dbuf->ofs = count;
/* Reprogram the channel */
chan_writel(up->txc, HSU_CH_D0SAR, dbuf->dma_addr + xmit->tail);
chan_writel(up->txc, HSU_CH_D0TSR, count);
/* Reenable the channel */
chan_writel(up->txc, HSU_CH_DCR, 0x1
| (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24));
up->dma_tx_on = 1;
chan_writel(up->txc, HSU_CH_CR, 0x1);
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
}
/* The buffer is already cache coherent */
void hsu_dma_start_rx_chan(struct hsu_dma_chan *rxc, struct hsu_dma_buffer *dbuf)
{
dbuf->ofs = 0;
chan_writel(rxc, HSU_CH_BSR, 32);
chan_writel(rxc, HSU_CH_MOTSR, 4);
chan_writel(rxc, HSU_CH_D0SAR, dbuf->dma_addr);
chan_writel(rxc, HSU_CH_D0TSR, dbuf->dma_size);
chan_writel(rxc, HSU_CH_DCR, 0x1 | (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24) /* timeout bit, see HSU Errata 1 */
);
chan_writel(rxc, HSU_CH_CR, 0x3);
}
/* Protected by spin_lock_irqsave(port->lock) */
static void serial_hsu_start_tx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
if (up->use_dma) {
hsu_dma_tx(up);
} else if (!(up->ier & UART_IER_THRI)) {
up->ier |= UART_IER_THRI;
serial_out(up, UART_IER, up->ier);
}
}
static void serial_hsu_stop_tx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
struct hsu_dma_chan *txc = up->txc;
if (up->use_dma)
chan_writel(txc, HSU_CH_CR, 0x0);
else if (up->ier & UART_IER_THRI) {
up->ier &= ~UART_IER_THRI;
serial_out(up, UART_IER, up->ier);
}
}
/* This is always called in spinlock protected mode, so
* modify timeout timer is safe here */
void hsu_dma_rx(struct uart_hsu_port *up, u32 int_sts)
{
struct hsu_dma_buffer *dbuf = &up->rxbuf;
struct hsu_dma_chan *chan = up->rxc;
struct uart_port *port = &up->port;
struct tty_struct *tty = port->state->port.tty;
int count;
if (!tty)
return;
/*
* First need to know how many is already transferred,
* then check if its a timeout DMA irq, and return
* the trail bytes out, push them up and reenable the
* channel
*/
/* Timeout IRQ, need wait some time, see Errata 2 */
if (int_sts & 0xf00)
udelay(2);
/* Stop the channel */
chan_writel(chan, HSU_CH_CR, 0x0);
count = chan_readl(chan, HSU_CH_D0SAR) - dbuf->dma_addr;
if (!count) {
/* Restart the channel before we leave */
chan_writel(chan, HSU_CH_CR, 0x3);
return;
}
dma_sync_single_for_cpu(port->dev, dbuf->dma_addr,
dbuf->dma_size, DMA_FROM_DEVICE);
/*
* Head will only wrap around when we recycle
* the DMA buffer, and when that happens, we
* explicitly set tail to 0. So head will
* always be greater than tail.
*/
tty_insert_flip_string(tty, dbuf->buf, count);
port->icount.rx += count;
dma_sync_single_for_device(up->port.dev, dbuf->dma_addr,
dbuf->dma_size, DMA_FROM_DEVICE);
/* Reprogram the channel */
chan_writel(chan, HSU_CH_D0SAR, dbuf->dma_addr);
chan_writel(chan, HSU_CH_D0TSR, dbuf->dma_size);
chan_writel(chan, HSU_CH_DCR, 0x1
| (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24) /* timeout bit, see HSU Errata 1 */
);
tty_flip_buffer_push(tty);
chan_writel(chan, HSU_CH_CR, 0x3);
}
static void serial_hsu_stop_rx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
struct hsu_dma_chan *chan = up->rxc;
if (up->use_dma)
chan_writel(chan, HSU_CH_CR, 0x2);
else {
up->ier &= ~UART_IER_RLSI;
up->port.read_status_mask &= ~UART_LSR_DR;
serial_out(up, UART_IER, up->ier);
}
}
static inline void receive_chars(struct uart_hsu_port *up, int *status)
{
struct tty_struct *tty = up->port.state->port.tty;
unsigned int ch, flag;
unsigned int max_count = 256;
if (!tty)
return;
do {
ch = serial_in(up, UART_RX);
flag = TTY_NORMAL;
up->port.icount.rx++;
if (unlikely(*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE))) {
dev_warn(up->dev, "We really rush into ERR/BI case"
"status = 0x%02x", *status);
/* For statistics only */
if (*status & UART_LSR_BI) {
*status &= ~(UART_LSR_FE | UART_LSR_PE);
up->port.icount.brk++;
/*
* We do the SysRQ and SAK checking
* here because otherwise the break
* may get masked by ignore_status_mask
* or read_status_mask.
