2006-08-23 08:06:10 +08:00
|
|
|
/* client.c: NFS client sharing and management code
|
|
|
|
*
|
|
|
|
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 05:22:52 +08:00
|
|
|
#include <linux/sched.h>
|
2006-08-23 08:06:10 +08:00
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/stat.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/unistd.h>
|
|
|
|
#include <linux/sunrpc/clnt.h>
|
|
|
|
#include <linux/sunrpc/stats.h>
|
|
|
|
#include <linux/sunrpc/metrics.h>
|
2007-09-11 01:48:23 +08:00
|
|
|
#include <linux/sunrpc/xprtsock.h>
|
2007-09-11 01:49:41 +08:00
|
|
|
#include <linux/sunrpc/xprtrdma.h>
|
2006-08-23 08:06:10 +08:00
|
|
|
#include <linux/nfs_fs.h>
|
|
|
|
#include <linux/nfs_mount.h>
|
|
|
|
#include <linux/nfs4_mount.h>
|
|
|
|
#include <linux/lockd/bind.h>
|
|
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <linux/mount.h>
|
|
|
|
#include <linux/nfs_idmap.h>
|
|
|
|
#include <linux/vfs.h>
|
|
|
|
#include <linux/inet.h>
|
2008-01-04 02:28:58 +08:00
|
|
|
#include <linux/in6.h>
|
|
|
|
#include <net/ipv6.h>
|
2006-08-23 08:06:10 +08:00
|
|
|
#include <linux/nfs_xdr.h>
|
|
|
|
|
|
|
|
#include <asm/system.h>
|
|
|
|
|
|
|
|
#include "nfs4_fs.h"
|
|
|
|
#include "callback.h"
|
|
|
|
#include "delegation.h"
|
|
|
|
#include "iostat.h"
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
#define NFSDBG_FACILITY NFSDBG_CLIENT
|
|
|
|
|
|
|
|
static DEFINE_SPINLOCK(nfs_client_lock);
|
|
|
|
static LIST_HEAD(nfs_client_list);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
static LIST_HEAD(nfs_volume_list);
|
2006-08-23 08:06:10 +08:00
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(nfs_client_active_wq);
|
|
|
|
|
2006-08-23 08:06:12 +08:00
|
|
|
/*
|
|
|
|
* RPC cruft for NFS
|
|
|
|
*/
|
|
|
|
static struct rpc_version *nfs_version[5] = {
|
|
|
|
[2] = &nfs_version2,
|
|
|
|
#ifdef CONFIG_NFS_V3
|
|
|
|
[3] = &nfs_version3,
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_NFS_V4
|
|
|
|
[4] = &nfs_version4,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rpc_program nfs_program = {
|
|
|
|
.name = "nfs",
|
|
|
|
.number = NFS_PROGRAM,
|
|
|
|
.nrvers = ARRAY_SIZE(nfs_version),
|
|
|
|
.version = nfs_version,
|
|
|
|
.stats = &nfs_rpcstat,
|
|
|
|
.pipe_dir_name = "/nfs",
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rpc_stat nfs_rpcstat = {
|
|
|
|
.program = &nfs_program
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_NFS_V3_ACL
|
|
|
|
static struct rpc_stat nfsacl_rpcstat = { &nfsacl_program };
|
|
|
|
static struct rpc_version * nfsacl_version[] = {
|
|
|
|
[3] = &nfsacl_version3,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rpc_program nfsacl_program = {
|
|
|
|
.name = "nfsacl",
|
|
|
|
.number = NFS_ACL_PROGRAM,
|
|
|
|
.nrvers = ARRAY_SIZE(nfsacl_version),
|
|
|
|
.version = nfsacl_version,
|
|
|
|
.stats = &nfsacl_rpcstat,
|
|
|
|
};
|
|
|
|
#endif /* CONFIG_NFS_V3_ACL */
|
|
|
|
|
2007-12-15 03:56:04 +08:00
|
|
|
struct nfs_client_initdata {
|
|
|
|
const char *hostname;
|
2007-12-11 03:58:51 +08:00
|
|
|
const struct sockaddr *addr;
|
2007-12-11 03:58:15 +08:00
|
|
|
size_t addrlen;
|
2007-12-15 03:56:07 +08:00
|
|
|
const struct nfs_rpc_ops *rpc_ops;
|
2008-01-04 05:29:06 +08:00
|
|
|
int proto;
|
2007-12-15 03:56:04 +08:00
|
|
|
};
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
/*
|
|
|
|
* Allocate a shared client record
|
|
|
|
*
|
|
|
|
* Since these are allocated/deallocated very rarely, we don't
|
|
|
|
* bother putting them in a slab cache...
