2019-05-27 14:55:01 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
/*
|
|
|
|
* net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
|
|
|
|
*
|
2015-01-28 22:06:36 +08:00
|
|
|
* Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
*
|
2015-04-02 10:20:23 +08:00
|
|
|
* Meant to be mostly used for locally generated traffic :
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
* Fast classification depends on skb->sk being set before reaching us.
|
|
|
|
* If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
|
|
|
|
* All packets belonging to a socket are considered as a 'flow'.
|
|
|
|
*
|
|
|
|
* Flows are dynamically allocated and stored in a hash table of RB trees
|
|
|
|
* They are also part of one Round Robin 'queues' (new or old flows)
|
|
|
|
*
|
|
|
|
* Burst avoidance (aka pacing) capability :
|
|
|
|
*
|
|
|
|
* Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
|
|
|
|
* bunch of packets, and this packet scheduler adds delay between
|
|
|
|
* packets to respect rate limitation.
|
|
|
|
*
|
|
|
|
* enqueue() :
|
|
|
|
* - lookup one RB tree (out of 1024 or more) to find the flow.
|
|
|
|
* If non existent flow, create it, add it to the tree.
|
|
|
|
* Add skb to the per flow list of skb (fifo).
|
|
|
|
* - Use a special fifo for high prio packets
|
|
|
|
*
|
|
|
|
* dequeue() : serves flows in Round Robin
|
|
|
|
* Note : When a flow becomes empty, we do not immediately remove it from
|
|
|
|
* rb trees, for performance reasons (its expected to send additional packets,
|
|
|
|
* or SLAB cache will reuse socket for another flow)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/in.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/rbtree.h>
|
|
|
|
#include <linux/hash.h>
|
2013-08-31 00:46:43 +08:00
|
|
|
#include <linux/prefetch.h>
|
2013-12-16 05:15:25 +08:00
|
|
|
#include <linux/vmalloc.h>
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
#include <net/netlink.h>
|
|
|
|
#include <net/pkt_sched.h>
|
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/tcp_states.h>
|
tcp: do not pace pure ack packets
When we added pacing to TCP, we decided to let sch_fq take care
of actual pacing.
All TCP had to do was to compute sk->pacing_rate using simple formula:
sk->pacing_rate = 2 * cwnd * mss / rtt
It works well for senders (bulk flows), but not very well for receivers
or even RPC :
cwnd on the receiver can be less than 10, rtt can be around 100ms, so we
can end up pacing ACK packets, slowing down the sender.
Really, only the sender should pace, according to its own logic.
Instead of adding a new bit in skb, or call yet another flow
dissection, we tweak skb->truesize to a small value (2), and
we instruct sch_fq to use new helper and not pace pure ack.
Note this also helps TCP small queue, as ack packets present
in qdisc/NIC do not prevent sending a data packet (RPC workload)
This helps to reduce tx completion overhead, ack packets can use regular
sock_wfree() instead of tcp_wfree() which is a bit more expensive.
This has no impact in the case packets are sent to loopback interface,
as we do not coalesce ack packets (were we would detect skb->truesize
lie)
In case netem (with a delay) is used, skb_orphan_partial() also sets
skb->truesize to 1.
This patch is a combination of two patches we used for about one year at
Google.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 10:31:53 +08:00
|
|
|
#include <net/tcp.h>
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2019-05-05 07:48:53 +08:00
|
|
|
struct fq_skb_cb {
|
|
|
|
u64 time_to_send;
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
|
|
|
|
return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
|
|
|
|
}
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
/*
|
2019-05-05 07:48:53 +08:00
|
|
|
* Per flow structure, dynamically allocated.
|
|
|
|
* If packets have monotically increasing time_to_send, they are placed in O(1)
|
|
|
|
* in linear list (head,tail), otherwise are placed in a rbtree (t_root).
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
*/
|
|
|
|
struct fq_flow {
|
2020-05-03 10:54:19 +08:00
|
|
|
/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
|
2019-05-05 07:48:53 +08:00
|
|
|
struct rb_root t_root;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct sk_buff *head; /* list of skbs for this flow : first skb */
|
|
|
|
union {
|
|
|
|
struct sk_buff *tail; /* last skb in the list */
|
2020-05-03 10:54:18 +08:00
|
|
|
unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
};
|
2015-04-02 10:20:23 +08:00
|
|
|
struct rb_node fq_node; /* anchor in fq_root[] trees */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct sock *sk;
|
2020-05-03 10:54:19 +08:00
|
|
|
u32 socket_hash; /* sk_hash */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
int qlen; /* number of packets in flow queue */
|
2020-05-03 10:54:19 +08:00
|
|
|
|
|
|
|
/* Second cache line, used in fq_dequeue() */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
int credit;
|
2020-05-03 10:54:19 +08:00
|
|
|
/* 32bit hole on 64bit arches */
|
|
|
|
|
2020-05-03 10:54:18 +08:00
|
|
|
struct fq_flow *next; /* next pointer in RR lists */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
struct rb_node rate_node; /* anchor in q->delayed tree */
|
|
|
|
u64 time_next_packet;
|
2020-05-03 10:54:19 +08:00
|
|
|
} ____cacheline_aligned_in_smp;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
struct fq_flow_head {
|
|
|
|
struct fq_flow *first;
|
|
|
|
struct fq_flow *last;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct fq_sched_data {
|
|
|
|
struct fq_flow_head new_flows;
|
|
|
|
|
|
|
|
struct fq_flow_head old_flows;
|
|
|
|
|
|
|
|
struct rb_root delayed; /* for rate limited flows */
|
|
|
|
u64 time_next_delayed_flow;
|
2020-05-01 22:07:41 +08:00
|
|
|
u64 ktime_cache; /* copy of last ktime_get_ns() */
|
2016-09-22 23:58:55 +08:00
|
|
|
unsigned long unthrottle_latency_ns;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
struct fq_flow internal; /* for non classified or high prio packets */
|
|
|
|
u32 quantum;
|
|
|
|
u32 initial_quantum;
|
2013-11-16 00:58:14 +08:00
|
|
|
u32 flow_refill_delay;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
u32 flow_plimit; /* max packets per flow */
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
unsigned long flow_max_rate; /* optional max rate per flow */
|
2018-11-12 01:11:31 +08:00
|
|
|
u64 ce_threshold;
|
2020-05-01 22:07:41 +08:00
|
|
|
u64 horizon; /* horizon in ns */
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
u32 orphan_mask; /* mask for orphaned skb */
|
2016-09-20 11:39:11 +08:00
|
|
|
u32 low_rate_threshold;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct rb_root *fq_root;
|
|
|
|
u8 rate_enable;
|
|
|
|
u8 fq_trees_log;
|
2020-05-01 22:07:41 +08:00
|
|
|
u8 horizon_drop;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
u32 flows;
|
|
|
|
u32 inactive_flows;
|
|
|
|
u32 throttled_flows;
|
|
|
|
|
|
|
|
u64 stat_gc_flows;
|
|
|
|
u64 stat_internal_packets;
|
|
|
|
u64 stat_throttled;
|
2018-11-12 01:11:31 +08:00
|
|
|
u64 stat_ce_mark;
|
2020-05-01 22:07:41 +08:00
|
|
|
u64 stat_horizon_drops;
|
|
|
|
u64 stat_horizon_caps;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
u64 stat_flows_plimit;
|
|
|
|
u64 stat_pkts_too_long;
|
|
|
|
u64 stat_allocation_errors;
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
|
|
|
|
u32 timer_slack; /* hrtimer slack in ns */
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct qdisc_watchdog watchdog;
|
|
|
|
};
|
|
|
|
|
2020-05-03 10:54:18 +08:00
|
|
|
/*
|
|
|
|
* f->tail and f->age share the same location.
