OpenCloudOS-Kernel/drivers/scsi/aic7xxx/aic79xx_pci.c

1023 lines
27 KiB
C
Raw Normal View History

/*
* Product specific probe and attach routines for:
* aic7901 and aic7902 SCSI controllers
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx_pci.c#92 $
*/
#ifdef __linux__
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#else
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#endif
#include "aic79xx_pci.h"
static inline uint64_t
ahd_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
#define ID_AIC7902_PCI_REV_A4 0x3
#define ID_AIC7902_PCI_REV_B0 0x10
#define SUBID_HP 0x0E11
#define DEVID_9005_HOSTRAID(id) ((id) & 0x80)
#define DEVID_9005_TYPE(id) ((id) & 0xF)
#define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
#define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */
#define DEVID_9005_TYPE_IROC 0x8 /* Raid(0,1,10) Card */
#define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
#define DEVID_9005_MFUNC(id) ((id) & 0x10)
#define DEVID_9005_PACKETIZED(id) ((id) & 0x8000)
#define SUBID_9005_TYPE(id) ((id) & 0xF)
#define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */
#define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
#define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0)
#define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20)
#define SUBID_9005_SEEPTYPE(id) (((id) & 0x0C0) >> 6)
#define SUBID_9005_SEEPTYPE_NONE 0x0
#define SUBID_9005_SEEPTYPE_4K 0x1
static ahd_device_setup_t ahd_aic7901_setup;
static ahd_device_setup_t ahd_aic7901A_setup;
static ahd_device_setup_t ahd_aic7902_setup;
static ahd_device_setup_t ahd_aic790X_setup;
static const struct ahd_pci_identity ahd_pci_ident_table[] =
{
/* aic7901 based controllers */
{
ID_AHA_29320A,
ID_ALL_MASK,
"Adaptec 29320A Ultra320 SCSI adapter",
ahd_aic7901_setup
},
{
ID_AHA_29320ALP,
ID_ALL_MASK,
"Adaptec 29320ALP PCIx Ultra320 SCSI adapter",
ahd_aic7901_setup
},
{
ID_AHA_29320LPE,
ID_ALL_MASK,
"Adaptec 29320LPE PCIe Ultra320 SCSI adapter",
ahd_aic7901_setup
},
/* aic7901A based controllers */
{
ID_AHA_29320LP,
ID_ALL_MASK,
"Adaptec 29320LP Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
/* aic7902 based controllers */
{
ID_AHA_29320,
ID_ALL_MASK,
"Adaptec 29320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_29320B,
ID_ALL_MASK,
"Adaptec 29320B Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320,
ID_ALL_MASK,
"Adaptec 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320_B,
ID_ALL_MASK,
"Adaptec 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320_B_DELL,
ID_ALL_MASK,
"Adaptec (Dell OEM) 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320A,
ID_ALL_MASK,
"Adaptec 39320A Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7901 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec AIC7901 Ultra320 SCSI adapter",
ahd_aic7901_setup
},
{
ID_AIC7901A & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec AIC7901A Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
{
ID_AIC7902 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec AIC7902 Ultra320 SCSI adapter",
ahd_aic7902_setup
}
};
static const u_int ahd_num_pci_devs = ARRAY_SIZE(ahd_pci_ident_table);
#define DEVCONFIG 0x40
#define PCIXINITPAT 0x0000E000ul
#define PCIXINIT_PCI33_66 0x0000E000ul
#define PCIXINIT_PCIX50_66 0x0000C000ul
#define PCIXINIT_PCIX66_100 0x0000A000ul
#define PCIXINIT_PCIX100_133 0x00008000ul
#define PCI_BUS_MODES_INDEX(devconfig) \
(((devconfig) & PCIXINITPAT) >> 13)
static const char *pci_bus_modes[] =
{
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI-X 101-133MHz",
"PCI-X 67-100MHz",
"PCI-X 50-66MHz",
"PCI 33 or 66MHz"
};
#define TESTMODE 0x00000800ul
#define IRDY_RST 0x00000200ul
#define FRAME_RST 0x00000100ul
#define PCI64BIT 0x00000080ul
#define MRDCEN 0x00000040ul
#define ENDIANSEL 0x00000020ul
#define MIXQWENDIANEN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define QWENDIANSEL 0x00000001ul
#define DEVCONFIG1 0x44
#define PREQDIS 0x01
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x000000fful
#define LATTIME 0x0000ff00ul
static int ahd_check_extport(struct ahd_softc *ahd);
static void ahd_configure_termination(struct ahd_softc *ahd,
