OpenCloudOS-Kernel/arch/parisc/kernel/pci-dma.c

457 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
** PARISC 1.1 Dynamic DMA mapping support.
** This implementation is for PA-RISC platforms that do not support
** I/O TLBs (aka DMA address translation hardware).
** See Documentation/core-api/dma-api-howto.rst for interface definitions.
**
** (c) Copyright 1999,2000 Hewlett-Packard Company
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org>
** (c) Copyright 2000 John Marvin
**
** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
** (I assume it's from David Mosberger-Tang but there was no Copyright)
**
** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
**
** - ggg
*/
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/dma-direct.h>
#include <linux/dma-map-ops.h>
#include <asm/cacheflush.h>
#include <asm/dma.h> /* for DMA_CHUNK_SIZE */
#include <asm/io.h>
#include <asm/page.h> /* get_order */
#include <linux/uaccess.h>
#include <asm/tlbflush.h> /* for purge_tlb_*() macros */
static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
static unsigned long pcxl_used_bytes __read_mostly = 0;
static unsigned long pcxl_used_pages __read_mostly = 0;
extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
static DEFINE_SPINLOCK(pcxl_res_lock);
static char *pcxl_res_map;
static int pcxl_res_hint;
static int pcxl_res_size;
#ifdef DEBUG_PCXL_RESOURCE
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
/*
** Dump a hex representation of the resource map.
*/
#ifdef DUMP_RESMAP
static
void dump_resmap(void)
{
u_long *res_ptr = (unsigned long *)pcxl_res_map;
u_long i = 0;
printk("res_map: ");
for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
printk("%08lx ", *res_ptr);
printk("\n");
}
#else
static inline void dump_resmap(void) {;}
#endif
static inline int map_pte_uncached(pte_t * pte,
unsigned long vaddr,
unsigned long size, unsigned long *paddr_ptr)
{
unsigned long end;
unsigned long orig_vaddr = vaddr;
vaddr &= ~PMD_MASK;
end = vaddr + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
unsigned long flags;
if (!pte_none(*pte))
printk(KERN_ERR "map_pte_uncached: page already exists\n");
purge_tlb_start(flags);
set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
pdtlb_kernel(orig_vaddr);
purge_tlb_end(flags);
vaddr += PAGE_SIZE;
orig_vaddr += PAGE_SIZE;
(*paddr_ptr) += PAGE_SIZE;
pte++;
} while (vaddr < end);
return 0;
}
static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
unsigned long size, unsigned long *paddr_ptr)
{
unsigned long end;
unsigned long orig_vaddr = vaddr;
vaddr &= ~PGDIR_MASK;
end = vaddr + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:21 +08:00
pte_t * pte = pte_alloc_kernel(pmd, vaddr);
if (!pte)
return -ENOMEM;
if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
return -ENOMEM;
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
orig_vaddr += PMD_SIZE;
pmd++;
} while (vaddr < end);
return 0;
}
static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
unsigned long paddr)
{
pgd_t * dir;
unsigned long end = vaddr + size;
dir = pgd_offset_k(vaddr);
do {
parisc: use pgtable-nopXd instead of 4level-fixup parisc has two or three levels of page tables and can use appropriate pgtable-nopXd and folding of the upper layers. Replace usage of include/asm-generic/4level-fixup.h and explicit definitions of __PAGETABLE_PxD_FOLDED in parisc with include/asm-generic/pgtable-nopmd.h for two-level configurations and with include/asm-generic/pgtable-nopud.h for three-lelve configurations and adjust page table manipulation macros and functions accordingly. Link: http://lkml.kernel.org/r/1572938135-31886-9-git-send-email-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Helge Deller <deller@gmx.de> Cc: Anatoly Pugachev <matorola@gmail.com> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Peter Rosin <peda@axentia.se> Cc: Richard Weinberger <richard@nod.at> Cc: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Russell King <rmk+kernel@armlinux.org.uk> Cc: Sam Creasey <sammy@sammy.net> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 08:54:12 +08:00
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