|
|
|
|
* We can use the low order bit to differentiate if this location points
|
|
|
|
* to a sk_buff or contains a jiffies value, if we force this value to be odd.
|
|
|
|
* This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
|
|
|
|
*/
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
static void fq_flow_set_detached(struct fq_flow *f)
|
|
|
|
{
|
2020-05-03 10:54:18 +08:00
|
|
|
f->age = jiffies | 1UL;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool fq_flow_is_detached(const struct fq_flow *f)
|
|
|
|
{
|
2020-05-03 10:54:18 +08:00
|
|
|
return !!(f->age & 1UL);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
2020-05-03 10:54:18 +08:00
|
|
|
/* special value to mark a throttled flow (not on old/new list) */
|
|
|
|
static struct fq_flow throttled;
|
|
|
|
|
2018-05-03 01:03:30 +08:00
|
|
|
static bool fq_flow_is_throttled(const struct fq_flow *f)
|
|
|
|
{
|
|
|
|
return f->next == &throttled;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
|
|
|
|
{
|
|
|
|
if (head->first)
|
|
|
|
head->last->next = flow;
|
|
|
|
else
|
|
|
|
head->first = flow;
|
|
|
|
head->last = flow;
|
|
|
|
flow->next = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
|
|
|
|
{
|
|
|
|
rb_erase(&f->rate_node, &q->delayed);
|
|
|
|
q->throttled_flows--;
|
|
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
|
|
}
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
|
|
|
|
{
|
|
|
|
struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
|
|
|
|
|
|
|
|
while (*p) {
|
|
|
|
struct fq_flow *aux;
|
|
|
|
|
|
|
|
parent = *p;
|
2016-12-20 22:02:15 +08:00
|
|
|
aux = rb_entry(parent, struct fq_flow, rate_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (f->time_next_packet >= aux->time_next_packet)
|
|
|
|
p = &parent->rb_right;
|
|
|
|
else
|
|
|
|
p = &parent->rb_left;
|
|
|
|
}
|
|
|
|
rb_link_node(&f->rate_node, parent, p);
|
|
|
|
rb_insert_color(&f->rate_node, &q->delayed);
|
|
|
|
q->throttled_flows++;
|
|
|
|
q->stat_throttled++;
|
|
|
|
|
|
|
|
f->next = &throttled;
|
|
|
|
if (q->time_next_delayed_flow > f->time_next_packet)
|
|
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static struct kmem_cache *fq_flow_cachep __read_mostly;
|
|
|
|
|
|
|
|
|
|
|
|
/* limit number of collected flows per round */
|
|
|
|
#define FQ_GC_MAX 8
|
|
|
|
#define FQ_GC_AGE (3*HZ)
|
|
|
|
|
|
|
|
static bool fq_gc_candidate(const struct fq_flow *f)
|
|
|
|
{
|
|
|
|
return fq_flow_is_detached(f) &&
|
|
|
|
time_after(jiffies, f->age + FQ_GC_AGE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_gc(struct fq_sched_data *q,
|
|
|
|
struct rb_root *root,
|
|
|
|
struct sock *sk)
|
|
|
|
{
|
|
|
|
struct rb_node **p, *parent;
|
2020-05-03 10:54:20 +08:00
|
|
|
void *tofree[FQ_GC_MAX];
|
|
|
|
struct fq_flow *f;
|
|
|
|
int i, fcnt = 0;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
p = &root->rb_node;
|
|
|
|
parent = NULL;
|
|
|
|
while (*p) {
|
|
|
|
parent = *p;
|
|
|
|
|
2016-12-20 22:02:15 +08:00
|
|
|
f = rb_entry(parent, struct fq_flow, fq_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (f->sk == sk)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (fq_gc_candidate(f)) {
|
|
|
|
tofree[fcnt++] = f;
|
|
|
|
if (fcnt == FQ_GC_MAX)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (f->sk > sk)
|
|
|
|
p = &parent->rb_right;
|
|
|
|
else
|
|
|
|
p = &parent->rb_left;
|
|
|
|
}
|
|
|
|
|
2020-05-03 10:54:20 +08:00
|
|
|
if (!fcnt)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = fcnt; i > 0; ) {
|
|
|
|
f = tofree[--i];
|
|
|
|
rb_erase(&f->fq_node, root);
|
|
|
|
}
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
q->flows -= fcnt;
|
|
|
|
q->inactive_flows -= fcnt;
|
|
|
|
q->stat_gc_flows += fcnt;
|
|
|
|
|
2020-05-03 10:54:20 +08:00
|
|
|
kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
|
|
|
|
{
|
|
|
|
struct rb_node **p, *parent;
|
|
|
|
struct sock *sk = skb->sk;
|
|
|
|
struct rb_root *root;
|
|
|
|
struct fq_flow *f;
|
|
|
|
|
|
|
|
/* warning: no starvation prevention... */
|
2013-11-15 00:50:43 +08:00
|
|
|
if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
return &q->internal;
|
|
|
|
|
2015-10-03 02:43:35 +08:00
|
|
|
/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
|
2015-10-08 20:01:55 +08:00
|
|
|
* or a listener (SYNCOOKIE mode)
|
2015-10-03 02:43:35 +08:00
|
|
|
* 1) request sockets are not full blown,
|
|
|
|
* they do not contain sk_pacing_rate
|
|
|
|
* 2) They are not part of a 'flow' yet
|
|
|
|
* 3) We do not want to rate limit them (eg SYNFLOOD attack),
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
* especially if the listener set SO_MAX_PACING_RATE
|
2015-10-03 02:43:35 +08:00
|
|
|
* 4) We pretend they are orphaned
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
*/
|
2015-10-08 20:01:55 +08:00
|
|
|
if (!sk || sk_listener(sk)) {
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
/* By forcing low order bit to 1, we make sure to not
|
|
|
|
* collide with a local flow (socket pointers are word aligned)
|
|
|
|
*/
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
sk = (struct sock *)((hash << 1) | 1UL);
|
|
|
|
skb_orphan(skb);
|
2019-05-05 07:48:54 +08:00
|
|
|
} else if (sk->sk_state == TCP_CLOSE) {
|
|
|
|
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
|
|
|
|
/*
|
|
|
|
* Sockets in TCP_CLOSE are non connected.
|
|
|
|
* Typical use case is UDP sockets, they can send packets
|
|
|
|
* with sendto() to many different destinations.
|
|
|
|
* We probably could use a generic bit advertising
|
|
|
|
* non connected sockets, instead of sk_state == TCP_CLOSE,
|
|
|
|
* if we care enough.
|
|
|
|
*/
|
|
|
|
sk = (struct sock *)((hash << 1) | 1UL);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
2016-11-18 01:48:30 +08:00
|
|
|
root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
if (q->flows >= (2U << q->fq_trees_log) &&
|
|
|
|
q->inactive_flows > q->flows/2)
|
|
|
|
fq_gc(q, root, sk);
|
|
|
|
|
|
|
|
p = &root->rb_node;
|
|
|
|
parent = NULL;
|
|
|
|
while (*p) {
|
|
|
|
parent = *p;
|
|
|
|
|
2016-12-20 22:02:15 +08:00
|
|
|
f = rb_entry(parent, struct fq_flow, fq_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (f->sk == sk) {
|
|
|
|
/* socket might have been reallocated, so check
|
|
|
|
* if its sk_hash is the same.
