OpenCloudOS-Kernel/arch/powerpc/kvm/book3s_hv_nested.c

302 lines
7.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corporation, 2018
* Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
* Paul Mackerras <paulus@ozlabs.org>
*
* Description: KVM functions specific to running nested KVM-HV guests
* on Book3S processors (specifically POWER9 and later).
*/
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <asm/kvm_ppc.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
static struct patb_entry *pseries_partition_tb;
static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
long kvmhv_nested_init(void)
{
long int ptb_order;
unsigned long ptcr;
long rc;
if (!kvmhv_on_pseries())
return 0;
if (!radix_enabled())
return -ENODEV;
/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
if (ptb_order < 8)
ptb_order = 8;
pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
GFP_KERNEL);
if (!pseries_partition_tb) {
pr_err("kvm-hv: failed to allocated nested partition table\n");
return -ENOMEM;
}
ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
if (rc != H_SUCCESS) {
pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
rc);
kfree(pseries_partition_tb);
pseries_partition_tb = NULL;
return -ENODEV;
}
return 0;
}
void kvmhv_nested_exit(void)
{
/*
* N.B. the kvmhv_on_pseries() test is there because it enables
* the compiler to remove the call to plpar_hcall_norets()
* when CONFIG_PPC_PSERIES=n.
*/
if (kvmhv_on_pseries() && pseries_partition_tb) {
plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
kfree(pseries_partition_tb);
pseries_partition_tb = NULL;
}
}
void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
{
if (cpu_has_feature(CPU_FTR_HVMODE)) {
mmu_partition_table_set_entry(lpid, dw0, dw1);
} else {
pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
}
}
static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
{
unsigned long dw0;
dw0 = PATB_HR | radix__get_tree_size() |
__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
}
void kvmhv_vm_nested_init(struct kvm *kvm)
{
kvm->arch.max_nested_lpid = -1;
}
/*
* Handle the H_SET_PARTITION_TABLE hcall.
* r4 = guest real address of partition table + log_2(size) - 12
* (formatted as for the PTCR).
*/
long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
int srcu_idx;
long ret = H_SUCCESS;
srcu_idx = srcu_read_lock(&kvm->srcu);
/*
* Limit the partition table to 4096 entries (because that's what
* hardware supports), and check the base address.
*/
if ((ptcr & PRTS_MASK) > 12 - 8 ||
!kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
ret = H_PARAMETER;
srcu_read_unlock(&kvm->srcu, srcu_idx);
if (ret == H_SUCCESS)
kvm->arch.l1_ptcr = ptcr;
return ret;
}
/*
* Reload the partition table entry for a guest.
* Caller must hold gp->tlb_lock.
*/
static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
{
int ret;
struct patb_entry ptbl_entry;
unsigned long ptbl_addr;
struct kvm *kvm = gp->l1_host;
ret = -EFAULT;
ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8)))
ret = kvm_read_guest(kvm, ptbl_addr,
&ptbl_entry, sizeof(ptbl_entry));
if (ret) {
gp->l1_gr_to_hr = 0;
gp->process_table = 0;
} else {
gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
gp->process_table = be64_to_cpu(ptbl_entry.patb1);
}
kvmhv_set_nested_ptbl(gp);
}
struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
{
struct kvm_nested_guest *gp;
long shadow_lpid;
gp = kzalloc(sizeof(*gp), GFP_KERNEL);
if (!gp)
return NULL;
gp->l1_host = kvm;
gp->l1_lpid = lpid;
mutex_init(&gp->tlb_lock);
gp->shadow_pgtable = pgd_alloc(kvm->mm);
if (!gp->shadow_pgtable)
goto out_free;
shadow_lpid = kvmppc_alloc_lpid();
if (shadow_lpid < 0)
goto out_free2;
gp->shadow_lpid = shadow_lpid;
return gp;
out_free2:
pgd_free(kvm->mm, gp->shadow_pgtable);
out_free:
kfree(gp);
return NULL;
}
/*
* Free up any resources allocated for a nested guest.
*/
static void kvmhv_release_nested(struct kvm_nested_guest *gp)
{
kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
kvmppc_free_lpid(gp->shadow_lpid);
if (gp->shadow_pgtable)
pgd_free(gp->l1_host->mm, gp->shadow_pgtable);
kfree(gp);
}
static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
{
struct kvm *kvm = gp->l1_host;
int lpid = gp->l1_lpid;
long ref;
spin_lock(&kvm->mmu_lock);
if (gp == kvm->arch.nested_guests[lpid]) {
kvm->arch.nested_guests[lpid] = NULL;
if (lpid == kvm->arch.max_nested_lpid) {
while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
;
kvm->arch.max_nested_lpid = lpid;
}
--gp->refcnt;
}
ref = gp->refcnt;
spin_unlock(&kvm->mmu_lock);
if (ref == 0)
kvmhv_release_nested(gp);
}
/*
* Free up all nested resources allocated for this guest.
* This is called with no vcpus of the guest running, when
* switching the guest to HPT mode or when destroying the
* guest.
*/
void kvmhv_release_all_nested(struct kvm *kvm)
{
int i;
struct kvm_nested_guest *gp;
struct kvm_nested_guest *freelist = NULL;
spin_lock(&kvm->mmu_lock);
for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
gp = kvm->arch.nested_guests[i];
if (!gp)
continue;
kvm->arch.nested_guests[i] = NULL;
if (--gp->refcnt == 0) {
gp->next = freelist;
freelist = gp;
}
}
kvm->arch.max_nested_lpid = -1;
spin_unlock(&kvm->mmu_lock);
while ((gp = freelist) != NULL) {
freelist = gp->next;
kvmhv_release_nested(gp);
}
}
/* caller must hold gp->tlb_lock */
void kvmhv_flush_nested(struct kvm_nested_guest *gp)
{
kvmhv_update_ptbl_cache(gp);
if (gp->l1_gr_to_hr == 0)
kvmhv_remove_nested(gp);
}
struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
bool create)
{
struct kvm_nested_guest *gp, *newgp;
if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
return NULL;
spin_lock(&kvm->mmu_lock);
gp = kvm->arch.nested_guests[l1_lpid];
if (gp)
++gp->refcnt;
spin_unlock(&kvm->mmu_lock);
if (gp || !create)
return gp;
newgp = kvmhv_alloc_nested(kvm, l1_lpid);
if (!newgp)
return NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.nested_guests[l1_lpid]) {
/* someone else beat us to it */
gp = kvm->arch.nested_guests[l1_lpid];
} else {
kvm->arch.nested_guests[l1_lpid] = newgp;
++newgp->refcnt;
gp = newgp;
newgp = NULL;
if (l1_lpid > kvm->arch.max_nested_lpid)
kvm->arch.max_nested_lpid = l1_lpid;
}
++gp->refcnt;
spin_unlock(&kvm->mmu_lock);
if (newgp)
kvmhv_release_nested(newgp);
return gp;
}
void kvmhv_put_nested(struct kvm_nested_guest *gp)
{
struct kvm *kvm = gp->l1_host;
long ref;
spin_lock(&kvm->mmu_lock);
ref = --gp->refcnt;
spin_unlock(&kvm->mmu_lock);
if (ref == 0)
kvmhv_release_nested(gp);
}