OpenCloudOS-Kernel/drivers/isdn/hisax/hfc_2bs0.c

591 lines
15 KiB
C
Raw Normal View History

/* $Id: hfc_2bs0.c,v 1.20.2.6 2004/02/11 13:21:33 keil Exp $
*
* specific routines for CCD's HFC 2BS0
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_2bs0.h"
#include "isac.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
static inline int
WaitForBusy(struct IsdnCardState *cs)
{
int to = 130;
u_char val;
while (!(cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
val = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2 |
(cs->hw.hfc.cip & 3));
udelay(1);
to--;
}
if (!to) {
printk(KERN_WARNING "HiSax: waitforBusy timeout\n");
return (0);
} else
return (to);
}
static inline int
WaitNoBusy(struct IsdnCardState *cs)
{
int to = 125;
while ((cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
udelay(1);
to--;
}
if (!to) {
printk(KERN_WARNING "HiSax: waitforBusy timeout\n");
return (0);
} else
return (to);
}
static int
GetFreeFifoBytes(struct BCState *bcs)
{
int s;
if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2)
return (bcs->cs->hw.hfc.fifosize);
s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2];
if (s <= 0)
s += bcs->cs->hw.hfc.fifosize;
s = bcs->cs->hw.hfc.fifosize - s;
return (s);
}
static int
ReadZReg(struct BCState *bcs, u_char reg)
{
int val;
WaitNoBusy(bcs->cs);
val = 256 * bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_HIGH);
WaitNoBusy(bcs->cs);
val += bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_LOW);
return (val);
}
static void
hfc_clear_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, cnt;
int rcnt, z1, z2;
u_char cip, f1, f2;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_clear_fifo");
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
cnt = 32;
while (((f1 != f2) || (z1 != z2)) && cnt--) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc clear %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfc.fifosize;
if (rcnt)
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc clear %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
idx = 0;
while ((idx < rcnt) && WaitNoBusy(cs)) {
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
idx++;
}
if (f1 != f2) {
WaitNoBusy(cs);
cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
}
return;
}
static struct sk_buff
*
hfc_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int idx;
int chksum;
u_char stat, cip;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_empty_fifo");
idx = 0;
if (count > HSCX_BUFMAX + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too large");
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx++ < count) && WaitNoBusy(cs))
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
return (NULL);
}
if ((count < 4) && (bcs->mode != L1_MODE_TRANS)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too small");
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx++ < count) && WaitNoBusy(cs))
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
return (NULL);
}
if (bcs->mode == L1_MODE_TRANS)
count -= 1;
else
count -= 3;
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HFC: receive out of memory\n");
else {
ptr = skb_put(skb, count);
idx = 0;
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx < count) && WaitNoBusy(cs)) {
*ptr++ = cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
idx++;
}
if (idx != count) {
debugl1(cs, "RFIFO BUSY error");
printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel);
dev_kfree_skb_any(skb);
if (bcs->mode != L1_MODE_TRANS) {
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
return (NULL);
}
if (bcs->mode != L1_MODE_TRANS) {
WaitNoBusy(cs);
chksum = (cs->BC_Read_Reg(cs, HFC_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += cs->BC_Read_Reg(cs, HFC_DATA, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, cip);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x",
bcs->channel, chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_any(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
bcs->err_crc++;
#endif
}
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
}
return (skb);
}
static void
hfc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, fcnt;
int count;
int z1, z2;
u_char cip;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
cip = HFC_CIP | HFC_F1 | HFC_SEND | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
if (bcs->mode != L1_MODE_TRANS) {
bcs->hw.hfc.f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_SEND | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(bcs, HFC_Z1 | HFC_SEND | HFC_CHANNEL(bcs->channel));
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)",
bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2,
bcs->hw.hfc.send[bcs->hw.hfc.f1]);
fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2;