|
|
|
|
* It not, we need to refill credit with
|
|
|
|
* initial quantum
|
|
|
|
*/
|
2019-05-05 07:48:54 +08:00
|
|
|
if (unlikely(skb->sk == sk &&
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
f->socket_hash != sk->sk_hash)) {
|
|
|
|
f->credit = q->initial_quantum;
|
|
|
|
f->socket_hash = sk->sk_hash;
|
2019-12-24 03:13:24 +08:00
|
|
|
if (q->rate_enable)
|
|
|
|
smp_store_release(&sk->sk_pacing_status,
|
|
|
|
SK_PACING_FQ);
|
2018-05-03 01:03:30 +08:00
|
|
|
if (fq_flow_is_throttled(f))
|
|
|
|
fq_flow_unset_throttled(q, f);
|
2013-10-28 07:26:43 +08:00
|
|
|
f->time_next_packet = 0ULL;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
return f;
|
|
|
|
}
|
|
|
|
if (f->sk > sk)
|
|
|
|
p = &parent->rb_right;
|
|
|
|
else
|
|
|
|
p = &parent->rb_left;
|
|
|
|
}
|
|
|
|
|
|
|
|
f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
|
|
|
|
if (unlikely(!f)) {
|
|
|
|
q->stat_allocation_errors++;
|
|
|
|
return &q->internal;
|
|
|
|
}
|
2019-05-05 07:48:53 +08:00
|
|
|
/* f->t_root is already zeroed after kmem_cache_zalloc() */
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
fq_flow_set_detached(f);
|
|
|
|
f->sk = sk;
|
2019-12-24 03:13:24 +08:00
|
|
|
if (skb->sk == sk) {
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
f->socket_hash = sk->sk_hash;
|
2019-12-24 03:13:24 +08:00
|
|
|
if (q->rate_enable)
|
|
|
|
smp_store_release(&sk->sk_pacing_status,
|
|
|
|
SK_PACING_FQ);
|
|
|
|
}
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
f->credit = q->initial_quantum;
|
|
|
|
|
|
|
|
rb_link_node(&f->fq_node, parent, p);
|
|
|
|
rb_insert_color(&f->fq_node, root);
|
|
|
|
|
|
|
|
q->flows++;
|
|
|
|
q->inactive_flows++;
|
|
|
|
return f;
|
|
|
|
}
|
|
|
|
|
2019-05-05 07:48:53 +08:00
|
|
|
static struct sk_buff *fq_peek(struct fq_flow *flow)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb = skb_rb_first(&flow->t_root);
|
|
|
|
struct sk_buff *head = flow->head;
|
|
|
|
|
|
|
|
if (!skb)
|
|
|
|
return head;
|
|
|
|
|
|
|
|
if (!head)
|
|
|
|
return skb;
|
|
|
|
|
|
|
|
if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
|
|
|
|
return skb;
|
|
|
|
return head;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
if (skb == flow->head) {
|
|
|
|
flow->head = skb->next;
|
|
|
|
} else {
|
|
|
|
rb_erase(&skb->rbnode, &flow->t_root);
|
|
|
|
skb->dev = qdisc_dev(sch);
|
|
|
|
}
|
|
|
|
}
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2020-05-03 10:54:21 +08:00
|
|
|
/* Remove one skb from flow queue.
|
|
|
|
* This skb must be the return value of prior fq_peek().
|
|
|
|
*/
|
|
|
|
static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
|
|
|
|
struct sk_buff *skb)
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
{
|
2020-05-03 10:54:21 +08:00
|
|
|
fq_erase_head(sch, flow, skb);
|
|
|
|
skb_mark_not_on_list(skb);
|
|
|
|
flow->qlen--;
|
|
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
|
|
sch->q.qlen--;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
|
|
|
|
{
|
2019-05-05 07:48:53 +08:00
|
|
|
struct rb_node **p, *parent;
|
|
|
|
struct sk_buff *head, *aux;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2019-05-05 07:48:53 +08:00
|
|
|
head = flow->head;
|
|
|
|
if (!head ||
|
|
|
|
fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
|
|
|
|
if (!head)
|
|
|
|
flow->head = skb;
|
|
|
|
else
|
|
|
|
flow->tail->next = skb;
|
|
|
|
flow->tail = skb;
|
|
|
|
skb->next = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
p = &flow->t_root.rb_node;
|
|
|
|
parent = NULL;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2019-05-05 07:48:53 +08:00
|
|
|
while (*p) {
|
|
|
|
parent = *p;
|
|
|
|
aux = rb_to_skb(parent);
|
|
|
|
if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
|
|
|
|
p = &parent->rb_right;
|
|
|
|
else
|
|
|
|
p = &parent->rb_left;
|
|
|
|
}
|
|
|
|
rb_link_node(&skb->rbnode, parent, p);
|
|
|
|
rb_insert_color(&skb->rbnode, &flow->t_root);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
2020-05-01 22:07:41 +08:00
|
|
|
static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
|
|
|
|
const struct fq_sched_data *q)
|
|
|
|
{
|
|
|
|
return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
|
|
|
|
}
|
|
|
|
|
2016-06-22 14:16:49 +08:00
|
|
|
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
|
|
struct sk_buff **to_free)
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
struct fq_flow *f;
|
|
|
|
|
|
|
|
if (unlikely(sch->q.qlen >= sch->limit))
|
2016-06-22 14:16:49 +08:00
|
|
|
return qdisc_drop(skb, sch, to_free);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2020-05-01 22:07:41 +08:00
|
|
|
if (!skb->tstamp) {
|
|
|
|
fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
|
|
|
|
} else {
|
|
|
|
/* Check if packet timestamp is too far in the future.
|
|
|
|
* Try first if our cached value, to avoid ktime_get_ns()
|
|
|
|
* cost in most cases.
|
|
|
|
*/
|
|
|
|
if (fq_packet_beyond_horizon(skb, q)) {
|
|
|
|
/* Refresh our cache and check another time */
|
|
|
|
q->ktime_cache = ktime_get_ns();
|
|
|
|
if (fq_packet_beyond_horizon(skb, q)) {
|
|
|
|
if (q->horizon_drop) {
|
|
|
|
q->stat_horizon_drops++;
|
|
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
}
|
|
|
|
q->stat_horizon_caps++;
|
|
|
|
skb->tstamp = q->ktime_cache + q->horizon;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fq_skb_cb(skb)->time_to_send = skb->tstamp;
|
|
|
|
}
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
f = fq_classify(skb, q);
|
|
|
|
if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
|
|
|
|
q->stat_flows_plimit++;
|
2016-06-22 14:16:49 +08:00
|
|
|
return qdisc_drop(skb, sch, to_free);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
f->qlen++;
|
2014-09-29 02:53:29 +08:00
|
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (fq_flow_is_detached(f)) {
|
|
|
|
fq_flow_add_tail(&q->new_flows, f);
|
2013-11-16 00:58:14 +08:00
|
|
|
if (time_after(jiffies, f->age + q->flow_refill_delay))
|
|
|
|
f->credit = max_t(u32, f->credit, q->quantum);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
q->inactive_flows--;
|
|
|
|
}
|
2013-11-16 00:58:14 +08:00
|
|
|
|
|
|
|
/* Note: this overwrites f->age */
|
|
|
|
flow_queue_add(f, skb);
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (unlikely(f == &q->internal)) {
|
|
|
|
q->stat_internal_packets++;
|
|
|
|
}
|
|
|
|
sch->q.qlen++;
|
|
|
|
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_check_throttled(struct fq_sched_data *q, u64 now)
|
|
|
|
{
|
2016-09-22 23:58:55 +08:00
|
|
|
unsigned long sample;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct rb_node *p;
|
|
|
|
|
|
|
|
if (q->time_next_delayed_flow > now)
|
|
|
|
return;
|
|
|
|
|
2016-09-22 23:58:55 +08:00
|
|
|
/* Update unthrottle latency EWMA.