|
|
|
|
*/
|
2007-12-15 03:56:04 +08:00
|
|
|
static struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *cl_init)
|
2006-08-23 08:06:10 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *clp;
|
2008-04-08 08:50:11 +08:00
|
|
|
struct rpc_cred *cred;
|
2006-08-23 08:06:10 +08:00
|
|
|
|
|
|
|
if ((clp = kzalloc(sizeof(*clp), GFP_KERNEL)) == NULL)
|
|
|
|
goto error_0;
|
|
|
|
|
2007-12-15 03:56:07 +08:00
|
|
|
clp->rpc_ops = cl_init->rpc_ops;
|
|
|
|
|
|
|
|
if (cl_init->rpc_ops->version == 4) {
|
2006-08-23 08:06:10 +08:00
|
|
|
if (nfs_callback_up() < 0)
|
|
|
|
goto error_2;
|
|
|
|
__set_bit(NFS_CS_CALLBACK, &clp->cl_res_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
atomic_set(&clp->cl_count, 1);
|
|
|
|
clp->cl_cons_state = NFS_CS_INITING;
|
|
|
|
|
2007-12-11 03:58:15 +08:00
|
|
|
memcpy(&clp->cl_addr, cl_init->addr, cl_init->addrlen);
|
|
|
|
clp->cl_addrlen = cl_init->addrlen;
|
2006-08-23 08:06:10 +08:00
|
|
|
|
2007-12-15 03:56:04 +08:00
|
|
|
if (cl_init->hostname) {
|
|
|
|
clp->cl_hostname = kstrdup(cl_init->hostname, GFP_KERNEL);
|
2006-08-23 08:06:10 +08:00
|
|
|
if (!clp->cl_hostname)
|
|
|
|
goto error_3;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&clp->cl_superblocks);
|
|
|
|
clp->cl_rpcclient = ERR_PTR(-EINVAL);
|
|
|
|
|
2008-01-04 05:29:06 +08:00
|
|
|
clp->cl_proto = cl_init->proto;
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
#ifdef CONFIG_NFS_V4
|
|
|
|
init_rwsem(&clp->cl_sem);
|
|
|
|
INIT_LIST_HEAD(&clp->cl_delegations);
|
|
|
|
spin_lock_init(&clp->cl_lock);
|
2006-11-22 22:55:48 +08:00
|
|
|
INIT_DELAYED_WORK(&clp->cl_renewd, nfs4_renew_state);
|
2006-08-23 08:06:10 +08:00
|
|
|
rpc_init_wait_queue(&clp->cl_rpcwaitq, "NFS client");
|
|
|
|
clp->cl_boot_time = CURRENT_TIME;
|
|
|
|
clp->cl_state = 1 << NFS4CLNT_LEASE_EXPIRED;
|
|
|
|
#endif
|
2008-04-08 08:50:11 +08:00
|
|
|
cred = rpc_lookup_machine_cred();
|
|
|
|
if (!IS_ERR(cred))
|
|
|
|
clp->cl_machine_cred = cred;
|
2006-08-23 08:06:10 +08:00
|
|
|
|
|
|
|
return clp;
|
|
|
|
|
|
|
|
error_3:
|
2006-08-23 08:06:14 +08:00
|
|
|
if (__test_and_clear_bit(NFS_CS_CALLBACK, &clp->cl_res_state))
|
|
|
|
nfs_callback_down();
|
2006-08-23 08:06:10 +08:00
|
|
|
error_2:
|
|
|
|
kfree(clp);
|
|
|
|
error_0:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2006-08-24 13:03:05 +08:00
|
|
|
static void nfs4_shutdown_client(struct nfs_client *clp)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_NFS_V4
|
|
|
|
if (__test_and_clear_bit(NFS_CS_RENEWD, &clp->cl_res_state))
|
|
|
|
nfs4_kill_renewd(clp);
|
2007-07-03 01:58:33 +08:00
|
|
|
BUG_ON(!RB_EMPTY_ROOT(&clp->cl_state_owners));
|
2006-08-24 13:03:05 +08:00
|
|
|
if (__test_and_clear_bit(NFS_CS_IDMAP, &clp->cl_res_state))
|
|
|
|
nfs_idmap_delete(clp);
|
2008-02-23 06:06:55 +08:00
|
|
|
|
|
|
|
rpc_destroy_wait_queue(&clp->cl_rpcwaitq);