*/
if (uart_handle_break(&up->port))
goto ignore_char;
} else if (*status & UART_LSR_PE)
up->port.icount.parity++;
else if (*status & UART_LSR_FE)
up->port.icount.frame++;
if (*status & UART_LSR_OE)
up->port.icount.overrun++;
/* Mask off conditions which should be ignored. */
*status &= up->port.read_status_mask;
#ifdef CONFIG_SERIAL_MFD_HSU_CONSOLE
if (up->port.cons &&
up->port.cons->index == up->port.line) {
/* Recover the break flag from console xmit */
*status |= up->lsr_break_flag;
up->lsr_break_flag = 0;
}
#endif
if (*status & UART_LSR_BI) {
flag = TTY_BREAK;
} else if (*status & UART_LSR_PE)
flag = TTY_PARITY;
else if (*status & UART_LSR_FE)
flag = TTY_FRAME;
}
if (uart_handle_sysrq_char(&up->port, ch))
goto ignore_char;
uart_insert_char(&up->port, *status, UART_LSR_OE, ch, flag);
ignore_char:
*status = serial_in(up, UART_LSR);
} while ((*status & UART_LSR_DR) && max_count--);
tty_flip_buffer_push(tty);
}
static void transmit_chars(struct uart_hsu_port *up)
{
struct circ_buf *xmit = &up->port.state->xmit;
int count;
if (up->port.x_char) {
serial_out(up, UART_TX, up->port.x_char);
up->port.icount.tx++;
up->port.x_char = 0;
return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) {
serial_hsu_stop_tx(&up->port);
return;
}
/* The IRQ is for TX FIFO half-empty */
count = up->port.fifosize / 2;
do {
serial_out(up, UART_TX, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
up->port.icount.tx++;
if (uart_circ_empty(xmit))
break;
} while (--count > 0);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
if (uart_circ_empty(xmit))
serial_hsu_stop_tx(&up->port);
}
static inline void check_modem_status(struct uart_hsu_port *up)
{
int status;
status = serial_in(up, UART_MSR);
if ((status & UART_MSR_ANY_DELTA) == 0)
return;
if (status & UART_MSR_TERI)
up->port.icount.rng++;
if (status & UART_MSR_DDSR)
up->port.icount.dsr++;
/* We may only get DDCD when HW init and reset */
if (status & UART_MSR_DDCD)
uart_handle_dcd_change(&up->port, status & UART_MSR_DCD);
/* Will start/stop_tx accordingly */
if (status & UART_MSR_DCTS)
uart_handle_cts_change(&up->port, status & UART_MSR_CTS);
wake_up_interruptible(&up->port.state->port.delta_msr_wait);
}
/*
* This handles the interrupt from one port.