|
|
|
|
* This is cheap and can help diagnosing timer/latency problems.
|
|
|
|
*/
|
|
|
|
sample = (unsigned long)(now - q->time_next_delayed_flow);
|
|
|
|
q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
|
|
|
|
q->unthrottle_latency_ns += sample >> 3;
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
q->time_next_delayed_flow = ~0ULL;
|
|
|
|
while ((p = rb_first(&q->delayed)) != NULL) {
|
2016-12-20 22:02:15 +08:00
|
|
|
struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
if (f->time_next_packet > now) {
|
|
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
|
|
break;
|
|
|
|
}
|
2018-05-03 01:03:30 +08:00
|
|
|
fq_flow_unset_throttled(q, f);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct sk_buff *fq_dequeue(struct Qdisc *sch)
|
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
struct fq_flow_head *head;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct fq_flow *f;
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
unsigned long rate;
|
|
|
|
u32 plen;
|
2018-11-20 09:30:19 +08:00
|
|
|
u64 now;
|
|
|
|
|
|
|
|
if (!sch->q.qlen)
|
|
|
|
return NULL;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2020-05-03 10:54:21 +08:00
|
|
|
skb = fq_peek(&q->internal);
|
|
|
|
if (unlikely(skb)) {
|
|
|
|
fq_dequeue_skb(sch, &q->internal, skb);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
goto out;
|
2020-05-03 10:54:21 +08:00
|
|
|
}
|
2018-11-20 09:30:19 +08:00
|
|
|
|
2020-05-01 22:07:41 +08:00
|
|
|
q->ktime_cache = now = ktime_get_ns();
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
fq_check_throttled(q, now);
|
|
|
|
begin:
|
|
|
|
head = &q->new_flows;
|
|
|
|
if (!head->first) {
|
|
|
|
head = &q->old_flows;
|
|
|
|
if (!head->first) {
|
|
|
|
if (q->time_next_delayed_flow != ~0ULL)
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
qdisc_watchdog_schedule_range_ns(&q->watchdog,
|
|
|
|
q->time_next_delayed_flow,
|
|
|
|
q->timer_slack);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
f = head->first;
|
|
|
|
|
|
|
|
if (f->credit <= 0) {
|
|
|
|
f->credit += q->quantum;
|
|
|
|
head->first = f->next;
|
|
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
|
|
goto begin;
|
|
|
|
}
|
|
|
|
|
2019-05-05 07:48:53 +08:00
|
|
|
skb = fq_peek(f);
|
2018-10-16 00:37:55 +08:00
|
|
|
if (skb) {
|
2019-05-05 07:48:53 +08:00
|
|
|
u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
|
tcp: switch tcp and sch_fq to new earliest departure time model
TCP keeps track of tcp_wstamp_ns by itself, meaning sch_fq
no longer has to do it.
Thanks to this model, TCP can get more accurate RTT samples,
since pacing no longer inflates them.
This has the nice effect of removing some delays caused by FQ
quantum mechanism, causing inflated max/P99 latencies.
Also we might relax TCP Small Queue tight limits in the future,
since this new model allow TCP to build bigger batches, since
sch_fq (or a device with earliest departure time offload) ensure
these packets will be delivered on time.
Note that other protocols are not converted (they will probably
never be) so sch_fq has still support for SO_MAX_PACING_RATE
Tested:
Test showing FQ pacing quantum artifact for low-rate flows,
adding unexpected throttles for RPC flows, inflating max and P99 latencies.
The parameters chosen here are to show what happens typically when
a TCP flow has a reduced pacing rate (this can be caused by a reduced
cwin after few losses, or/and rtt above few ms)
MIBS="MIN_LATENCY,MEAN_LATENCY,MAX_LATENCY,P99_LATENCY,STDDEV_LATENCY"
Before :
$ netperf -H 10.246.7.133 -t TCP_RR -Cc -T6,6 -- -q 2000000 -r 100,100 -o $MIBS
MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 10.246.7.133 () port 0 AF_INET : first burst 0 : cpu bind
Minimum Latency Microseconds,Mean Latency Microseconds,Maximum Latency Microseconds,99th Percentile Latency Microseconds,Stddev Latency Microseconds
19,82.78,5279,3825,482.02
After :
$ netperf -H 10.246.7.133 -t TCP_RR -Cc -T6,6 -- -q 2000000 -r 100,100 -o $MIBS
MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 10.246.7.133 () port 0 AF_INET : first burst 0 : cpu bind
Minimum Latency Microseconds,Mean Latency Microseconds,Maximum Latency Microseconds,99th Percentile Latency Microseconds,Stddev Latency Microseconds
20,49.94,128,63,3.18
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-21 23:51:52 +08:00
|
|
|
f->time_next_packet);
|
|
|
|
|
|
|
|
if (now < time_next_packet) {
|
|
|
|
head->first = f->next;
|
|
|
|
f->time_next_packet = time_next_packet;
|
|
|
|
fq_flow_set_throttled(q, f);
|
|
|
|
goto begin;
|
|
|
|
}
|
2020-05-03 10:54:22 +08:00
|
|
|
prefetch(&skb->end);
|
2019-10-15 01:40:32 +08:00
|
|
|
if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
|
2018-11-12 01:11:31 +08:00
|
|
|
INET_ECN_set_ce(skb);
|
|
|
|
q->stat_ce_mark++;
|
|
|
|
}
|
2020-05-03 10:54:21 +08:00
|
|
|
fq_dequeue_skb(sch, f, skb);
|
|
|
|
} else {
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
head->first = f->next;
|
|
|
|
/* force a pass through old_flows to prevent starvation */
|
|
|
|
if ((head == &q->new_flows) && q->old_flows.first) {
|
|
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
|
|
} else {
|
|
|
|
fq_flow_set_detached(f);
|
|
|
|
q->inactive_flows++;
|
|
|
|
}
|
|
|
|
goto begin;
|
|
|
|
}
|
2018-11-13 08:17:16 +08:00
|
|
|
plen = qdisc_pkt_len(skb);
|
|
|
|
f->credit -= plen;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2018-11-13 08:17:16 +08:00
|
|
|
if (!q->rate_enable)
|
tcp: do not pace pure ack packets
When we added pacing to TCP, we decided to let sch_fq take care
of actual pacing.
All TCP had to do was to compute sk->pacing_rate using simple formula:
sk->pacing_rate = 2 * cwnd * mss / rtt
It works well for senders (bulk flows), but not very well for receivers
or even RPC :
cwnd on the receiver can be less than 10, rtt can be around 100ms, so we
can end up pacing ACK packets, slowing down the sender.