|
2006-08-24 13:03:05 +08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
/*
|
|
|
|
* Destroy a shared client record
|
|
|
|
*/
|
|
|
|
static void nfs_free_client(struct nfs_client *clp)
|
|
|
|
{
|
2007-12-15 03:56:07 +08:00
|
|
|
dprintk("--> nfs_free_client(%u)\n", clp->rpc_ops->version);
|
2006-08-23 08:06:10 +08:00
|
|
|
|
2006-08-24 13:03:05 +08:00
|
|
|
nfs4_shutdown_client(clp);
|
2006-08-23 08:06:10 +08:00
|
|
|
|
|
|
|
/* -EIO all pending I/O */
|
|
|
|
if (!IS_ERR(clp->cl_rpcclient))
|
|
|
|
rpc_shutdown_client(clp->cl_rpcclient);
|
|
|
|
|
|
|
|
if (__test_and_clear_bit(NFS_CS_CALLBACK, &clp->cl_res_state))
|
|
|
|
nfs_callback_down();
|
|
|
|
|
2008-04-08 08:50:11 +08:00
|
|
|
if (clp->cl_machine_cred != NULL)
|
|
|
|
put_rpccred(clp->cl_machine_cred);
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
kfree(clp->cl_hostname);
|
|
|
|
kfree(clp);
|
|
|
|
|
|
|
|
dprintk("<-- nfs_free_client()\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Release a reference to a shared client record
|
|
|
|
*/
|
|
|
|
void nfs_put_client(struct nfs_client *clp)
|
|
|
|
{
|
2006-07-31 02:40:56 +08:00
|
|
|
if (!clp)
|
|
|
|
return;
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
dprintk("--> nfs_put_client({%d})\n", atomic_read(&clp->cl_count));
|
|
|
|
|
|
|
|
if (atomic_dec_and_lock(&clp->cl_count, &nfs_client_lock)) {
|
|
|
|
list_del(&clp->cl_share_link);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
BUG_ON(!list_empty(&clp->cl_superblocks));
|
|
|
|
|
|
|
|
nfs_free_client(clp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-01-04 02:28:58 +08:00
|
|
|
static int nfs_sockaddr_match_ipaddr4(const struct sockaddr_in *sa1,
|
|
|
|
const struct sockaddr_in *sa2)
|
|
|
|
{
|
|
|
|
return sa1->sin_addr.s_addr == sa2->sin_addr.s_addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nfs_sockaddr_match_ipaddr6(const struct sockaddr_in6 *sa1,
|
|
|
|
const struct sockaddr_in6 *sa2)
|
|
|
|
{
|
|
|
|
return ipv6_addr_equal(&sa1->sin6_addr, &sa2->sin6_addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nfs_sockaddr_match_ipaddr(const struct sockaddr *sa1,
|
|
|
|
const struct sockaddr *sa2)
|
|
|
|
{
|
|
|
|
switch (sa1->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
return nfs_sockaddr_match_ipaddr4((const struct sockaddr_in *)sa1,
|
|
|
|
(const struct sockaddr_in *)sa2);
|
|
|
|
case AF_INET6:
|
|
|
|
return nfs_sockaddr_match_ipaddr6((const struct sockaddr_in6 *)sa1,
|
|
|
|
(const struct sockaddr_in6 *)sa2);
|
|
|
|
}
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
/*
|
2007-12-15 03:56:05 +08:00
|
|
|
* Find a client by IP address and protocol version
|
|
|
|
* - returns NULL if no such client
|
2006-08-23 08:06:10 +08:00
|
|
|
*/
|
2007-12-11 03:58:44 +08:00
|
|
|
struct nfs_client *nfs_find_client(const struct sockaddr *addr, u32 nfsversion)