*/
static irqreturn_t port_irq(int irq, void *dev_id)
{
struct uart_hsu_port *up = dev_id;
unsigned int iir, lsr;
unsigned long flags;
if (unlikely(!up->running))
return IRQ_NONE;
spin_lock_irqsave(&up->port.lock, flags);
if (up->use_dma) {
lsr = serial_in(up, UART_LSR);
if (unlikely(lsr & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)))
dev_warn(up->dev,
"Got lsr irq while using DMA, lsr = 0x%2x\n",
lsr);
check_modem_status(up);
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_HANDLED;
}
iir = serial_in(up, UART_IIR);
if (iir & UART_IIR_NO_INT) {
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_NONE;
}
lsr = serial_in(up, UART_LSR);
if (lsr & UART_LSR_DR)
receive_chars(up, &lsr);
check_modem_status(up);
/* lsr will be renewed during the receive_chars */
if (lsr & UART_LSR_THRE)
transmit_chars(up);
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_HANDLED;
}
static inline void dma_chan_irq(struct hsu_dma_chan *chan)
{
struct uart_hsu_port *up = chan->uport;
unsigned long flags;
u32 int_sts;
spin_lock_irqsave(&up->port.lock, flags);
if (!up->use_dma || !up->running)
goto exit;
/*
* No matter what situation, need read clear the IRQ status
* There is a bug, see Errata 5, HSD 2900918
*/
int_sts = chan_readl(chan, HSU_CH_SR);
/* Rx channel */
if (chan->dirt == DMA_FROM_DEVICE)
hsu_dma_rx(up, int_sts);
/* Tx channel */
if (chan->dirt == DMA_TO_DEVICE) {
chan_writel(chan, HSU_CH_CR, 0x0);
up->dma_tx_on = 0;
hsu_dma_tx(up);
}
exit:
spin_unlock_irqrestore(&up->port.lock, flags);
return;
}
static irqreturn_t dma_irq(int irq, void *dev_id)
{
struct hsu_port *hsu = dev_id;
u32 int_sts, i;
int_sts = mfd_readl(hsu, HSU_GBL_DMAISR);
/* Currently we only have 6 channels may be used */
for (i = 0; i < 6; i++) {
if (int_sts & 0x1)
dma_chan_irq(&hsu->chans[i]);
int_sts >>= 1;
}
return IRQ_HANDLED;
}
static unsigned int serial_hsu_tx_empty(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&up->port.lock, flags);
ret = serial_in(up, UART_LSR) & UART_LSR_TEMT ? TIOCSER_TEMT : 0;
spin_unlock_irqrestore(&up->port.lock, flags);
return ret;
}
static unsigned int serial_hsu_get_mctrl(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned char status;
unsigned int ret;
status = serial_in(up, UART_MSR);
ret = 0;
if (status & UART_MSR_DCD)
ret |= TIOCM_CAR;
if (status & UART_MSR_RI)
ret |= TIOCM_RNG;
if (status & UART_MSR_DSR)
ret |= TIOCM_DSR;
if (status & UART_MSR_CTS)
ret |= TIOCM_CTS;
return ret;
}
static void serial_hsu_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned char mcr = 0;
if (mctrl & TIOCM_RTS)
mcr |= UART_MCR_RTS;
if (mctrl & TIOCM_DTR)
mcr |= UART_MCR_DTR;
if (mctrl & TIOCM_OUT1)
mcr |= UART_MCR_OUT1;
if (mctrl & TIOCM_OUT2)
mcr |= UART_MCR_OUT2;
if (mctrl & TIOCM_LOOP)
mcr |= UART_MCR_LOOP;
mcr |= up->mcr;
serial_out(up, UART_MCR, mcr);
}
static void serial_hsu_break_ctl(struct uart_port *port, int break_state)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
spin_lock_irqsave(&up->port.lock, flags);
if (break_state == -1)
up->lcr |= UART_LCR_SBC;
else
up->lcr &= ~UART_LCR_SBC;
serial_out(up, UART_LCR, up->lcr);
spin_unlock_irqrestore(&up->port.lock, flags);
}
/*
* What special to do:
* 1. chose the 64B fifo mode
* 2. start dma or pio depends on configuration
* 3. we only allocate dma memory when needed
*/
static int serial_hsu_startup(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
pm_runtime_get_sync(up->dev);
/*
* Clear the FIFO buffers and disable them.
* (they will be reenabled in set_termios())
*/
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
serial_out(up, UART_FCR, 0);
/* Clear the interrupt registers. */
(void) serial_in(up, UART_LSR);
(void) serial_in(up, UART_RX);
(void) serial_in(up, UART_IIR);
(void) serial_in(up, UART_MSR);
/* Now, initialize the UART, default is 8n1 */
serial_out(up, UART_LCR, UART_LCR_WLEN8);
spin_lock_irqsave(&up->port.lock, flags);
up->port.mctrl |= TIOCM_OUT2;
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
/*
* Finally, enable interrupts. Note: Modem status interrupts
* are set via set_termios(), which will be occurring imminently
* anyway, so we don't enable them here.