Really, only the sender should pace, according to its own logic.
Instead of adding a new bit in skb, or call yet another flow
dissection, we tweak skb->truesize to a small value (2), and
we instruct sch_fq to use new helper and not pace pure ack.
Note this also helps TCP small queue, as ack packets present
in qdisc/NIC do not prevent sending a data packet (RPC workload)
This helps to reduce tx completion overhead, ack packets can use regular
sock_wfree() instead of tcp_wfree() which is a bit more expensive.
This has no impact in the case packets are sent to loopback interface,
as we do not coalesce ack packets (were we would detect skb->truesize
lie)
In case netem (with a delay) is used, skb_orphan_partial() also sets
skb->truesize to 1.
This patch is a combination of two patches we used for about one year at
Google.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 10:31:53 +08:00
|
|
|
goto out;
|
|
|
|
|
2013-10-09 06:16:00 +08:00
|
|
|
rate = q->flow_max_rate;
|
2018-11-13 08:17:16 +08:00
|
|
|
|
|
|
|
/* If EDT time was provided for this skb, we need to
|
|
|
|
* update f->time_next_packet only if this qdisc enforces
|
|
|
|
* a flow max rate.
|
|
|
|
*/
|
|
|
|
if (!skb->tstamp) {
|
|
|
|
if (skb->sk)
|
|
|
|
rate = min(skb->sk->sk_pacing_rate, rate);
|
|
|
|
|
|
|
|
if (rate <= q->low_rate_threshold) {
|
|
|
|
f->credit = 0;
|
|
|
|
} else {
|
|
|
|
plen = max(plen, q->quantum);
|
|
|
|
if (f->credit > 0)
|
|
|
|
goto out;
|
|
|
|
}
|
2016-09-20 11:39:11 +08:00
|
|
|
}
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
if (rate != ~0UL) {
|
pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :
1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.
Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.
(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)
2) maxrate was not used for forwarded flows (skbs not attached
to a socket)
Tested:
tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
quantum 3028 initial_quantum 15140 maxrate 8000Kbit
Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
rate 7831Kbit 653pps backlog 7570b 5p requeues 0
44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
0 gc, 0 highprio, 5545 throttled
lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>
Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-02 00:10:16 +08:00
|
|
|
u64 len = (u64)plen * NSEC_PER_SEC;
|
|
|
|
|
2013-10-09 06:16:00 +08:00
|
|
|
if (likely(rate))
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
len = div64_ul(len, rate);
|
pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :
1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.
Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.
(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)
2) maxrate was not used for forwarded flows (skbs not attached
to a socket)
Tested:
tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
quantum 3028 initial_quantum 15140 maxrate 8000Kbit
Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
rate 7831Kbit 653pps backlog 7570b 5p requeues 0
44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
0 gc, 0 highprio, 5545 throttled
lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>
Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-02 00:10:16 +08:00
|
|
|
/* Since socket rate can change later,
|
2014-11-26 00:57:29 +08:00
|
|
|
* clamp the delay to 1 second.
|
|
|
|
* Really, providers of too big packets should be fixed !
|
pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :
1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.
Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.
(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)
2) maxrate was not used for forwarded flows (skbs not attached
to a socket)
Tested:
tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
quantum 3028 initial_quantum 15140 maxrate 8000Kbit
Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
rate 7831Kbit 653pps backlog 7570b 5p requeues 0
44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
0 gc, 0 highprio, 5545 throttled
lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>
Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-02 00:10:16 +08:00
|
|
|
*/
|
2014-11-26 00:57:29 +08:00
|
|
|
if (unlikely(len > NSEC_PER_SEC)) {
|
|
|
|
len = NSEC_PER_SEC;
|
pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :
1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.
Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.
(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)
2) maxrate was not used for forwarded flows (skbs not attached
to a socket)
Tested:
tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
quantum 3028 initial_quantum 15140 maxrate 8000Kbit
Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
rate 7831Kbit 653pps backlog 7570b 5p requeues 0
44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
0 gc, 0 highprio, 5545 throttled
lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>
Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-02 00:10:16 +08:00
|
|
|
q->stat_pkts_too_long++;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
2016-09-22 23:58:55 +08:00
|
|
|
/* Account for schedule/timers drifts.
|
|
|
|
* f->time_next_packet was set when prior packet was sent,
|
|
|
|
* and current time (@now) can be too late by tens of us.
|
|
|
|
*/
|
|
|
|
if (f->time_next_packet)
|
|
|
|
len -= min(len/2, now - f->time_next_packet);
|
pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :
1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.
Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.
(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)
2) maxrate was not used for forwarded flows (skbs not attached
to a socket)
Tested:
tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
quantum 3028 initial_quantum 15140 maxrate 8000Kbit
Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
rate 7831Kbit 653pps backlog 7570b 5p requeues 0
44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
0 gc, 0 highprio, 5545 throttled
lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>
Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-02 00:10:16 +08:00
|
|
|
f->time_next_packet = now + len;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
out:
|
|
|
|
qdisc_bstats_update(sch, skb);
|
|
|
|
return skb;
|
|
|
|
}
|
|
|
|
|
2016-06-14 11:21:53 +08:00
|
|
|
static void fq_flow_purge(struct fq_flow *flow)
|
|
|
|
{
|
2019-05-05 07:48:53 +08:00
|
|
|
struct rb_node *p = rb_first(&flow->t_root);
|
|
|
|
|
|
|
|
while (p) {
|
|
|
|
struct sk_buff *skb = rb_to_skb(p);
|
|
|
|
|
|
|
|
p = rb_next(p);
|
|
|
|
rb_erase(&skb->rbnode, &flow->t_root);
|
|
|
|
rtnl_kfree_skbs(skb, skb);
|
|
|
|
}
|
2016-06-14 11:21:53 +08:00
|
|
|
rtnl_kfree_skbs(flow->head, flow->tail);
|
|
|
|
flow->head = NULL;
|
|
|
|
flow->qlen = 0;
|
|
|
|
}
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
static void fq_reset(struct Qdisc *sch)
|
|
|
|
{
|
2013-09-28 05:20:01 +08:00
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
struct rb_root *root;
|
|
|
|
struct rb_node *p;
|
|
|
|
struct fq_flow *f;
|
|
|
|
unsigned int idx;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
2016-06-14 11:21:53 +08:00
|
|
|
sch->q.qlen = 0;
|
|
|
|
sch->qstats.backlog = 0;
|
|
|
|
|
|
|
|
fq_flow_purge(&q->internal);
|
2013-09-28 05:20:01 +08:00
|
|
|
|
|
|
|
if (!q->fq_root)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
|
|
|
|
root = &q->fq_root[idx];