u_int adapter_control);
static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat);
static void ahd_pci_intr(struct ahd_softc *ahd);
const struct ahd_pci_identity *
ahd_find_pci_device(ahd_dev_softc_t pci)
{
uint64_t full_id;
uint16_t device;
uint16_t vendor;
uint16_t subdevice;
uint16_t subvendor;
const struct ahd_pci_identity *entry;
u_int i;
vendor = ahd_pci_read_config(pci, PCIR_DEVVENDOR, /*bytes*/2);
device = ahd_pci_read_config(pci, PCIR_DEVICE, /*bytes*/2);
subvendor = ahd_pci_read_config(pci, PCIR_SUBVEND_0, /*bytes*/2);
subdevice = ahd_pci_read_config(pci, PCIR_SUBDEV_0, /*bytes*/2);
full_id = ahd_compose_id(device,
vendor,
subdevice,
subvendor);
/*
* Controllers, mask out the IROC/HostRAID bit
*/
full_id &= ID_ALL_IROC_MASK;
for (i = 0; i < ahd_num_pci_devs; i++) {
entry = &ahd_pci_ident_table[i];
if (entry->full_id == (full_id & entry->id_mask)) {
/* Honor exclusion entries. */
if (entry->name == NULL)
return (NULL);
return (entry);
}
}
return (NULL);
}
int
ahd_pci_config(struct ahd_softc *ahd, const struct ahd_pci_identity *entry)
{
struct scb_data *shared_scb_data;
u_int command;
uint32_t devconfig;
uint16_t subvendor;
int error;
shared_scb_data = NULL;
ahd->description = entry->name;
/*
* Record if this is an HP board.
*/
subvendor = ahd_pci_read_config(ahd->dev_softc,
PCIR_SUBVEND_0, /*bytes*/2);
if (subvendor == SUBID_HP)
ahd->flags |= AHD_HP_BOARD;
error = entry->setup(ahd);
if (error != 0)
return (error);
devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) {
ahd->chip |= AHD_PCI;
/* Disable PCIX workarounds when running in PCI mode. */
ahd->bugs &= ~AHD_PCIX_BUG_MASK;
} else {
ahd->chip |= AHD_PCIX;
}
ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)];
ahd_power_state_change(ahd, AHD_POWER_STATE_D0);
error = ahd_pci_map_registers(ahd);
if (error != 0)
return (error);
/*
* If we need to support high memory, enable dual
* address cycles. This bit must be set to enable
* high address bit generation even if we are on a
* 64bit bus (PCI64BIT set in devconfig).
*/
if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) {
if (bootverbose)
printk("%s: Enabling 39Bit Addressing\n",
ahd_name(ahd));
devconfig = ahd_pci_read_config(ahd->dev_softc,
DEVCONFIG, /*bytes*/4);
devconfig |= DACEN;
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG,
devconfig, /*bytes*/4);
}
/* Ensure busmastering is enabled */
command = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
command |= PCIM_CMD_BUSMASTEREN;
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, command, /*bytes*/2);
error = ahd_softc_init(ahd);
if (error != 0)
return (error);
ahd->bus_intr = ahd_pci_intr;
error = ahd_reset(ahd, /*reinit*/FALSE);
if (error != 0)
return (ENXIO);
ahd->pci_cachesize =
ahd_pci_read_config(ahd->dev_softc, CSIZE_LATTIME,
/*bytes*/1) & CACHESIZE;
ahd->pci_cachesize *= 4;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* See if we have a SEEPROM and perform auto-term */
error = ahd_check_extport(ahd);
if (error != 0)
return (error);
/* Core initialization */
error = ahd_init(ahd);
if (error != 0)
return (error);
ahd->init_level++;
/*
* Allow interrupts now that we are completely setup.
*/
return ahd_pci_map_int(ahd);
}
#ifdef CONFIG_PM
void
ahd_pci_suspend(struct ahd_softc *ahd)
{
/*
* Save chip register configuration data for chip resets
* that occur during runtime and resume events.
*/
ahd->suspend_state.pci_state.devconfig =
ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
ahd->suspend_state.pci_state.command =
ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/1);
ahd->suspend_state.pci_state.csize_lattime =
ahd_pci_read_config(ahd->dev_softc, CSIZE_LATTIME, /*bytes*/1);
}
void
ahd_pci_resume(struct ahd_softc *ahd)
{
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG,
ahd->suspend_state.pci_state.devconfig, /*bytes*/4);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
ahd->suspend_state.pci_state.command, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, CSIZE_LATTIME,
ahd->suspend_state.pci_state.csize_lattime, /*bytes*/1);
}
#endif
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.