*/
if (!up->use_dma)
up->ier = UART_IER_RLSI | UART_IER_RDI | UART_IER_RTOIE;
else
up->ier = 0;
serial_out(up, UART_IER, up->ier);
spin_unlock_irqrestore(&up->port.lock, flags);
/* DMA init */
if (up->use_dma) {
struct hsu_dma_buffer *dbuf;
struct circ_buf *xmit = &port->state->xmit;
up->dma_tx_on = 0;
/* First allocate the RX buffer */
dbuf = &up->rxbuf;
dbuf->buf = kzalloc(HSU_DMA_BUF_SIZE, GFP_KERNEL);
if (!dbuf->buf) {
up->use_dma = 0;
goto exit;
}
dbuf->dma_addr = dma_map_single(port->dev,
dbuf->buf,
HSU_DMA_BUF_SIZE,
DMA_FROM_DEVICE);
dbuf->dma_size = HSU_DMA_BUF_SIZE;
/* Start the RX channel right now */
hsu_dma_start_rx_chan(up->rxc, dbuf);
/* Next init the TX DMA */
dbuf = &up->txbuf;
dbuf->buf = xmit->buf;
dbuf->dma_addr = dma_map_single(port->dev,
dbuf->buf,
UART_XMIT_SIZE,
DMA_TO_DEVICE);
dbuf->dma_size = UART_XMIT_SIZE;
/* This should not be changed all around */
chan_writel(up->txc, HSU_CH_BSR, 32);
chan_writel(up->txc, HSU_CH_MOTSR, 4);
dbuf->ofs = 0;
}
exit:
/* And clear the interrupt registers again for luck. */
(void) serial_in(up, UART_LSR);
(void) serial_in(up, UART_RX);
(void) serial_in(up, UART_IIR);
(void) serial_in(up, UART_MSR);
up->running = 1;
return 0;
}
static void serial_hsu_shutdown(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
/* Disable interrupts from this port */
up->ier = 0;
serial_out(up, UART_IER, 0);
up->running = 0;
spin_lock_irqsave(&up->port.lock, flags);
up->port.mctrl &= ~TIOCM_OUT2;
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
spin_unlock_irqrestore(&up->port.lock, flags);
/* Disable break condition and FIFOs */
serial_out(up, UART_LCR, serial_in(up, UART_LCR) & ~UART_LCR_SBC);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT);
serial_out(up, UART_FCR, 0);
pm_runtime_put(up->dev);
}
static void
serial_hsu_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
struct tty_struct *tty = port->state->port.tty;
unsigned char cval, fcr = 0;
unsigned long flags;
unsigned int baud, quot;
u32 ps, mul;
switch (termios->c_cflag & CSIZE) {
case CS5:
cval = UART_LCR_WLEN5;
break;
case CS6:
cval = UART_LCR_WLEN6;
break;
case CS7:
cval = UART_LCR_WLEN7;
break;
default:
case CS8:
cval = UART_LCR_WLEN8;
break;
}
/* CMSPAR isn't supported by this driver */
if (tty)
tty->termios->c_cflag &= ~CMSPAR;
if (termios->c_cflag & CSTOPB)
cval |= UART_LCR_STOP;
if (termios->c_cflag & PARENB)
cval |= UART_LCR_PARITY;
if (!(termios->c_cflag & PARODD))
cval |= UART_LCR_EPAR;
/*
* The base clk is 50Mhz, and the baud rate come from:
* baud = 50M * MUL / (DIV * PS * DLAB)
*
* For those basic low baud rate we can get the direct
* scalar from 2746800, like 115200 = 2746800/24. For those
* higher baud rate, we handle them case by case, mainly by
* adjusting the MUL/PS registers, and DIV register is kept
* as default value 0x3d09 to make things simple
*/
baud = uart_get_baud_rate(port, termios, old, 0, 4000000);
quot = 1;
ps = 0x10;
mul = 0x3600;
switch (baud) {
case 3500000:
mul = 0x3345;
ps = 0xC;
break;
case 1843200:
mul = 0x2400;
break;
case 3000000:
case 2500000:
case 2000000:
case 1500000:
case 1000000:
case 500000:
/* mul/ps/quot = 0x9C4/0x10/0x1 will make a 500000 bps */
mul = baud / 500000 * 0x9C4;
break;
default:
/* Use uart_get_divisor to get quot for other baud rates */
quot = 0;
}
if (!quot)
quot = uart_get_divisor(port, baud);
if ((up->port.uartclk / quot) < (2400 * 16))
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_1B;
else if ((up->port.uartclk / quot) < (230400 * 16))
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_16B;
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_32B;
fcr |= UART_FCR_HSU_64B_FIFO;
/*
* Ok, we're now changing the port state. Do it with
* interrupts disabled.