|
2006-08-23 08:06:10 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *clp;
|
|
|
|
|
2007-12-15 03:56:05 +08:00
|
|
|
spin_lock(&nfs_client_lock);
|
2006-08-23 08:06:10 +08:00
|
|
|
list_for_each_entry(clp, &nfs_client_list, cl_share_link) {
|
2008-01-04 02:28:58 +08:00
|
|
|
struct sockaddr *clap = (struct sockaddr *)&clp->cl_addr;
|
|
|
|
|
2006-10-20 14:28:40 +08:00
|
|
|
/* Don't match clients that failed to initialise properly */
|
2007-12-15 03:56:05 +08:00
|
|
|
if (clp->cl_cons_state != NFS_CS_READY)
|
2006-10-20 14:28:40 +08:00
|
|
|
continue;
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
/* Different NFS versions cannot share the same nfs_client */
|
2007-12-15 03:56:07 +08:00
|
|
|
if (clp->rpc_ops->version != nfsversion)
|
2006-08-23 08:06:10 +08:00
|
|
|
continue;
|
|
|
|
|
2008-01-04 02:28:58 +08:00
|
|
|
if (addr->sa_family != clap->sa_family)
|
|
|
|
continue;
|
2007-12-15 03:56:05 +08:00
|
|
|
/* Match only the IP address, not the port number */
|
2008-01-04 02:28:58 +08:00
|
|
|
if (!nfs_sockaddr_match_ipaddr(addr, clap))
|
2006-08-23 08:06:10 +08:00
|
|
|
continue;
|
|
|
|
|
2007-12-15 03:56:05 +08:00
|
|
|
atomic_inc(&clp->cl_count);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
return clp;
|
2006-08-23 08:06:10 +08:00
|
|
|
}
|
2007-12-15 03:56:05 +08:00
|
|
|
spin_unlock(&nfs_client_lock);
|
2006-08-23 08:06:10 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2008-01-26 14:06:40 +08:00
|
|
|
/*
|
|
|
|
* Find a client by IP address and protocol version
|
|
|
|
* - returns NULL if no such client
|
|
|
|
*/
|
|
|
|
struct nfs_client *nfs_find_client_next(struct nfs_client *clp)
|
|
|
|
{
|
|
|
|
struct sockaddr *sap = (struct sockaddr *)&clp->cl_addr;
|
|
|
|
u32 nfsvers = clp->rpc_ops->version;
|
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_for_each_entry_continue(clp, &nfs_client_list, cl_share_link) {
|
|
|
|
struct sockaddr *clap = (struct sockaddr *)&clp->cl_addr;
|
|
|
|
|
|
|
|
/* Don't match clients that failed to initialise properly */
|
|
|
|
if (clp->cl_cons_state != NFS_CS_READY)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Different NFS versions cannot share the same nfs_client */
|
|
|
|
if (clp->rpc_ops->version != nfsvers)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (sap->sa_family != clap->sa_family)
|
|
|
|
continue;
|
|
|
|
/* Match only the IP address, not the port number */
|
|
|
|
if (!nfs_sockaddr_match_ipaddr(sap, clap))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
atomic_inc(&clp->cl_count);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
return clp;
|
|
|
|
}
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
/*
|
2007-12-15 03:56:05 +08:00
|
|
|
* Find an nfs_client on the list that matches the initialisation data
|
|
|
|
* that is supplied.
