OpenCloudOS-Kernel/include/linux/xattr.h

128 lines
3.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
File: linux/xattr.h
Extended attributes handling.
Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org>
Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved.
Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*/
#ifndef _LINUX_XATTR_H
#define _LINUX_XATTR_H
xattr.h: expose string defines to userspace af4f136056c9 ("security: move LSM xattrnames to xattr.h") moved the XATTR_CAPS_SUFFIX define from capability.h to xattr.h. This makes sense except it was previously exports to userspace but xattr.h does not export it to userspace. This patch exports these headers to userspace to fix the ABI regression. There is some slight possibility that this will cause problems in other applications which used these #defines differently (wrongly) and I could JUST export the capabilities xattr name that we broke. Does anyonehave an idea how exposing these headers could cause a problem? Below is what is being exposed to userspace, included here since it isn't clear exactly what is going to be made available from the patch. /* Namespaces */ #define XATTR_OS2_PREFIX "os2." #define XATTR_OS2_PREFIX_LEN (sizeof (XATTR_OS2_PREFIX) - 1) #define XATTR_SECURITY_PREFIX "security." #define XATTR_SECURITY_PREFIX_LEN (sizeof (XATTR_SECURITY_PREFIX) - 1) #define XATTR_SYSTEM_PREFIX "system." #define XATTR_SYSTEM_PREFIX_LEN (sizeof (XATTR_SYSTEM_PREFIX) - 1) #define XATTR_TRUSTED_PREFIX "trusted." #define XATTR_TRUSTED_PREFIX_LEN (sizeof (XATTR_TRUSTED_PREFIX) - 1) #define XATTR_USER_PREFIX "user." #define XATTR_USER_PREFIX_LEN (sizeof (XATTR_USER_PREFIX) - 1) /* Security namespace */ #define XATTR_SELINUX_SUFFIX "selinux" #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX #define XATTR_SMACK_SUFFIX "SMACK64" #define XATTR_SMACK_IPIN "SMACK64IPIN" #define XATTR_SMACK_IPOUT "SMACK64IPOUT" #define XATTR_NAME_SMACK XATTR_SECURITY_PREFIX XATTR_SMACK_SUFFIX #define XATTR_NAME_SMACKIPIN XATTR_SECURITY_PREFIX XATTR_SMACK_IPIN #define XATTR_NAME_SMACKIPOUT XATTR_SECURITY_PREFIX XATTR_SMACK_IPOUT #define XATTR_CAPS_SUFFIX "capability" #define XATTR_NAME_CAPS XATTR_SECURITY_PREFIX XATTR_CAPS_SUFFIX Reported-by: Ozan Çaglayan <ozan@pardus.org.tr> Signed-off-by: Eric Paris <eparis@redhat.com> Cc: Mimi Zohar <zohar@us.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:13:13 +08:00
#include <linux/slab.h>
xattr.h: expose string defines to userspace af4f136056c9 ("security: move LSM xattrnames to xattr.h") moved the XATTR_CAPS_SUFFIX define from capability.h to xattr.h. This makes sense except it was previously exports to userspace but xattr.h does not export it to userspace. This patch exports these headers to userspace to fix the ABI regression. There is some slight possibility that this will cause problems in other applications which used these #defines differently (wrongly) and I could JUST export the capabilities xattr name that we broke. Does anyonehave an idea how exposing these headers could cause a problem? Below is what is being exposed to userspace, included here since it isn't clear exactly what is going to be made available from the patch. /* Namespaces */ #define XATTR_OS2_PREFIX "os2." #define XATTR_OS2_PREFIX_LEN (sizeof (XATTR_OS2_PREFIX) - 1) #define XATTR_SECURITY_PREFIX "security." #define XATTR_SECURITY_PREFIX_LEN (sizeof (XATTR_SECURITY_PREFIX) - 1) #define XATTR_SYSTEM_PREFIX "system." #define XATTR_SYSTEM_PREFIX_LEN (sizeof (XATTR_SYSTEM_PREFIX) - 1) #define XATTR_TRUSTED_PREFIX "trusted." #define XATTR_TRUSTED_PREFIX_LEN (sizeof (XATTR_TRUSTED_PREFIX) - 1) #define XATTR_USER_PREFIX "user." #define XATTR_USER_PREFIX_LEN (sizeof (XATTR_USER_PREFIX) - 1) /* Security namespace */ #define XATTR_SELINUX_SUFFIX "selinux" #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX #define XATTR_SMACK_SUFFIX "SMACK64" #define XATTR_SMACK_IPIN "SMACK64IPIN" #define XATTR_SMACK_IPOUT "SMACK64IPOUT" #define XATTR_NAME_SMACK XATTR_SECURITY_PREFIX XATTR_SMACK_SUFFIX #define XATTR_NAME_SMACKIPIN XATTR_SECURITY_PREFIX XATTR_SMACK_IPIN #define XATTR_NAME_SMACKIPOUT XATTR_SECURITY_PREFIX XATTR_SMACK_IPOUT #define XATTR_CAPS_SUFFIX "capability" #define XATTR_NAME_CAPS XATTR_SECURITY_PREFIX XATTR_CAPS_SUFFIX Reported-by: Ozan Çaglayan <ozan@pardus.org.tr> Signed-off-by: Eric Paris <eparis@redhat.com> Cc: Mimi Zohar <zohar@us.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:13:13 +08:00
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/user_namespace.h>
#include <uapi/linux/xattr.h>