*/
spin_lock_irqsave(&up->port.lock, flags);
/* Update the per-port timeout */
uart_update_timeout(port, termios->c_cflag, baud);
up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (termios->c_iflag & INPCK)
up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (termios->c_iflag & (BRKINT | PARMRK))
up->port.read_status_mask |= UART_LSR_BI;
/* Characters to ignore */
up->port.ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (termios->c_iflag & IGNBRK) {
up->port.ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
up->port.ignore_status_mask |= UART_LSR_OE;
}
/* Ignore all characters if CREAD is not set */
if ((termios->c_cflag & CREAD) == 0)
up->port.ignore_status_mask |= UART_LSR_DR;
/*
* CTS flow control flag and modem status interrupts, disable
* MSI by default
*/
up->ier &= ~UART_IER_MSI;
if (UART_ENABLE_MS(&up->port, termios->c_cflag))
up->ier |= UART_IER_MSI;
serial_out(up, UART_IER, up->ier);
if (termios->c_cflag & CRTSCTS)
up->mcr |= UART_MCR_AFE | UART_MCR_RTS;
else
up->mcr &= ~UART_MCR_AFE;
serial_out(up, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */
serial_out(up, UART_DLL, quot & 0xff); /* LS of divisor */
serial_out(up, UART_DLM, quot >> 8); /* MS of divisor */
serial_out(up, UART_LCR, cval); /* reset DLAB */
serial_out(up, UART_MUL, mul); /* set MUL */
serial_out(up, UART_PS, ps); /* set PS */
up->lcr = cval; /* Save LCR */
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
serial_out(up, UART_FCR, fcr);
spin_unlock_irqrestore(&up->port.lock, flags);
}
static void
serial_hsu_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
}
static void serial_hsu_release_port(struct uart_port *port)
{
}
static int serial_hsu_request_port(struct uart_port *port)
{
return 0;
}
static void serial_hsu_config_port(struct uart_port *port, int flags)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
up->port.type = PORT_MFD;
}
static int
serial_hsu_verify_port(struct uart_port *port, struct serial_struct *ser)
{
/* We don't want the core code to modify any port params */
return -EINVAL;
}
static const char *
serial_hsu_type(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
return up->name;
}
/* Mainly for uart console use */
static struct uart_hsu_port *serial_hsu_ports[3];
static struct uart_driver serial_hsu_reg;
#ifdef CONFIG_SERIAL_MFD_HSU_CONSOLE
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
/* Wait for transmitter & holding register to empty */
static inline void wait_for_xmitr(struct uart_hsu_port *up)
{
unsigned int status, tmout = 1000;
/* Wait up to 1ms for the character to be sent. */
do {
status = serial_in(up, UART_LSR);
if (status & UART_LSR_BI)
up->lsr_break_flag = UART_LSR_BI;
if (--tmout == 0)
break;
udelay(1);
} while (!(status & BOTH_EMPTY));
/* Wait up to 1s for flow control if necessary */
if (up->port.flags & UPF_CONS_FLOW) {
tmout = 1000000;
while (--tmout &&
((serial_in(up, UART_MSR) & UART_MSR_CTS) == 0))
udelay(1);
}
}
static void serial_hsu_console_putchar(struct uart_port *port, int ch)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
wait_for_xmitr(up);
serial_out(up, UART_TX, ch);
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*
* The console_lock must be held when we get here.
