OpenCloudOS-Kernel/drivers/video/fbdev/riva/rivafb.h

77 lines
1.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __RIVAFB_H
#define __RIVAFB_H
#include <linux/fb.h>
#include <video/vga.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
#include "riva_hw.h"
/* GGI compatibility macros */
#define NUM_SEQ_REGS 0x05
#define NUM_CRT_REGS 0x41
#define NUM_GRC_REGS 0x09
#define NUM_ATC_REGS 0x15
/* I2C */
#define DDC_SCL_READ_MASK (1 << 2)
#define DDC_SCL_WRITE_MASK (1 << 5)
#define DDC_SDA_READ_MASK (1 << 3)
#define DDC_SDA_WRITE_MASK (1 << 4)
/* holds the state of the VGA core and extended Riva hw state from riva_hw.c.
* From KGI originally. */
struct riva_regs {
u8 attr[NUM_ATC_REGS];
u8 crtc[NUM_CRT_REGS];
u8 gra[NUM_GRC_REGS];
u8 seq[NUM_SEQ_REGS];
u8 misc_output;
RIVA_HW_STATE ext;
};
struct riva_par;
struct riva_i2c_chan {
struct riva_par *par;
unsigned long ddc_base;
struct i2c_adapter adapter;
struct i2c_algo_bit_data algo;
};
struct riva_par {
RIVA_HW_INST riva; /* interface to riva_hw.c */
u32 pseudo_palette[16]; /* default palette */
u32 palette[16]; /* for Riva128 */
u8 __iomem *ctrl_base; /* virtual control register base addr */
unsigned dclk_max; /* max DCLK */
struct riva_regs initial_state; /* initial startup video mode */
struct riva_regs current_state;
#ifdef CONFIG_X86
struct vgastate state;
#endif
struct mutex open_lock;
unsigned int ref_count;
unsigned char *EDID;
unsigned int Chipset;
int forceCRTC;
Bool SecondCRTC;
int FlatPanel;
struct pci_dev *pdev;
int cursor_reset;
video: fbdev: rivafb: use arch_phys_wc_add() and ioremap_wc() This driver uses the same area for MTRR as for the ioremap(). Convert the driver from using the x86 specific MTRR code to the architecture agnostic arch_phys_wc_add(). arch_phys_wc_add() will avoid MTRR if write-combining is available, in order to take advantage of that also ensure the ioremap'd area is requested as write-combining. There are a few motivations for this: a) Take advantage of PAT when available b) Help bury MTRR code away, MTRR is architecture specific and on x86 its replaced by PAT c) Help with the goal of eventually using _PAGE_CACHE_UC over _PAGE_CACHE_UC_MINUS on x86 on ioremap_nocache() (see commit de33c442e titled "x86 PAT: fix performance drop for glx, use UC minus for ioremap(), ioremap_nocache() and pci_mmap_page_range()") The conversion done is expressed by the following Coccinelle SmPL patch, it additionally required manual intervention to address all the #ifdery and removal of redundant things which arch_phys_wc_add() already addresses such as verbose message about when MTRR fails and doing nothing when we didn't get an MTRR. @ mtrr_found @ expression index, base, size; @@ -index = mtrr_add(base, size, MTRR_TYPE_WRCOMB, 1); +index = arch_phys_wc_add(base, size); @ mtrr_rm depends on mtrr_found @ expression mtrr_found.index, mtrr_found.base, mtrr_found.size; @@ -mtrr_del(index, base, size); +arch_phys_wc_del(index); @ mtrr_rm_zero_arg depends on mtrr_found @ expression mtrr_found.index; @@ -mtrr_del(index, 0, 0); +arch_phys_wc_del(index); @ mtrr_rm_fb_info depends on mtrr_found @ struct fb_info *info; expression mtrr_found.index; @@ -mtrr_del(index, info->fix.smem_start, info->fix.smem_len); +arch_phys_wc_del(index); @ ioremap_replace_nocache depends on mtrr_found @ struct fb_info *info; expression base, size; @@ -info->screen_base = ioremap_nocache(base, size); +info->screen_base = ioremap_wc(base, size); @ ioremap_replace_default depends on mtrr_found @ struct fb_info *info; expression base, size; @@ -info->screen_base = ioremap(base, size); +info->screen_base = ioremap_wc(base, size); Generated-by: Coccinelle SmPL Cc: Antonino Daplas <adaplas@gmail.com> Cc: Suresh Siddha <sbsiddha@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Juergen Gross <jgross@suse.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Airlie <airlied@redhat.com> Cc: Antonino Daplas <adaplas@gmail.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: linux-fbdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Reviewed-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2015-04-22 04:16:35 +08:00
int wc_cookie;
struct riva_i2c_chan chan[3];
};
void riva_common_setup(struct riva_par *);
unsigned long riva_get_memlen(struct riva_par *);
unsigned long riva_get_maxdclk(struct riva_par *);
void riva_delete_i2c_busses(struct riva_par *par);
void riva_create_i2c_busses(struct riva_par *par);
int riva_probe_i2c_connector(struct riva_par *par, int conn, u8 **out_edid);
#endif /* __RIVAFB_H */