xattr.h: expose string defines to userspace af4f136056c9 ("security: move LSM xattrnames to xattr.h") moved the XATTR_CAPS_SUFFIX define from capability.h to xattr.h. This makes sense except it was previously exports to userspace but xattr.h does not export it to userspace. This patch exports these headers to userspace to fix the ABI regression. There is some slight possibility that this will cause problems in other applications which used these #defines differently (wrongly) and I could JUST export the capabilities xattr name that we broke. Does anyonehave an idea how exposing these headers could cause a problem? Below is what is being exposed to userspace, included here since it isn't clear exactly what is going to be made available from the patch. /* Namespaces */ #define XATTR_OS2_PREFIX "os2." #define XATTR_OS2_PREFIX_LEN (sizeof (XATTR_OS2_PREFIX) - 1) #define XATTR_SECURITY_PREFIX "security." #define XATTR_SECURITY_PREFIX_LEN (sizeof (XATTR_SECURITY_PREFIX) - 1) #define XATTR_SYSTEM_PREFIX "system." #define XATTR_SYSTEM_PREFIX_LEN (sizeof (XATTR_SYSTEM_PREFIX) - 1) #define XATTR_TRUSTED_PREFIX "trusted." #define XATTR_TRUSTED_PREFIX_LEN (sizeof (XATTR_TRUSTED_PREFIX) - 1) #define XATTR_USER_PREFIX "user." #define XATTR_USER_PREFIX_LEN (sizeof (XATTR_USER_PREFIX) - 1) /* Security namespace */ #define XATTR_SELINUX_SUFFIX "selinux" #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX #define XATTR_SMACK_SUFFIX "SMACK64" #define XATTR_SMACK_IPIN "SMACK64IPIN" #define XATTR_SMACK_IPOUT "SMACK64IPOUT" #define XATTR_NAME_SMACK XATTR_SECURITY_PREFIX XATTR_SMACK_SUFFIX #define XATTR_NAME_SMACKIPIN XATTR_SECURITY_PREFIX XATTR_SMACK_IPIN #define XATTR_NAME_SMACKIPOUT XATTR_SECURITY_PREFIX XATTR_SMACK_IPOUT #define XATTR_CAPS_SUFFIX "capability" #define XATTR_NAME_CAPS XATTR_SECURITY_PREFIX XATTR_CAPS_SUFFIX Reported-by: Ozan Çaglayan <ozan@pardus.org.tr> Signed-off-by: Eric Paris <eparis@redhat.com> Cc: Mimi Zohar <zohar@us.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:13:13 +08:00
struct inode;
struct dentry;
/*
* struct xattr_handler: When @name is set, match attributes with exactly that
* name. When @prefix is set instead, match attributes with that prefix and
* with a non-empty suffix.
*/
struct xattr_handler {
const char *name;
const char *prefix;
int flags; /* fs private flags */
bool (*list)(struct dentry *dentry);
int (*get)(const struct xattr_handler *, struct dentry *dentry,
struct inode *inode, const char *name, void *buffer,
size_t size);
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 21:19:27 +08:00
int (*set)(const struct xattr_handler *,
struct user_namespace *mnt_userns, struct dentry *dentry,
struct inode *inode, const char *name, const void *buffer,
size_t size, int flags);
};
const char *xattr_full_name(const struct xattr_handler *, const char *);
struct xattr {
const char *name;
void *value;
size_t value_len;
};
ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t);
ssize_t vfs_getxattr(struct user_namespace *, struct dentry *, const char *,
void *, size_t);
ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size);
int __vfs_setxattr(struct user_namespace *, struct dentry *, struct inode *,
const char *, const void *, size_t, int);
int __vfs_setxattr_noperm(struct user_namespace *, struct dentry *,
const char *, const void *, size_t, int);
int __vfs_setxattr_locked(struct user_namespace *, struct dentry *,
const char *, const void *, size_t, int,
struct inode **);
int vfs_setxattr(struct user_namespace *, struct dentry *, const char *,
const void *, size_t, int);
int __vfs_removexattr(struct user_namespace *, struct dentry *, const char *);
int __vfs_removexattr_locked(struct user_namespace *, struct dentry *,
const char *, struct inode **);
int vfs_removexattr(struct user_namespace *, struct dentry *, const char *);
ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size);
ssize_t vfs_getxattr_alloc(struct user_namespace *mnt_userns,
struct dentry *dentry, const char *name,
char **xattr_value, size_t size, gfp_t flags);
int xattr_supported_namespace(struct inode *inode, const char *prefix);
static inline const char *xattr_prefix(const struct xattr_handler *handler)
{
return handler->prefix ?: handler->name;
}
struct simple_xattrs {
struct list_head head;
spinlock_t lock;
};
struct simple_xattr {
struct list_head list;
char *name;
size_t size;
char value[];
};
/*
* initialize the simple_xattrs structure
*/
static inline void simple_xattrs_init(struct simple_xattrs *xattrs)
{
INIT_LIST_HEAD(&xattrs->head);
spin_lock_init(&xattrs->lock);
}
/*
* free all the xattrs
*/
static inline void simple_xattrs_free(struct simple_xattrs *xattrs)
{
struct simple_xattr *xattr, *node;
list_for_each_entry_safe(xattr, node, &xattrs->head, list) {
kfree(xattr->name);
kvfree(xattr);
}
}
struct simple_xattr *simple_xattr_alloc(const void *value, size_t size);
int simple_xattr_get(struct simple_xattrs *xattrs, const char *name,
void *buffer, size_t size);
int simple_xattr_set(struct simple_xattrs *xattrs, const char *name,
const void *value, size_t size, int flags,
ssize_t *removed_size);
ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer,
size_t size);
void simple_xattr_list_add(struct simple_xattrs *xattrs,
struct simple_xattr *new_xattr);
#endif /* _LINUX_XATTR_H */