*/
static void
serial_hsu_console_write(struct console *co, const char *s, unsigned int count)
{
struct uart_hsu_port *up = serial_hsu_ports[co->index];
unsigned long flags;
unsigned int ier;
int locked = 1;
local_irq_save(flags);
if (up->port.sysrq)
locked = 0;
else if (oops_in_progress) {
locked = spin_trylock(&up->port.lock);
} else
spin_lock(&up->port.lock);
/* First save the IER then disable the interrupts */
ier = serial_in(up, UART_IER);
serial_out(up, UART_IER, 0);
uart_console_write(&up->port, s, count, serial_hsu_console_putchar);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(up);
serial_out(up, UART_IER, ier);
if (locked)
spin_unlock(&up->port.lock);
local_irq_restore(flags);
}
static struct console serial_hsu_console;
static int __init
serial_hsu_console_setup(struct console *co, char *options)
{
struct uart_hsu_port *up;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret;
if (co->index == -1 || co->index >= serial_hsu_reg.nr)
co->index = 0;
up = serial_hsu_ports[co->index];
if (!up)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
ret = uart_set_options(&up->port, co, baud, parity, bits, flow);
return ret;
}
static struct console serial_hsu_console = {
.name = "ttyMFD",
.write = serial_hsu_console_write,
.device = uart_console_device,
.setup = serial_hsu_console_setup,
.flags = CON_PRINTBUFFER,
.index = 2,
.data = &serial_hsu_reg,
};
#endif
struct uart_ops serial_hsu_pops = {
.tx_empty = serial_hsu_tx_empty,
.set_mctrl = serial_hsu_set_mctrl,
.get_mctrl = serial_hsu_get_mctrl,
.stop_tx = serial_hsu_stop_tx,
.start_tx = serial_hsu_start_tx,
.stop_rx = serial_hsu_stop_rx,
.enable_ms = serial_hsu_enable_ms,
.break_ctl = serial_hsu_break_ctl,
.startup = serial_hsu_startup,
.shutdown = serial_hsu_shutdown,
.set_termios = serial_hsu_set_termios,
.pm = serial_hsu_pm,
.type = serial_hsu_type,
.release_port = serial_hsu_release_port,
.request_port = serial_hsu_request_port,
.config_port = serial_hsu_config_port,
.verify_port = serial_hsu_verify_port,
};
static struct uart_driver serial_hsu_reg = {
.owner = THIS_MODULE,
.driver_name = "MFD serial",
.dev_name = "ttyMFD",
.major = TTY_MAJOR,
.minor = 128,
.nr = 3,
};
#ifdef CONFIG_PM
static int serial_hsu_suspend(struct pci_dev *pdev, pm_message_t state)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
/* Make sure this is not the internal dma controller */
if (priv && (pdev->device != 0x081E)) {
up = priv;
uart_suspend_port(&serial_hsu_reg, &up->port);
}
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int serial_hsu_resume(struct pci_dev *pdev)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
ret = pci_enable_device(pdev);
if (ret)
dev_warn(&pdev->dev,
"HSU: can't re-enable device, try to continue\n");
if (priv && (pdev->device != 0x081E)) {
up = priv;
uart_resume_port(&serial_hsu_reg, &up->port);
}
return 0;
}
#else
#define serial_hsu_suspend NULL
#define serial_hsu_resume NULL
#endif
#ifdef CONFIG_PM_RUNTIME
static int serial_hsu_runtime_idle(struct device *dev)
{
int err;
err = pm_schedule_suspend(dev, 500);
if (err)
return -EBUSY;
return 0;
}
static int serial_hsu_runtime_suspend(struct device *dev)
{
return 0;
}
static int serial_hsu_runtime_resume(struct device *dev)
{
return 0;
}
#else
#define serial_hsu_runtime_idle NULL
#define serial_hsu_runtime_suspend NULL
#define serial_hsu_runtime_resume NULL
#endif
static const struct dev_pm_ops serial_hsu_pm_ops = {
.runtime_suspend = serial_hsu_runtime_suspend,
.runtime_resume = serial_hsu_runtime_resume,
.runtime_idle = serial_hsu_runtime_idle,
};
/* temp global pointer before we settle down on using one or four PCI dev */
static struct hsu_port *phsu;
static int serial_hsu_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct uart_hsu_port *uport;
int index, ret;
printk(KERN_INFO "HSU: found PCI Serial controller(ID: %04x:%04x)\n",
pdev->vendor, pdev->device);
switch (pdev->device) {
case 0x081B:
index = 0;
break;
case 0x081C:
index = 1;
break;
case 0x081D:
index = 2;
break;
case 0x081E:
/* internal DMA controller */
index = 3;
break;
default:
dev_err(&pdev->dev, "HSU: out of index!");
return -ENODEV;
}
ret = pci_enable_device(pdev);