|
|
|
|
while ((p = rb_first(root)) != NULL) {
|
2016-12-20 22:02:15 +08:00
|
|
|
f = rb_entry(p, struct fq_flow, fq_node);
|
2013-09-28 05:20:01 +08:00
|
|
|
rb_erase(p, root);
|
|
|
|
|
2016-06-14 11:21:53 +08:00
|
|
|
fq_flow_purge(f);
|
2013-09-28 05:20:01 +08:00
|
|
|
|
|
|
|
kmem_cache_free(fq_flow_cachep, f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->new_flows.first = NULL;
|
|
|
|
q->old_flows.first = NULL;
|
|
|
|
q->delayed = RB_ROOT;
|
|
|
|
q->flows = 0;
|
|
|
|
q->inactive_flows = 0;
|
|
|
|
q->throttled_flows = 0;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_rehash(struct fq_sched_data *q,
|
|
|
|
struct rb_root *old_array, u32 old_log,
|
|
|
|
struct rb_root *new_array, u32 new_log)
|
|
|
|
{
|
|
|
|
struct rb_node *op, **np, *parent;
|
|
|
|
struct rb_root *oroot, *nroot;
|
|
|
|
struct fq_flow *of, *nf;
|
|
|
|
int fcnt = 0;
|
|
|
|
u32 idx;
|
|
|
|
|
|
|
|
for (idx = 0; idx < (1U << old_log); idx++) {
|
|
|
|
oroot = &old_array[idx];
|
|
|
|
while ((op = rb_first(oroot)) != NULL) {
|
|
|
|
rb_erase(op, oroot);
|
2016-12-20 22:02:15 +08:00
|
|
|
of = rb_entry(op, struct fq_flow, fq_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (fq_gc_candidate(of)) {
|
|
|
|
fcnt++;
|
|
|
|
kmem_cache_free(fq_flow_cachep, of);
|
|
|
|
continue;
|
|
|
|
}
|
2016-11-18 01:48:30 +08:00
|
|
|
nroot = &new_array[hash_ptr(of->sk, new_log)];
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
np = &nroot->rb_node;
|
|
|
|
parent = NULL;
|
|
|
|
while (*np) {
|
|
|
|
parent = *np;
|
|
|
|
|
2016-12-20 22:02:15 +08:00
|
|
|
nf = rb_entry(parent, struct fq_flow, fq_node);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
BUG_ON(nf->sk == of->sk);
|
|
|
|
|
|
|
|
if (nf->sk > of->sk)
|
|
|
|
np = &parent->rb_right;
|
|
|
|
else
|
|
|
|
np = &parent->rb_left;
|
|
|
|
}
|
|
|
|
|
|
|
|
rb_link_node(&of->fq_node, parent, np);
|
|
|
|
rb_insert_color(&of->fq_node, nroot);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->flows -= fcnt;
|
|
|
|
q->inactive_flows -= fcnt;
|
|
|
|
q->stat_gc_flows += fcnt;
|
|
|
|
}
|
|
|
|
|
2013-12-16 05:15:25 +08:00
|
|
|
static void fq_free(void *addr)
|
|
|
|
{
|
2014-06-03 06:55:22 +08:00
|
|
|
kvfree(addr);
|
2013-12-16 05:15:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int fq_resize(struct Qdisc *sch, u32 log)
|
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct rb_root *array;
|
2014-03-07 14:57:52 +08:00
|
|
|
void *old_fq_root;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
u32 idx;
|
|
|
|
|
|
|
|
if (q->fq_root && log == q->fq_trees_log)
|
|
|
|
return 0;
|
|
|
|
|
2013-12-16 05:15:25 +08:00
|
|
|
/* If XPS was setup, we can allocate memory on right NUMA node */
|
2017-07-13 05:36:45 +08:00
|
|
|
array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
|
2013-12-16 05:15:25 +08:00
|
|
|
netdev_queue_numa_node_read(sch->dev_queue));
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (!array)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (idx = 0; idx < (1U << log); idx++)
|
|
|
|
array[idx] = RB_ROOT;
|
|
|
|
|
2014-03-07 14:57:52 +08:00
|
|
|
sch_tree_lock(sch);
|
|
|
|
|
|
|
|
old_fq_root = q->fq_root;
|
|
|
|
if (old_fq_root)
|
|
|
|
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
q->fq_root = array;
|
|
|
|
q->fq_trees_log = log;
|
|
|
|
|
2014-03-07 14:57:52 +08:00
|
|
|
sch_tree_unlock(sch);
|
|
|
|
|
|
|
|
fq_free(old_fq_root);
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
[TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK },
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
[TCA_FQ_PLIMIT] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_QUANTUM] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
|
2013-11-16 00:58:14 +08:00
|
|
|
[TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
|
2020-03-03 13:05:19 +08:00
|
|
|
[TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
|
2016-09-20 11:39:11 +08:00
|
|
|
[TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
|
2018-11-12 01:11:31 +08:00
|
|
|
[TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
[TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 },
|
2020-05-01 22:07:41 +08:00
|
|
|
[TCA_FQ_HORIZON] = { .type = NLA_U32 },
|
|
|
|
[TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 },
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
};
|
|
|
|
|
2017-12-21 01:35:14 +08:00
|
|
|
static int fq_change(struct Qdisc *sch, struct nlattr *opt,
|
|
|
|
struct netlink_ext_ack *extack)
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
struct nlattr *tb[TCA_FQ_MAX + 1];
|
|
|
|
int err, drop_count = 0;
|
2016-02-26 06:55:01 +08:00
|
|
|
unsigned drop_len = 0;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
u32 fq_log;
|
|
|
|
|
|
|
|
if (!opt)
|
|
|
|
return -EINVAL;
|
|
|
|
|
netlink: make validation more configurable for future strictness
We currently have two levels of strict validation:
1) liberal (default)
- undefined (type >= max) & NLA_UNSPEC attributes accepted
- attribute length >= expected accepted
- garbage at end of message accepted
2) strict (opt-in)
- NLA_UNSPEC attributes accepted
- attribute length >= expected accepted
Split out parsing strictness into four different options:
* TRAILING - check that there's no trailing data after parsing
attributes (in message or nested)
* MAXTYPE - reject attrs > max known type
* UNSPEC - reject attributes with NLA_UNSPEC policy entries
* STRICT_ATTRS - strictly validate attribute size
The default for future things should be *everything*.
The current *_strict() is a combination of TRAILING and MAXTYPE,
and is renamed to _deprecated_strict().
The current regular parsing has none of this, and is renamed to
*_parse_deprecated().
Additionally it allows us to selectively set one of the new flags
even on old policies. Notably, the UNSPEC flag could be useful in
this case, since it can be arranged (by filling in the policy) to
not be an incompatible userspace ABI change, but would then going
forward prevent forgetting attribute entries. Similar can apply
to the POLICY flag.
We end up with the following renames:
* nla_parse -> nla_parse_deprecated
* nla_parse_strict -> nla_parse_deprecated_strict
* nlmsg_parse -> nlmsg_parse_deprecated
* nlmsg_parse_strict -> nlmsg_parse_deprecated_strict
* nla_parse_nested -> nla_parse_nested_deprecated
* nla_validate_nested -> nla_validate_nested_deprecated
Using spatch, of course:
@@
expression TB, MAX, HEAD, LEN, POL, EXT;
@@
-nla_parse(TB, MAX, HEAD, LEN, POL, EXT)
+nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT)
@@
expression NLH, HDRLEN, TB, MAX, POL, EXT;
@@
-nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT)
+nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT)
@@
expression NLH, HDRLEN, TB, MAX, POL, EXT;
@@
-nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT)
+nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT)
@@
expression TB, MAX, NLA, POL, EXT;
@@
-nla_parse_nested(TB, MAX, NLA, POL, EXT)
+nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT)
@@
expression START, MAX, POL, EXT;
@@
-nla_validate_nested(START, MAX, POL, EXT)
+nla_validate_nested_deprecated(START, MAX, POL, EXT)
@@
expression NLH, HDRLEN, MAX, POL, EXT;
@@
-nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT)
+nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT)
For this patch, don't actually add the strict, non-renamed versions
yet so that it breaks compile if I get it wrong.