parisc: use pgtable-nopXd instead of 4level-fixup parisc has two or three levels of page tables and can use appropriate pgtable-nopXd and folding of the upper layers. Replace usage of include/asm-generic/4level-fixup.h and explicit definitions of __PAGETABLE_PxD_FOLDED in parisc with include/asm-generic/pgtable-nopmd.h for two-level configurations and with include/asm-generic/pgtable-nopud.h for three-lelve configurations and adjust page table manipulation macros and functions accordingly. Link: http://lkml.kernel.org/r/1572938135-31886-9-git-send-email-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Helge Deller <deller@gmx.de> Cc: Anatoly Pugachev <matorola@gmail.com> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Peter Rosin <peda@axentia.se> Cc: Richard Weinberger <richard@nod.at> Cc: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Russell King <rmk+kernel@armlinux.org.uk> Cc: Sam Creasey <sammy@sammy.net> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 08:54:12 +08:00
p4d = p4d_offset(dir, vaddr);
pud = pud_offset(p4d, vaddr);
pmd = pmd_alloc(NULL, pud, vaddr);
if (!pmd)
return -ENOMEM;
if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
return -ENOMEM;
vaddr = vaddr + PGDIR_SIZE;
dir++;
} while (vaddr && (vaddr < end));
return 0;
}
static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
unsigned long size)
{
pte_t * pte;
unsigned long end;
unsigned long orig_vaddr = vaddr;
if (pmd_none(*pmd))
return;
if (pmd_bad(*pmd)) {
pmd_ERROR(*pmd);
pmd_clear(pmd);
return;
}
pte = pte_offset_map(pmd, vaddr);
vaddr &= ~PMD_MASK;
end = vaddr + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
unsigned long flags;
pte_t page = *pte;
pte_clear(&init_mm, vaddr, pte);
purge_tlb_start(flags);
pdtlb_kernel(orig_vaddr);
purge_tlb_end(flags);
vaddr += PAGE_SIZE;
orig_vaddr += PAGE_SIZE;
pte++;
if (pte_none(page) || pte_present(page))
continue;
printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
} while (vaddr < end);
}
static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
unsigned long size)
{
pmd_t * pmd;
unsigned long end;
unsigned long orig_vaddr = vaddr;
if (pgd_none(*dir))
return;
if (pgd_bad(*dir)) {
pgd_ERROR(*dir);
pgd_clear(dir);
return;
}
mm: consolidate pte_index() and pte_offset_*() definitions All architectures define pte_index() as (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1) and all architectures define pte_offset_kernel() as an entry in the array of PTEs indexed by the pte_index(). For the most architectures the pte_offset_kernel() implementation relies on the availability of pmd_page_vaddr() that converts a PMD entry value to the virtual address of the page containing PTEs array. Let's move x86 definitions of the PTE accessors to the generic place in <linux/pgtable.h> and then simply drop the respective definitions from the other architectures. The architectures that didn't provide pmd_page_vaddr() are updated to have that defined. The generic implementation of pte_offset_kernel() can be overridden by an architecture and alpha makes use of this because it has special ordering requirements for its version of pte_offset_kernel(). [rppt@linux.ibm.com: v2] Link: http://lkml.kernel.org/r/20200514170327.31389-11-rppt@kernel.org [rppt@linux.ibm.com: update] Link: http://lkml.kernel.org/r/20200514170327.31389-12-rppt@kernel.org [rppt@linux.ibm.com: update] Link: http://lkml.kernel.org/r/20200514170327.31389-13-rppt@kernel.org [akpm@linux-foundation.org: fix x86 warning] [sfr@canb.auug.org.au: fix powerpc build] Link: http://lkml.kernel.org/r/20200607153443.GB738695@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-10-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 12:33:10 +08:00
pmd = pmd_offset(pud_offset(p4d_offset(dir, vaddr), vaddr), vaddr);
vaddr &= ~PGDIR_MASK;
end = vaddr + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
orig_vaddr += PMD_SIZE;
pmd++;
} while (vaddr < end);
}
static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
{
pgd_t * dir;
unsigned long end = vaddr + size;
dir = pgd_offset_k(vaddr);
do {
unmap_uncached_pmd(dir, vaddr, end - vaddr);
vaddr = vaddr + PGDIR_SIZE;
dir++;
} while (vaddr && (vaddr < end));
}
#define PCXL_SEARCH_LOOP(idx, mask, size) \
for(; res_ptr < res_end; ++res_ptr) \
{ \
if(0 == ((*res_ptr) & mask)) { \
*res_ptr |= mask; \
idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
pcxl_res_hint = idx + (size >> 3); \
goto resource_found; \
} \
}
#define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
PCXL_SEARCH_LOOP(idx, mask, size); \
res_ptr = (u##size *)&pcxl_res_map[0]; \
PCXL_SEARCH_LOOP(idx, mask, size); \
}
unsigned long
pcxl_alloc_range(size_t size)
{
int res_idx;
u_long mask, flags;
unsigned int pages_needed = size >> PAGE_SHIFT;
mask = (u_long) -1L;
mask >>= BITS_PER_LONG - pages_needed;
DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
size, pages_needed, mask);
spin_lock_irqsave(&pcxl_res_lock, flags);
if(pages_needed <= 8) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