*/
int
ahd_pci_test_register_access(struct ahd_softc *ahd)
{
uint32_t cmd;
u_int targpcistat;
u_int pci_status1;
int error;
uint8_t hcntrl;
error = EIO;
/*
* Enable PCI error interrupt status, but suppress NMIs
* generated by SERR raised due to target aborts.
*/
cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
cmd & ~PCIM_CMD_SERRESPEN, /*bytes*/2);
/*
* First a simple test to see if any
* registers can be read. Reading
* HCNTRL has no side effects and has
* at least one bit that is guaranteed to
* be zero so it is a good register to
* use for this test.
*/
hcntrl = ahd_inb(ahd, HCNTRL);
if (hcntrl == 0xFF)
goto fail;
/*
* Next create a situation where write combining
* or read prefetching could be initiated by the
* CPU or host bridge. Our device does not support
* either, so look for data corruption and/or flaged
* PCI errors. First pause without causing another
* chip reset.
*/
hcntrl &= ~CHIPRST;
ahd_outb(ahd, HCNTRL, hcntrl|PAUSE);
while (ahd_is_paused(ahd) == 0)
;
/* Clear any PCI errors that occurred before our driver attached. */
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = ahd_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_outb(ahd, SEQCTL0, PERRORDIS);
ahd_outl(ahd, SRAM_BASE, 0x5aa555aa);
if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa)
goto fail;
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
if ((targpcistat & STA) != 0)
goto fail;
}
error = 0;
fail:
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
/* Silently clear any latched errors. */
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = ahd_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_outb(ahd, CLRINT, CLRPCIINT);
}
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2);
return (error);
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
static int
ahd_check_extport(struct ahd_softc *ahd)
{
struct vpd_config vpd;
struct seeprom_config *sc;
u_int adapter_control;
int have_seeprom;
int error;
sc = ahd->seep_config;
have_seeprom = ahd_acquire_seeprom(ahd);
if (have_seeprom) {
u_int start_addr;
/*
* Fetch VPD for this function and parse it.
*/
if (bootverbose)
printk("%s: Reading VPD from SEEPROM...",
ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = ((2 * sizeof(*sc))
+ (sizeof(vpd) * (ahd->channel - 'A'))) / 2;
error = ahd_read_seeprom(ahd, (uint16_t *)&vpd,
start_addr, sizeof(vpd)/2,
/*bytestream*/TRUE);
if (error == 0)
error = ahd_parse_vpddata(ahd, &vpd);
if (bootverbose)
printk("%s: VPD parsing %s\n",
ahd_name(ahd),
error == 0 ? "successful" : "failed");
if (bootverbose)
printk("%s: Reading SEEPROM...", ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A');
error = ahd_read_seeprom(ahd, (uint16_t *)sc,
start_addr, sizeof(*sc)/2,
/*bytestream*/FALSE);
if (error != 0) {
printk("Unable to read SEEPROM\n");
have_seeprom = 0;
} else {
have_seeprom = ahd_verify_cksum(sc);
if (bootverbose) {
if (have_seeprom == 0)
printk ("checksum error\n");
else
printk ("done.\n");
}
}
ahd_release_seeprom(ahd);
}
if (!have_seeprom) {
u_int nvram_scb;
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT', 'BIOS', or 'ASPI' signature is found
* in SCB 0xFF. We manually compose the data as 16bit
* values to avoid endian issues.
*/
ahd_set_scbptr(ahd, 0xFF);
nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET);
if (nvram_scb != 0xFF
&& ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) {
uint16_t *sc_data;
int i;
ahd_set_scbptr(ahd, nvram_scb);
sc_data = (uint16_t *)sc;
for (i = 0; i < 64; i += 2)
*sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i);
have_seeprom = ahd_verify_cksum(sc);
if (have_seeprom)
ahd->flags |= AHD_SCB_CONFIG_USED;
}
}
#ifdef AHD_DEBUG
if (have_seeprom != 0
&& (ahd_debug & AHD_DUMP_SEEPROM) != 0) {
uint16_t *sc_data;
int i;
printk("%s: Seeprom Contents:", ahd_name(ahd));
sc_data = (uint16_t *)sc;
for (i = 0; i < (sizeof(*sc)); i += 2)
printk("\n\t0x%.4x", sc_data[i]);
printk("\n");
}
#endif
if (!have_seeprom) {
if (bootverbose)
printk("%s: No SEEPROM available.\n", ahd_name(ahd));
ahd->flags |= AHD_USEDEFAULTS;
error = ahd_default_config(ahd);
adapter_control = CFAUTOTERM|CFSEAUTOTERM;
kfree(ahd->seep_config);
ahd->seep_config = NULL;
} else {
error = ahd_parse_cfgdata(ahd, sc);
adapter_control = sc->adapter_control;
}
if (error != 0)
return (error);
ahd_configure_termination(ahd, adapter_control);
return (0);
}
static void
ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control)
{
int error;
u_int sxfrctl1;
uint8_t termctl;
uint32_t devconfig;
devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
devconfig &= ~STPWLEVEL;
if ((ahd->flags & AHD_STPWLEVEL_A) != 0)
devconfig |= STPWLEVEL;
if (bootverbose)
printk("%s: STPWLEVEL is %s\n",
ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off");
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
/* Make sure current sensing is off. */
if ((ahd->flags & AHD_CURRENT_SENSING) != 0) {
(void)ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
}
/*
* Read to sense. Write to set.