Also, while at it, make nla_validate and nla_parse go down to a
common __nla_validate_parse() function to avoid code duplication.
Ultimately, this allows us to have very strict validation for every
new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the
next patch, while existing things will continue to work as is.
In effect then, this adds fully strict validation for any new command.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 20:07:28 +08:00
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
|
|
|
|
NULL);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
|
|
|
|
fq_log = q->fq_trees_log;
|
|
|
|
|
|
|
|
if (tb[TCA_FQ_BUCKETS_LOG]) {
|
|
|
|
u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
|
|
|
|
|
|
|
|
if (nval >= 1 && nval <= ilog2(256*1024))
|
|
|
|
fq_log = nval;
|
|
|
|
else
|
|
|
|
err = -EINVAL;
|
|
|
|
}
|
|
|
|
if (tb[TCA_FQ_PLIMIT])
|
|
|
|
sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
|
|
|
|
|
|
|
|
if (tb[TCA_FQ_FLOW_PLIMIT])
|
|
|
|
q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
|
|
|
|
|
2015-02-04 00:49:18 +08:00
|
|
|
if (tb[TCA_FQ_QUANTUM]) {
|
|
|
|
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
|
|
|
|
|
2020-01-06 22:10:39 +08:00
|
|
|
if (quantum > 0 && quantum <= (1 << 20)) {
|
2015-02-04 00:49:18 +08:00
|
|
|
q->quantum = quantum;
|
2020-01-06 22:10:39 +08:00
|
|
|
} else {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
|
2015-02-04 00:49:18 +08:00
|
|
|
err = -EINVAL;
|
2020-01-06 22:10:39 +08:00
|
|
|
}
|
2015-02-04 00:49:18 +08:00
|
|
|
}
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
if (tb[TCA_FQ_INITIAL_QUANTUM])
|
2013-10-08 03:50:18 +08:00
|
|
|
q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
|
2013-11-16 00:57:26 +08:00
|
|
|
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
|
|
|
|
nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
if (tb[TCA_FQ_FLOW_MAX_RATE]) {
|
|
|
|
u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
|
|
|
|
}
|
2016-09-20 11:39:11 +08:00
|
|
|
if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
|
|
|
|
q->low_rate_threshold =
|
|
|
|
nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
|
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (tb[TCA_FQ_RATE_ENABLE]) {
|
|
|
|
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
|
|
|
|
|
|
|
|
if (enable <= 1)
|
|
|
|
q->rate_enable = enable;
|
|
|
|
else
|
|
|
|
err = -EINVAL;
|
|
|
|
}
|
|
|
|
|
2013-11-16 00:58:14 +08:00
|
|
|
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
|
|
|
|
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
|
|
|
|
|
|
|
|
q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
|
|
|
|
}
|
|
|
|
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
if (tb[TCA_FQ_ORPHAN_MASK])
|
|
|
|
q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
|
|
|
|
|
2018-11-12 01:11:31 +08:00
|
|
|
if (tb[TCA_FQ_CE_THRESHOLD])
|
|
|
|
q->ce_threshold = (u64)NSEC_PER_USEC *
|
|
|
|
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
|
|
|
|
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
if (tb[TCA_FQ_TIMER_SLACK])
|
|
|
|
q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
|
|
|
|
|
2020-05-01 22:07:41 +08:00
|
|
|
if (tb[TCA_FQ_HORIZON])
|
|
|
|
q->horizon = (u64)NSEC_PER_USEC *
|
|
|
|
nla_get_u32(tb[TCA_FQ_HORIZON]);
|
|
|
|
|
|
|
|
if (tb[TCA_FQ_HORIZON_DROP])
|
|
|
|
q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
|
|
|
|
|
2014-03-07 14:57:52 +08:00
|
|
|
if (!err) {
|
2020-05-01 22:07:41 +08:00
|
|
|
|
2014-03-07 14:57:52 +08:00
|
|
|
sch_tree_unlock(sch);
|
2013-12-16 05:15:25 +08:00
|
|
|
err = fq_resize(sch, fq_log);
|
2014-03-07 14:57:52 +08:00
|
|
|
sch_tree_lock(sch);
|
|
|
|
}
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
while (sch->q.qlen > sch->limit) {
|
|
|
|
struct sk_buff *skb = fq_dequeue(sch);
|
|
|
|
|
2013-09-28 05:20:01 +08:00
|
|
|
if (!skb)
|
|
|
|
break;
|
2016-02-26 06:55:01 +08:00
|
|
|
drop_len += qdisc_pkt_len(skb);
|
2016-06-14 11:21:53 +08:00
|
|
|
rtnl_kfree_skbs(skb, skb);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
drop_count++;
|
|
|
|
}
|
2016-02-26 06:55:01 +08:00
|
|
|
qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fq_destroy(struct Qdisc *sch)
|
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
2013-09-28 05:20:01 +08:00
|
|
|
fq_reset(sch);
|
2013-12-16 05:15:25 +08:00
|
|
|
fq_free(q->fq_root);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
|
|
}
|
|
|
|
|
2017-12-21 01:35:13 +08:00
|
|
|
static int fq_init(struct Qdisc *sch, struct nlattr *opt,
|
|
|
|
struct netlink_ext_ack *extack)
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
sch->limit = 10000;
|
|
|
|
q->flow_plimit = 100;
|
|
|
|
q->quantum = 2 * psched_mtu(qdisc_dev(sch));
|
|
|
|
q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
|
2013-11-16 00:58:14 +08:00
|
|
|
q->flow_refill_delay = msecs_to_jiffies(40);
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
q->flow_max_rate = ~0UL;
|
2016-09-22 23:58:55 +08:00
|
|
|
q->time_next_delayed_flow = ~0ULL;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
q->rate_enable = 1;
|
|
|
|
q->new_flows.first = NULL;
|
|
|
|
q->old_flows.first = NULL;
|
|
|
|
q->delayed = RB_ROOT;
|
|
|
|
q->fq_root = NULL;
|
|
|
|
q->fq_trees_log = ilog2(1024);
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
q->orphan_mask = 1024 - 1;
|
2016-09-20 11:39:11 +08:00
|
|
|
q->low_rate_threshold = 550000 / 8;
|
2018-11-12 01:11:31 +08:00
|
|
|
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
|
|
|
|
|
2020-05-01 22:07:41 +08:00
|
|
|
q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
|
|
|
|
q->horizon_drop = 1; /* by default, drop packets beyond horizon */
|
|
|
|
|
2018-11-12 01:11:31 +08:00
|
|
|
/* Default ce_threshold of 4294 seconds */
|
|
|
|
q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
|
|
|
|
|
2018-09-29 01:28:44 +08:00
|
|
|
qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
if (opt)
|
2017-12-21 01:35:14 +08:00
|
|
|
err = fq_change(sch, opt, extack);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
else
|
2013-12-16 05:15:25 +08:00
|
|
|
err = fq_resize(sch, q->fq_trees_log);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
2018-11-12 01:11:31 +08:00
|
|
|
u64 ce_threshold = q->ce_threshold;
|
2020-05-01 22:07:41 +08:00
|
|
|
u64 horizon = q->horizon;
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
struct nlattr *opts;
|
|
|
|
|
2019-04-26 17:13:06 +08:00
|
|
|
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (opts == NULL)
|
|
|
|
goto nla_put_failure;
|
|
|
|
|
2013-11-16 00:57:26 +08:00
|
|
|
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
|
|
|
|
|
2018-11-12 01:11:31 +08:00
|
|
|
do_div(ce_threshold, NSEC_PER_USEC);
|
2020-05-01 22:07:41 +08:00
|
|
|
do_div(horizon, NSEC_PER_USEC);
|
2018-11-12 01:11:31 +08:00
|
|
|
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
|
|
|
|
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
|
|
|
|
nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
|
|
|
|
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
|
|
|
|
nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
|
net: extend sk_pacing_rate to unsigned long
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-16 00:37:53 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
|
|
|
|
min_t(unsigned long, q->flow_max_rate, ~0U)) ||
|
2013-11-16 00:58:14 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
|
|
|
|
jiffies_to_usecs(q->flow_refill_delay)) ||
|
pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.