} else if(pages_needed <= 16) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
} else if(pages_needed <= 32) {
PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
} else {
panic("%s: pcxl_alloc_range() Too many pages to map.\n",
__FILE__);
}
dump_resmap();
panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
__FILE__);
resource_found:
DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
res_idx, mask, pcxl_res_hint);
pcxl_used_pages += pages_needed;
pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
spin_unlock_irqrestore(&pcxl_res_lock, flags);
dump_resmap();
/*
** return the corresponding vaddr in the pcxl dma map
*/
return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
}
#define PCXL_FREE_MAPPINGS(idx, m, size) \
u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
/* BUG_ON((*res_ptr & m) != m); */ \
*res_ptr &= ~m;
/*
** clear bits in the pcxl resource map
*/
static void
pcxl_free_range(unsigned long vaddr, size_t size)
{
u_long mask, flags;
unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
unsigned int pages_mapped = size >> PAGE_SHIFT;
mask = (u_long) -1L;
mask >>= BITS_PER_LONG - pages_mapped;
DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
res_idx, size, pages_mapped, mask);
spin_lock_irqsave(&pcxl_res_lock, flags);
if(pages_mapped <= 8) {
PCXL_FREE_MAPPINGS(res_idx, mask, 8);
} else if(pages_mapped <= 16) {
PCXL_FREE_MAPPINGS(res_idx, mask, 16);
} else if(pages_mapped <= 32) {
PCXL_FREE_MAPPINGS(res_idx, mask, 32);
} else {
panic("%s: pcxl_free_range() Too many pages to unmap.\n",
__FILE__);
}
pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
spin_unlock_irqrestore(&pcxl_res_lock, flags);
dump_resmap();
}
static int __maybe_unused proc_pcxl_dma_show(struct seq_file *m, void *v)
{
#if 0
u_long i = 0;
unsigned long *res_ptr = (u_long *)pcxl_res_map;
#endif
unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
PCXL_DMA_MAP_SIZE, total_pages);
seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
seq_puts(m, " total: free: used: % used:\n");
seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
(pcxl_used_bytes * 100) / pcxl_res_size);
seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
total_pages - pcxl_used_pages, pcxl_used_pages,
(pcxl_used_pages * 100 / total_pages));
#if 0
seq_puts(m, "\nResource bitmap:");
for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
if ((i & 7) == 0)
seq_puts(m,"\n ");
seq_printf(m, "%s %08lx", buf, *res_ptr);
}
#endif
seq_putc(m, '\n');
return 0;
}
static int __init
pcxl_dma_init(void)
{
if (pcxl_dma_start == 0)
return 0;
pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
pcxl_res_hint = 0;
pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
get_order(pcxl_res_size));
memset(pcxl_res_map, 0, pcxl_res_size);
proc_gsc_root = proc_mkdir("gsc", NULL);
if (!proc_gsc_root)
printk(KERN_WARNING
"pcxl_dma_init: Unable to create gsc /proc dir entry\n");
else {
struct proc_dir_entry* ent;
ent = proc_create_single("pcxl_dma", 0, proc_gsc_root,
proc_pcxl_dma_show);
if (!ent)
printk(KERN_WARNING
"pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
}
return 0;
}
__initcall(pcxl_dma_init);
void *arch_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
unsigned long vaddr;
unsigned long paddr;
int order;
if (boot_cpu_data.cpu_type != pcxl2 && boot_cpu_data.cpu_type != pcxl)
return NULL;
order = get_order(size);
size = 1 << (order + PAGE_SHIFT);
vaddr = pcxl_alloc_range(size);
paddr = __get_free_pages(gfp | __GFP_ZERO, order);
flush_kernel_dcache_range(paddr, size);
paddr = __pa(paddr);
map_uncached_pages(vaddr, size, paddr);
*dma_handle = (dma_addr_t) paddr;
#if 0
/* This probably isn't needed to support EISA cards.
** ISA cards will certainly only support 24-bit DMA addressing.
** Not clear if we can, want, or need to support ISA.
*/
if (!dev || *dev->coherent_dma_mask < 0xffffffff)
gfp |= GFP_DMA;
#endif
return (void *)vaddr;
}
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 04:46:00 +08:00
dma_addr_t dma_handle, unsigned long attrs)
{
int order = get_order(size);
WARN_ON_ONCE(boot_cpu_data.cpu_type != pcxl2 &&
boot_cpu_data.cpu_type != pcxl);
size = 1 << (order + PAGE_SHIFT);
unmap_uncached_pages((unsigned long)vaddr, size);
pcxl_free_range((unsigned long)vaddr, size);
free_pages((unsigned long)__va(dma_handle), order);
}
void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
flush_kernel_dcache_range((unsigned long)phys_to_virt(paddr), size);
}
void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
flush_kernel_dcache_range((unsigned long)phys_to_virt(paddr), size);
}