|
2006-08-23 08:06:10 +08:00
|
|
|
*/
|
2007-12-15 03:56:05 +08:00
|
|
|
static struct nfs_client *nfs_match_client(const struct nfs_client_initdata *data)
|
2006-08-23 08:06:10 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *clp;
|
|
|
|
|
2007-12-15 03:56:05 +08:00
|
|
|
list_for_each_entry(clp, &nfs_client_list, cl_share_link) {
|
|
|
|
/* Don't match clients that failed to initialise properly */
|
|
|
|
if (clp->cl_cons_state < 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Different NFS versions cannot share the same nfs_client */
|
2007-12-15 03:56:07 +08:00
|
|
|
if (clp->rpc_ops != data->rpc_ops)
|
2007-12-15 03:56:05 +08:00
|
|
|
continue;
|
|
|
|
|
2008-01-04 05:29:06 +08:00
|
|
|
if (clp->cl_proto != data->proto)
|
|
|
|
continue;
|
|
|
|
|
2007-12-15 03:56:05 +08:00
|
|
|
/* Match the full socket address */
|
|
|
|
if (memcmp(&clp->cl_addr, data->addr, sizeof(clp->cl_addr)) != 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
atomic_inc(&clp->cl_count);
|
|
|
|
return clp;
|
2006-10-20 14:28:40 +08:00
|
|
|
}
|
2007-12-15 03:56:05 +08:00
|
|
|
return NULL;
|
2006-08-23 08:06:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look up a client by IP address and protocol version
|
|
|
|
* - creates a new record if one doesn't yet exist
|
|
|
|
*/
|
2007-12-15 03:56:04 +08:00
|
|
|
static struct nfs_client *nfs_get_client(const struct nfs_client_initdata *cl_init)
|
2006-08-23 08:06:10 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *clp, *new = NULL;
|
|
|
|
int error;
|
|
|
|
|
2007-12-11 03:58:51 +08:00
|
|
|
dprintk("--> nfs_get_client(%s,v%u)\n",
|
|
|
|
cl_init->hostname ?: "", cl_init->rpc_ops->version);
|
2006-08-23 08:06:10 +08:00
|
|
|
|
|
|
|
/* see if the client already exists */
|
|
|
|
do {
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
|
2007-12-15 03:56:05 +08:00
|
|
|
clp = nfs_match_client(cl_init);
|
2006-08-23 08:06:10 +08:00
|
|
|
if (clp)
|
|
|
|
goto found_client;
|
|
|
|
if (new)
|
|
|
|
goto install_client;
|
|
|
|
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
2007-12-15 03:56:04 +08:00
|
|
|
new = nfs_alloc_client(cl_init);
|
2006-08-23 08:06:10 +08:00
|
|
|
} while (new);
|
|
|
|
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
/* install a new client and return with it unready */
|
|
|
|
install_client:
|
|
|
|
clp = new;
|
|
|
|
list_add(&clp->cl_share_link, &nfs_client_list);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
dprintk("--> nfs_get_client() = %p [new]\n", clp);
|
|
|
|
return clp;
|
|
|
|
|
|
|
|
/* found an existing client
|
|
|
|
* - make sure it's ready before returning
|
|
|
|
*/
|
|
|
|
found_client:
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
if (new)
|
|
|
|
nfs_free_client(new);
|
|
|
|
|
2007-12-07 05:24:39 +08:00
|
|
|
error = wait_event_killable(nfs_client_active_wq,
|
2006-10-09 02:33:24 +08:00
|
|
|
clp->cl_cons_state != NFS_CS_INITING);
|
|
|
|
if (error < 0) {
|
|
|
|
nfs_put_client(clp);
|
|
|
|
return ERR_PTR(-ERESTARTSYS);
|
2006-08-23 08:06:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (clp->cl_cons_state < NFS_CS_READY) {
|
|
|
|