if (fcnt < 0)
fcnt += 32;
if (fcnt > 30) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo more as 30 frames");
return;
}
count = GetFreeFifoBytes(bcs);
}
else {
WaitForBusy(cs);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
count = z1 - z2;
if (count < 0)
count += cs->hw.hfc.fifosize;
} /* L1_MODE_TRANS */
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d count(%u/%d)",
bcs->channel, bcs->tx_skb->len,
count);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo no fifo mem");
return;
}
cip = HFC_CIP | HFC_FIFO_IN | HFC_SEND | HFC_CHANNEL(bcs->channel);
idx = 0;
while ((idx < bcs->tx_skb->len) && WaitNoBusy(cs))
cs->BC_Write_Reg(cs, HFC_DATA_NODEB, cip, bcs->tx_skb->data[idx++]);
if (idx != bcs->tx_skb->len) {
debugl1(cs, "FIFO Send BUSY error");
printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel);
} else {
count = bcs->tx_skb->len;
bcs->tx_cnt -= count;
if (PACKET_NOACK == bcs->tx_skb->pkt_type)
count = -1;
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
if (bcs->mode != L1_MODE_TRANS) {
WaitForBusy(cs);
WaitNoBusy(cs);
cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F1_INC | HFC_SEND | HFC_CHANNEL(bcs->channel));
}
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(count >= 0)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
return;
}
void
main_irq_hfc(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int z1, z2, rcnt;
u_char f1, f2, cip;
int receive, transmit, count = 5;
struct sk_buff *skb;
Begin:
count--;
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
receive = 0;
if (bcs->mode == L1_MODE_HDLC) {
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
if (f1 != f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
receive = 1;
}
}
if (receive || (bcs->mode == L1_MODE_TRANS)) {
WaitForBusy(cs);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfc.fifosize;
if ((bcs->mode == L1_MODE_HDLC) || (rcnt)) {
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
/* sti(); */
if ((skb = hfc_empty_fifo(bcs, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
}
receive = 1;
}
if (bcs->tx_skb) {
transmit = 1;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hfc_fill_fifo(bcs);
if (test_bit(BC_FLG_BUSY, &bcs->Flag))
transmit = 0;
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
transmit = 1;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hfc_fill_fifo(bcs);
if (test_bit(BC_FLG_BUSY, &bcs->Flag))
transmit = 0;
} else {
transmit = 0;
schedule_event(bcs, B_XMTBUFREADY);
}
}
if ((receive || transmit) && count)
goto Begin;
return;
}
static void
mode_hfc(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFC 2BS0 mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfc.ctmt &= ~1;
cs->hw.hfc.isac_spcr &= ~0x03;
}
else {
cs->hw.hfc.ctmt &= ~2;
cs->hw.hfc.isac_spcr &= ~0x0c;
}
break;
case (L1_MODE_TRANS):
cs->hw.hfc.ctmt &= ~(1 << bc); /* set HDLC mode */
cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
hfc_clear_fifo(bcs); /* complete fifo clear */
if (bc) {
cs->hw.hfc.ctmt |= 1;
cs->hw.hfc.isac_spcr &= ~0x03;
cs->hw.hfc.isac_spcr |= 0x02;
} else {
cs->hw.hfc.ctmt |= 2;
cs->hw.hfc.isac_spcr &= ~0x0c;
cs->hw.hfc.isac_spcr |= 0x08;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfc.ctmt &= ~1;
cs->hw.hfc.isac_spcr &= ~0x03;
cs->hw.hfc.isac_spcr |= 0x02;
} else {
cs->hw.hfc.ctmt &= ~2;
cs->hw.hfc.isac_spcr &= ~0x0c;
cs->hw.hfc.isac_spcr |= 0x08;
}
break;
}
cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
cs->writeisac(cs, ISAC_SPCR, cs->hw.hfc.isac_spcr);
if (mode == L1_MODE_HDLC)
hfc_clear_fifo(bcs);
}
static void
hfc_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfc(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfc(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_hfcstate(struct BCState *bcs)
{
mode_hfc(bcs, 0, bcs->channel);
if (test_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
}
static int
open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_hfc(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
init_send(struct BCState *bcs)
{
int i;
if (!(bcs->hw.hfc.send = kmalloc(32 * sizeof(unsigned int), GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for hfc.send\n");
return;
}
for (i = 0; i < 32; i++)
bcs->hw.hfc.send[i] = 0x1fff;
}
void
inithfc(struct IsdnCardState *cs)
{
init_send(&cs->bcs[0]);
init_send(&cs->bcs[1]);
cs->BC_Send_Data = &hfc_fill_fifo;
cs->bcs[0].BC_SetStack = setstack_hfc;
cs->bcs[1].BC_SetStack = setstack_hfc;
cs->bcs[0].BC_Close = close_hfcstate;
cs->bcs[1].BC_Close = close_hfcstate;
mode_hfc(cs->bcs, 0, 0);
mode_hfc(cs->bcs + 1, 0, 0);
}
void
releasehfc(struct IsdnCardState *cs)
{
kfree(cs->bcs[0].hw.hfc.send);
cs->bcs[0].hw.hfc.send = NULL;
kfree(cs->bcs[1].hw.hfc.send);
cs->bcs[1].hw.hfc.send = NULL;
}