This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.
Its default value is 1024 slots, to mimic SFQ behavior.
Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.
This patch also handles the specific case of SYNACK messages:
They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.
This is very similar to an internal patch Google have used more
than one year.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 13:30:40 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
|
2016-09-20 11:39:11 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
|
|
|
|
q->low_rate_threshold) ||
|
2018-11-12 01:11:31 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
|
2020-05-01 22:07:41 +08:00
|
|
|
nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
|
|
|
|
nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
|
|
|
|
nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
goto nla_put_failure;
|
|
|
|
|
2014-03-12 10:20:32 +08:00
|
|
|
return nla_nest_end(skb, opts);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
nla_put_failure:
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
|
|
{
|
|
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
2016-09-16 07:20:01 +08:00
|
|
|
struct tc_fq_qd_stats st;
|
|
|
|
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
|
|
|
|
st.gc_flows = q->stat_gc_flows;
|
|
|
|
st.highprio_packets = q->stat_internal_packets;
|
2018-09-21 23:51:54 +08:00
|
|
|
st.tcp_retrans = 0;
|
2016-09-16 07:20:01 +08:00
|
|
|
st.throttled = q->stat_throttled;
|
|
|
|
st.flows_plimit = q->stat_flows_plimit;
|
|
|
|
st.pkts_too_long = q->stat_pkts_too_long;
|
|
|
|
st.allocation_errors = q->stat_allocation_errors;
|
net_sched: sch_fq: enable use of hrtimer slack
Add a new attribute to control the fq qdisc hrtimer slack.
Default is set to 10 usec.
When/if packets are throttled, fq set up an hrtimer that can
lead to one interrupt per packet in the throttled queue.
By using a timer slack, we allow better use of timer interrupts,
by giving them a chance to call multiple timer callbacks
at each hardware interrupt.
Also, giving a slack allows FQ to dequeue batches of packets
instead of a single one, thus increasing xmit_more efficiency.
This has no negative effect on the rate a TCP flow can sustain,
since each TCP flow maintains its own precise vtime (tp->tcp_wstamp_ns)
v2: added strict netlink checking (as feedback from Jakub Kicinski)
Tested:
1000 concurrent flows all using paced packets.
1,000,000 packets sent per second.
Before the patch :
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 60726784 23628 3485992 0 0 138 1 977 535 0 12 87 0 0
0 0 0 60714700 23628 3485628 0 0 0 0 1568827 26462 0 22 78 0 0
1 0 0 60716012 23628 3485656 0 0 0 0 1570034 26216 0 22 78 0 0
0 0 0 60722420 23628 3485492 0 0 0 0 1567230 26424 0 22 78 0 0
0 0 0 60727484 23628 3485556 0 0 0 0 1568220 26200 0 22 78 0 0
2 0 0 60718900 23628 3485380 0 0 0 40 1564721 26630 0 22 78 0 0
2 0 0 60718096 23628 3485332 0 0 0 0 1562593 26432 0 22 78 0 0
0 0 0 60719608 23628 3485064 0 0 0 0 1563806 26238 0 22 78 0 0
1 0 0 60722876 23628 3485236 0 0 0 130 1565874 26566 0 22 78 0 0
1 0 0 60722752 23628 3484908 0 0 0 0 1567646 26247 0 22 78 0 0
After the patch, slack of 10 usec, we can see a reduction of interrupts
per second, and a small decrease of reported cpu usage.
$ vmstat 2 10
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 60722564 23628 3484728 0 0 133 1 696 545 0 13 87 0 0
1 0 0 60722568 23628 3484824 0 0 0 0 977278 25469 0 20 80 0 0
0 0 0 60716396 23628 3484764 0 0 0 0 979997 25326 0 20 80 0 0
0 0 0 60713844 23628 3484960 0 0 0 0 981394 25249 0 20 80 0 0
2 0 0 60720468 23628 3484916 0 0 0 0 982860 25062 0 20 80 0 0
1 0 0 60721236 23628 3484856 0 0 0 0 982867 25100 0 20 80 0 0
1 0 0 60722400 23628 3484456 0 0 0 8 982698 25303 0 20 80 0 0
0 0 0 60715396 23628 3484428 0 0 0 0 981777 25176 0 20 80 0 0
0 0 0 60716520 23628 3486544 0 0 0 36 978965 27857 0 21 79 0 0
0 0 0 60719592 23628 3486516 0 0 0 22 977318 25106 0 20 80 0 0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-17 10:12:51 +08:00
|
|
|
st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
|
|
|
|
ktime_get_ns();
|
2016-09-16 07:20:01 +08:00
|
|
|
st.flows = q->flows;
|
|
|
|
st.inactive_flows = q->inactive_flows;
|
|
|
|
st.throttled_flows = q->throttled_flows;
|
2016-09-22 23:58:55 +08:00
|
|
|
st.unthrottle_latency_ns = min_t(unsigned long,
|
|
|
|
q->unthrottle_latency_ns, ~0U);
|
2018-11-12 01:11:31 +08:00
|
|
|
st.ce_mark = q->stat_ce_mark;
|
2020-05-01 22:07:41 +08:00
|
|
|
st.horizon_drops = q->stat_horizon_drops;
|
|
|
|
st.horizon_caps = q->stat_horizon_caps;
|
2016-09-16 07:20:01 +08:00
|
|
|
sch_tree_unlock(sch);
|
pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
|
|
|
|
|
|
|
return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
|
|
|
|
.id = "fq",
|
|
|
|
.priv_size = sizeof(struct fq_sched_data),
|
|
|
|
|
|
|
|
.enqueue = fq_enqueue,
|
|
|
|
.dequeue = fq_dequeue,
|
|
|
|
.peek = qdisc_peek_dequeued,
|
|
|
|
.init = fq_init,
|
|
|
|
.reset = fq_reset,
|
|
|
|
.destroy = fq_destroy,
|
|
|
|
.change = fq_change,
|
|
|
|
.dump = fq_dump,
|
|
|
|
.dump_stats = fq_dump_stats,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init fq_module_init(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fq_flow_cachep = kmem_cache_create("fq_flow_cache",
|
|
|
|
sizeof(struct fq_flow),
|
|
|
|
0, 0, NULL);
|
|
|
|
if (!fq_flow_cachep)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = register_qdisc(&fq_qdisc_ops);
|
|
|
|
if (ret)
|
|
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit fq_module_exit(void)
|
|
|
|
{
|
|
|
|
unregister_qdisc(&fq_qdisc_ops);
|
|
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(fq_module_init)
|
|
|
|
module_exit(fq_module_exit)
|
|
|
|
MODULE_AUTHOR("Eric Dumazet");
|
|
|
|
MODULE_LICENSE("GPL");
|