error = clp->cl_cons_state;
|
|
|
|
nfs_put_client(clp);
|
|
|
|
return ERR_PTR(error);
|
|
|
|
}
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
BUG_ON(clp->cl_cons_state != NFS_CS_READY);
|
|
|
|
|
2006-08-23 08:06:10 +08:00
|
|
|
dprintk("--> nfs_get_client() = %p [share]\n", clp);
|
|
|
|
return clp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark a server as ready or failed
|
|
|
|
*/
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
static void nfs_mark_client_ready(struct nfs_client *clp, int state)
|
2006-08-23 08:06:10 +08:00
|
|
|
{
|
|
|
|
clp->cl_cons_state = state;
|
|
|
|
wake_up_all(&nfs_client_active_wq);
|
|
|
|
}
|
2006-08-23 08:06:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise the timeout values for a connection
|
|
|
|
*/
|
|
|
|
static void nfs_init_timeout_values(struct rpc_timeout *to, int proto,
|
|
|
|
unsigned int timeo, unsigned int retrans)
|
|
|
|
{
|
|
|
|
to->to_initval = timeo * HZ / 10;
|
|
|
|
to->to_retries = retrans;
|
|
|
|
if (!to->to_retries)
|
|
|
|
to->to_retries = 2;
|
|
|
|
|
|
|
|
switch (proto) {
|
2007-09-11 01:48:23 +08:00
|
|
|
case XPRT_TRANSPORT_TCP:
|
2007-09-11 01:49:41 +08:00
|
|
|
case XPRT_TRANSPORT_RDMA:
|
2007-12-21 05:03:57 +08:00
|
|
|
if (to->to_initval == 0)
|
2006-08-23 08:06:12 +08:00
|
|
|
to->to_initval = 60 * HZ;
|
|
|
|
if (to->to_initval > NFS_MAX_TCP_TIMEOUT)
|
|
|
|
to->to_initval = NFS_MAX_TCP_TIMEOUT;
|
|
|
|
to->to_increment = to->to_initval;
|
|
|
|
to->to_maxval = to->to_initval + (to->to_increment * to->to_retries);
|
2007-12-21 05:03:57 +08:00
|
|
|
if (to->to_maxval > NFS_MAX_TCP_TIMEOUT)
|
|
|
|
to->to_maxval = NFS_MAX_TCP_TIMEOUT;
|
|
|
|
if (to->to_maxval < to->to_initval)
|
|
|
|
to->to_maxval = to->to_initval;
|
2006-08-23 08:06:12 +08:00
|
|
|
to->to_exponential = 0;
|
|
|
|
break;
|
2007-09-11 01:48:23 +08:00
|
|
|
case XPRT_TRANSPORT_UDP:
|
2006-08-23 08:06:12 +08:00
|
|
|
default:
|
|
|
|
if (!to->to_initval)
|
|
|
|
to->to_initval = 11 * HZ / 10;
|
|
|
|
if (to->to_initval > NFS_MAX_UDP_TIMEOUT)
|
|
|
|
to->to_initval = NFS_MAX_UDP_TIMEOUT;
|
|
|
|
to->to_maxval = NFS_MAX_UDP_TIMEOUT;
|
|
|
|
to->to_exponential = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create an RPC client handle
|
|
|
|
*/
|
2008-01-04 05:29:06 +08:00
|
|
|
static int nfs_create_rpc_client(struct nfs_client *clp,
|
2007-12-21 05:03:59 +08:00
|
|
|
const struct rpc_timeout *timeparms,
|
|
|
|
rpc_authflavor_t flavor,
|
|
|
|
int flags)
|
2006-08-23 08:06:12 +08:00
|
|
|
{
|
|
|
|
struct rpc_clnt *clnt = NULL;
|
2006-08-23 08:06:20 +08:00
|
|
|
struct rpc_create_args args = {
|
2008-01-04 05:29:06 +08:00
|
|
|
.protocol = clp->cl_proto,
|
2006-08-23 08:06:20 +08:00
|
|
|
.address = (struct sockaddr *)&clp->cl_addr,
|
2007-12-11 03:58:15 +08:00
|
|
|
.addrsize = clp->cl_addrlen,
|
2007-12-21 05:03:59 +08:00
|
|
|
.timeout = timeparms,
|
2006-08-23 08:06:20 +08:00
|
|
|
.servername = clp->cl_hostname,
|
|
|
|
.program = &nfs_program,
|
|
|
|
.version = clp->rpc_ops->version,
|
|
|
|
.authflavor = flavor,
|
2007-02-07 07:26:11 +08:00
|
|
|
.flags = flags,
|
2006-08-23 08:06:20 +08:00
|
|
|
};
|
