2018-11-17 09:26:21 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
|
|
* Common values and helper functions for the ChaCha and XChaCha stream ciphers.
|
|
|
|
*
|
|
|
|
* XChaCha extends ChaCha's nonce to 192 bits, while provably retaining ChaCha's
|
|
|
|
* security. Here they share the same key size, tfm context, and setkey
|
|
|
|
* function; only their IV size and encrypt/decrypt function differ.
|
crypto: chacha - add XChaCha12 support
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:22 +08:00
|
|
|
*
|
|
|
|
* The ChaCha paper specifies 20, 12, and 8-round variants. In general, it is
|
|
|
|
* recommended to use the 20-round variant ChaCha20. However, the other
|
|
|
|
* variants can be needed in some performance-sensitive scenarios. The generic
|
|
|
|
* ChaCha code currently allows only the 20 and 12-round variants.
|
2018-11-17 09:26:21 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _CRYPTO_CHACHA_H
|
|
|
|
#define _CRYPTO_CHACHA_H
|
|
|
|
|
|
|
|
#include <crypto/skcipher.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/crypto.h>
|
|
|
|
|
|
|
|
/* 32-bit stream position, then 96-bit nonce (RFC7539 convention) */
|
|
|
|
#define CHACHA_IV_SIZE 16
|
|
|
|
|
|
|
|
#define CHACHA_KEY_SIZE 32
|
|
|
|
#define CHACHA_BLOCK_SIZE 64
|
|
|
|
#define CHACHAPOLY_IV_SIZE 12
|
|
|
|
|
|
|
|
/* 192-bit nonce, then 64-bit stream position */
|
|
|
|
#define XCHACHA_IV_SIZE 32
|
|
|
|
|
|
|
|
struct chacha_ctx {
|
|
|
|
u32 key[8];
|
|
|
|
int nrounds;
|
|
|
|
};
|
|
|
|
|
|
|
|
void chacha_block(u32 *state, u8 *stream, int nrounds);
|
|
|
|
static inline void chacha20_block(u32 *state, u8 *stream)
|
|
|
|
{
|
|
|
|
chacha_block(state, stream, 20);
|
|
|
|
}
|
|
|
|
void hchacha_block(const u32 *in, u32 *out, int nrounds);
|
|
|
|
|
|
|
|
void crypto_chacha_init(u32 *state, struct chacha_ctx *ctx, u8 *iv);
|
|
|
|
|
|
|
|
int crypto_chacha20_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
|
|
unsigned int keysize);
|
crypto: chacha - add XChaCha12 support
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:22 +08:00
|
|
|
int crypto_chacha12_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
|
|
unsigned int keysize);
|
2018-11-17 09:26:21 +08:00
|
|
|
|
|
|
|
int crypto_chacha_crypt(struct skcipher_request *req);
|
|
|
|
int crypto_xchacha_crypt(struct skcipher_request *req);
|
|
|
|
|
|
|
|
#endif /* _CRYPTO_CHACHA_H */
|