*/
error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl);
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printk("%s: Manual Primary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH);
if ((adapter_control & CFSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRILOW;
if ((adapter_control & CFWSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRIHIGH;
} else if (error != 0) {
printk("%s: Primary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl = FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH;
}
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printk("%s: Manual Secondary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH);
if ((adapter_control & CFSELOWTERM) != 0)
termctl |= FLX_TERMCTL_ENSECLOW;
if ((adapter_control & CFSEHIGHTERM) != 0)
termctl |= FLX_TERMCTL_ENSECHIGH;
} else if (error != 0) {
printk("%s: Secondary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl |= FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH;
}
/*
* Now set the termination based on what we found.
*/
sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN;
ahd->flags &= ~AHD_TERM_ENB_A;
if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) {
ahd->flags |= AHD_TERM_ENB_A;
sxfrctl1 |= STPWEN;
}
/* Must set the latch once in order to be effective. */
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl);
if (error != 0) {
printk("%s: Unable to set termination settings!\n",
ahd_name(ahd));
} else if (bootverbose) {
printk("%s: Primary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis");
printk("%s: Primary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis");
printk("%s: Secondary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis");
printk("%s: Secondary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis");
}
return;
}
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
static const char *split_status_source[] =
{
"DFF0",
"DFF1",
"OVLY",
"CMC",
};
static const char *pci_status_source[] =
{
"DFF0",
"DFF1",
"SG",
"CMC",
"OVLY",
"NONE",
"MSI",
"TARG"
};
static const char *split_status_strings[] =
{
"%s: Received split response in %s.\n",
"%s: Received split completion error message in %s\n",
"%s: Receive overrun in %s\n",
"%s: Count not complete in %s\n",
"%s: Split completion data bucket in %s\n",
"%s: Split completion address error in %s\n",
"%s: Split completion byte count error in %s\n",
"%s: Signaled Target-abort to early terminate a split in %s\n"
};
static const char *pci_status_strings[] =
{
"%s: Data Parity Error has been reported via PERR# in %s\n",
"%s: Target initial wait state error in %s\n",
"%s: Split completion read data parity error in %s\n",
"%s: Split completion address attribute parity error in %s\n",
"%s: Received a Target Abort in %s\n",
"%s: Received a Master Abort in %s\n",
"%s: Signal System Error Detected in %s\n",
"%s: Address or Write Phase Parity Error Detected in %s.\n"
};
static void
ahd_pci_intr(struct ahd_softc *ahd)
{
uint8_t pci_status[8];
ahd_mode_state saved_modes;
u_int pci_status1;
u_int intstat;
u_int i;
u_int reg;
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & SPLTINT) != 0)
ahd_pci_split_intr(ahd, intstat);
if ((intstat & PCIINT) == 0)
return;
printk("%s: PCI error Interrupt\n", ahd_name(ahd));
saved_modes = ahd_save_modes(ahd);
ahd_dump_card_state(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) {
if (i == 5)
continue;
pci_status[i] = ahd_inb(ahd, reg);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, reg, pci_status[i]);
}
for (i = 0; i < 8; i++) {
u_int bit;
if (i == 5)
continue;
for (bit = 0; bit < 8; bit++) {
if ((pci_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = pci_status_strings[bit];
if (i == 7/*TARG*/ && bit == 3)
s = "%s: Signaled Target Abort\n";
printk(s, ahd_name(ahd), pci_status_source[i]);
}
}
}
pci_status1 = ahd_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_restore_modes(ahd, saved_modes);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_unpause(ahd);
}
static void
ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat)
{
uint8_t split_status[4];
uint8_t split_status1[4];
uint8_t sg_split_status[2];
uint8_t sg_split_status1[2];
ahd_mode_state saved_modes;
u_int i;
uint16_t pcix_status;
/*
* Check for splits in all modes. Modes 0 and 1
* additionally have SG engine splits to look at.