2006-08-23 08:06:12 +08:00
|
|
|
|
|
|
|
if (!IS_ERR(clp->cl_rpcclient))
|
|
|
|
return 0;
|
|
|
|
|
2006-08-23 08:06:20 +08:00
|
|
|
clnt = rpc_create(&args);
|
2006-08-23 08:06:12 +08:00
|
|
|
if (IS_ERR(clnt)) {
|
|
|
|
dprintk("%s: cannot create RPC client. Error = %ld\n",
|
|
|
|
__FUNCTION__, PTR_ERR(clnt));
|
|
|
|
return PTR_ERR(clnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
clp->cl_rpcclient = clnt;
|
|
|
|
return 0;
|
|
|
|
}
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Version 2 or 3 client destruction
|
|
|
|
*/
|
|
|
|
static void nfs_destroy_server(struct nfs_server *server)
|
|
|
|
{
|
|
|
|
if (!(server->flags & NFS_MOUNT_NONLM))
|
2008-01-12 06:09:52 +08:00
|
|
|
nlmclnt_done(server->nlm_host);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Version 2 or 3 lockd setup
|
|
|
|
*/
|
|
|
|
static int nfs_start_lockd(struct nfs_server *server)
|
|
|
|
{
|
2008-01-12 06:09:52 +08:00
|
|
|
struct nlm_host *host;
|
|
|
|
struct nfs_client *clp = server->nfs_client;
|
2008-01-16 05:04:20 +08:00
|
|
|
struct nlmclnt_initdata nlm_init = {
|
|
|
|
.hostname = clp->cl_hostname,
|
|
|
|
.address = (struct sockaddr *)&clp->cl_addr,
|
|
|
|
.addrlen = clp->cl_addrlen,
|
|
|
|
.protocol = server->flags & NFS_MOUNT_TCP ?
|
|
|
|
IPPROTO_TCP : IPPROTO_UDP,
|
|
|
|
.nfs_version = clp->rpc_ops->version,
|
|
|
|
};
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
2008-01-16 05:04:20 +08:00
|
|
|
if (nlm_init.nfs_version > 3)
|
2008-01-12 06:09:52 +08:00
|
|
|
return 0;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (server->flags & NFS_MOUNT_NONLM)
|
2008-01-12 06:09:52 +08:00
|
|
|
return 0;
|
|
|
|
|
2008-01-16 05:04:20 +08:00
|
|
|
host = nlmclnt_init(&nlm_init);
|
2008-01-12 06:09:52 +08:00
|
|
|
if (IS_ERR(host))
|
|
|
|
return PTR_ERR(host);
|
|
|
|
|
|
|
|
server->nlm_host = host;
|
|
|
|
server->destroy = nfs_destroy_server;
|
|
|
|
return 0;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise an NFSv3 ACL client connection
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_NFS_V3_ACL
|
|
|
|
static void nfs_init_server_aclclient(struct nfs_server *server)
|
|
|
|
{
|
2007-12-15 03:56:07 +08:00
|
|
|
if (server->nfs_client->rpc_ops->version != 3)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
goto out_noacl;
|
|
|
|
if (server->flags & NFS_MOUNT_NOACL)
|
|
|
|
goto out_noacl;
|
|
|
|
|
|
|
|
server->client_acl = rpc_bind_new_program(server->client, &nfsacl_program, 3);
|
|
|
|
if (IS_ERR(server->client_acl))
|
|
|
|
goto out_noacl;
|
|
|
|
|
|
|
|
/* No errors! Assume that Sun nfsacls are supported */
|
|
|
|
server->caps |= NFS_CAP_ACLS;
|
|
|
|
return;
|
|
|
|
|
|
|
|
out_noacl:
|
|
|
|
server->caps &= ~NFS_CAP_ACLS;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void nfs_init_server_aclclient(struct nfs_server *server)
|
|
|
|
{
|
|
|
|
server->flags &= ~NFS_MOUNT_NOACL;
|
|
|
|
server->caps &= ~NFS_CAP_ACLS;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a general RPC client
|
|
|
|
*/
|
2007-12-21 05:03:59 +08:00
|
|
|
static int nfs_init_server_rpcclient(struct nfs_server *server,
|
|
|
|
const struct rpc_timeout *timeo,