if (ret)
return ret;
if (index == 3) {
/* DMA controller */
ret = request_irq(pdev->irq, dma_irq, 0, "hsu_dma", phsu);
if (ret) {
dev_err(&pdev->dev, "can not get IRQ\n");
goto err_disable;
}
pci_set_drvdata(pdev, phsu);
} else {
/* UART port 0~2 */
uport = &phsu->port[index];
uport->port.irq = pdev->irq;
uport->port.dev = &pdev->dev;
uport->dev = &pdev->dev;
ret = request_irq(pdev->irq, port_irq, 0, uport->name, uport);
if (ret) {
dev_err(&pdev->dev, "can not get IRQ\n");
goto err_disable;
}
uart_add_one_port(&serial_hsu_reg, &uport->port);
#ifdef CONFIG_SERIAL_MFD_HSU_CONSOLE
if (index == 2) {
register_console(&serial_hsu_console);
uport->port.cons = &serial_hsu_console;
}
#endif
pci_set_drvdata(pdev, uport);
}
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_allow(&pdev->dev);
return 0;
err_disable:
pci_disable_device(pdev);
return ret;
}
static void hsu_global_init(void)
{
struct hsu_port *hsu;
struct uart_hsu_port *uport;
struct hsu_dma_chan *dchan;
int i, ret;
hsu = kzalloc(sizeof(struct hsu_port), GFP_KERNEL);
if (!hsu)
return;
/* Get basic io resource and map it */
hsu->paddr = 0xffa28000;
hsu->iolen = 0x1000;
if (!(request_mem_region(hsu->paddr, hsu->iolen, "HSU global")))
pr_warning("HSU: error in request mem region\n");
hsu->reg = ioremap_nocache((unsigned long)hsu->paddr, hsu->iolen);
if (!hsu->reg) {
pr_err("HSU: error in ioremap\n");
ret = -ENOMEM;
goto err_free_region;
}
/* Initialise the 3 UART ports */
uport = hsu->port;
for (i = 0; i < 3; i++) {
uport->port.type = PORT_MFD;
uport->port.iotype = UPIO_MEM;
uport->port.mapbase = (resource_size_t)hsu->paddr
+ HSU_PORT_REG_OFFSET
+ i * HSU_PORT_REG_LENGTH;
uport->port.membase = hsu->reg + HSU_PORT_REG_OFFSET
+ i * HSU_PORT_REG_LENGTH;
sprintf(uport->name, "hsu_port%d", i);
uport->port.fifosize = 64;
uport->port.ops = &serial_hsu_pops;
uport->port.line = i;
uport->port.flags = UPF_IOREMAP;
/* set the scalable maxim support rate to 2746800 bps */
uport->port.uartclk = 115200 * 24 * 16;
uport->running = 0;
uport->txc = &hsu->chans[i * 2];
uport->rxc = &hsu->chans[i * 2 + 1];
serial_hsu_ports[i] = uport;
uport->index = i;
if (hsu_dma_enable & (1<<i))
uport->use_dma = 1;
else
uport->use_dma = 0;
uport++;
}
/* Initialise 6 dma channels */
dchan = hsu->chans;
for (i = 0; i < 6; i++) {
dchan->id = i;
dchan->dirt = (i & 0x1) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
dchan->uport = &hsu->port[i/2];
dchan->reg = hsu->reg + HSU_DMA_CHANS_REG_OFFSET +
i * HSU_DMA_CHANS_REG_LENGTH;
dchan++;
}
phsu = hsu;
hsu_debugfs_init(hsu);
return;
err_free_region:
release_mem_region(hsu->paddr, hsu->iolen);
kfree(hsu);
return;
}
static void serial_hsu_remove(struct pci_dev *pdev)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
if (!priv)
return;
pm_runtime_forbid(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
/* For port 0/1/2, priv is the address of uart_hsu_port */
if (pdev->device != 0x081E) {
up = priv;
uart_remove_one_port(&serial_hsu_reg, &up->port);
}
pci_set_drvdata(pdev, NULL);
free_irq(pdev->irq, priv);
pci_disable_device(pdev);
}
/* First 3 are UART ports, and the 4th is the DMA */
static const struct pci_device_id pci_ids[] __devinitdata = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081B) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081C) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081D) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081E) },
{},
};
static struct pci_driver hsu_pci_driver = {
.name = "HSU serial",
.id_table = pci_ids,
.probe = serial_hsu_probe,
.remove = __devexit_p(serial_hsu_remove),
.suspend = serial_hsu_suspend,
.resume = serial_hsu_resume,
.driver = {
.pm = &serial_hsu_pm_ops,
},
};
static int __init hsu_pci_init(void)
{
int ret;
hsu_global_init();
ret = uart_register_driver(&serial_hsu_reg);
if (ret)
return ret;
return pci_register_driver(&hsu_pci_driver);
}
static void __exit hsu_pci_exit(void)
{
pci_unregister_driver(&hsu_pci_driver);
uart_unregister_driver(&serial_hsu_reg);
hsu_debugfs_remove(phsu);
kfree(phsu);
}
module_init(hsu_pci_init);
module_exit(hsu_pci_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:medfield-hsu");