*/
pcix_status = ahd_pci_read_config(ahd->dev_softc, PCIXR_STATUS,
/*bytes*/2);
printk("%s: PCI Split Interrupt - PCI-X status = 0x%x\n",
ahd_name(ahd), pcix_status);
saved_modes = ahd_save_modes(ahd);
for (i = 0; i < 4; i++) {
ahd_set_modes(ahd, i, i);
split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0);
split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]);
ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]);
if (i > 1)
continue;
sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0);
sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]);
ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]);
}
for (i = 0; i < 4; i++) {
u_int bit;
for (bit = 0; bit < 8; bit++) {
if ((split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printk(s, ahd_name(ahd),
split_status_source[i]);
}
if (i > 1)
continue;
if ((sg_split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printk(s, ahd_name(ahd), "SG");
}
}
}
/*
* Clear PCI-X status bits.
*/
ahd_pci_write_config(ahd->dev_softc, PCIXR_STATUS,
pcix_status, /*bytes*/2);
ahd_outb(ahd, CLRINT, CLRSPLTINT);
ahd_restore_modes(ahd, saved_modes);
}
static int
ahd_aic7901_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7901;
ahd->features = AHD_AIC7901_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic7901A_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7901A;
ahd->features = AHD_AIC7901A_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic7902_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7902;
ahd->features = AHD_AIC7902_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic790X_setup(struct ahd_softc *ahd)
{
ahd_dev_softc_t pci;
u_int rev;
pci = ahd->dev_softc;
rev = ahd_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev < ID_AIC7902_PCI_REV_A4) {
printk("%s: Unable to attach to unsupported chip revision %d\n",
ahd_name(ahd), rev);
ahd_pci_write_config(pci, PCIR_COMMAND, 0, /*bytes*/2);
return (ENXIO);
}
ahd->channel = ahd_get_pci_function(pci) + 'A';
if (rev < ID_AIC7902_PCI_REV_B0) {
/*
* Enable A series workarounds.
*/
ahd->bugs |= AHD_SENT_SCB_UPDATE_BUG|AHD_ABORT_LQI_BUG
| AHD_PKT_BITBUCKET_BUG|AHD_LONG_SETIMO_BUG
| AHD_NLQICRC_DELAYED_BUG|AHD_SCSIRST_BUG
| AHD_LQO_ATNO_BUG|AHD_AUTOFLUSH_BUG
| AHD_CLRLQO_AUTOCLR_BUG|AHD_PCIX_MMAPIO_BUG
| AHD_PCIX_CHIPRST_BUG|AHD_PCIX_SCBRAM_RD_BUG
| AHD_PKTIZED_STATUS_BUG|AHD_PKT_LUN_BUG
| AHD_MDFF_WSCBPTR_BUG|AHD_REG_SLOW_SETTLE_BUG
| AHD_SET_MODE_BUG|AHD_BUSFREEREV_BUG
| AHD_NONPACKFIFO_BUG|AHD_PACED_NEGTABLE_BUG
| AHD_FAINT_LED_BUG;
/*
* IO Cell parameter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
if ((ahd->flags & AHD_HP_BOARD) == 0)
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA);
} else {
/* This is revision B and newer. */
extern uint32_t aic79xx_slowcrc;
u_int devconfig1;
ahd->features |= AHD_RTI|AHD_NEW_IOCELL_OPTS
| AHD_NEW_DFCNTRL_OPTS|AHD_FAST_CDB_DELIVERY
| AHD_BUSFREEREV_BUG;
ahd->bugs |= AHD_LQOOVERRUN_BUG|AHD_EARLY_REQ_BUG;
/* If the user requested that the SLOWCRC bit to be set. */
if (aic79xx_slowcrc)
ahd->features |= AHD_AIC79XXB_SLOWCRC;
/*
* Some issues have been resolved in the 7901B.
*/
if ((ahd->features & AHD_MULTI_FUNC) != 0)
ahd->bugs |= AHD_INTCOLLISION_BUG|AHD_ABORT_LQI_BUG;
/*
* IO Cell parameter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB);
AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF);
/*
* Set the PREQDIS bit for H2B which disables some workaround
* that doesn't work on regular PCI busses.
* XXX - Find out exactly what this does from the hardware
* folks!
*/
devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
ahd_pci_write_config(pci, DEVCONFIG1,
devconfig1|PREQDIS, /*bytes*/1);
devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
}
return (0);
}