|
|
|
|
rpc_authflavor_t pseudoflavour)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *clp = server->nfs_client;
|
|
|
|
|
|
|
|
server->client = rpc_clone_client(clp->cl_rpcclient);
|
|
|
|
if (IS_ERR(server->client)) {
|
|
|
|
dprintk("%s: couldn't create rpc_client!\n", __FUNCTION__);
|
|
|
|
return PTR_ERR(server->client);
|
|
|
|
}
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
memcpy(&server->client->cl_timeout_default,
|
|
|
|
timeo,
|
|
|
|
sizeof(server->client->cl_timeout_default));
|
|
|
|
server->client->cl_timeout = &server->client->cl_timeout_default;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (pseudoflavour != clp->cl_rpcclient->cl_auth->au_flavor) {
|
|
|
|
struct rpc_auth *auth;
|
|
|
|
|
|
|
|
auth = rpcauth_create(pseudoflavour, server->client);
|
|
|
|
if (IS_ERR(auth)) {
|
|
|
|
dprintk("%s: couldn't create credcache!\n", __FUNCTION__);
|
|
|
|
return PTR_ERR(auth);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
server->client->cl_softrtry = 0;
|
|
|
|
if (server->flags & NFS_MOUNT_SOFT)
|
|
|
|
server->client->cl_softrtry = 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise an NFS2 or NFS3 client
|
|
|
|
*/
|
2007-09-11 01:43:56 +08:00
|
|
|
static int nfs_init_client(struct nfs_client *clp,
|
2007-12-21 05:03:59 +08:00
|
|
|
const struct rpc_timeout *timeparms,
|
2007-09-11 01:43:56 +08:00
|
|
|
const struct nfs_parsed_mount_data *data)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (clp->cl_cons_state == NFS_CS_READY) {
|
|
|
|
/* the client is already initialised */
|
|
|
|
dprintk("<-- nfs_init_client() = 0 [already %p]\n", clp);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a client RPC handle for doing FSSTAT with UNIX auth only
|
|
|
|
* - RFC 2623, sec 2.3.2
|
|
|
|
*/
|
2008-01-04 05:29:06 +08:00
|
|
|
error = nfs_create_rpc_client(clp, timeparms, RPC_AUTH_UNIX, 0);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
nfs_mark_client_ready(clp, NFS_CS_READY);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error:
|
|
|
|
nfs_mark_client_ready(clp, error);
|
|
|
|
dprintk("<-- nfs_init_client() = xerror %d\n", error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a version 2 or 3 client
|
|
|
|
*/
|
2007-09-11 01:43:56 +08:00
|
|
|
static int nfs_init_server(struct nfs_server *server,
|
|
|
|
const struct nfs_parsed_mount_data *data)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
2007-12-15 03:56:04 +08:00
|
|
|
struct nfs_client_initdata cl_init = {
|
|
|
|
.hostname = data->nfs_server.hostname,
|
2007-12-11 03:58:51 +08:00
|
|
|
.addr = (const struct sockaddr *)&data->nfs_server.address,
|
2007-12-11 03:59:28 +08:00
|
|
|
.addrlen = data->nfs_server.addrlen,
|
2007-12-15 03:56:07 +08:00
|
|
|
.rpc_ops = &nfs_v2_clientops,
|
2008-01-04 05:29:06 +08:00
|
|
|
.proto = data->nfs_server.protocol,
|
2007-12-15 03:56:04 +08:00
|
|
|
};
|
2007-12-21 05:03:59 +08:00
|
|
|
struct rpc_timeout timeparms;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
struct nfs_client *clp;
|
2007-12-15 03:56:04 +08:00
|
|
|
int error;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
dprintk("--> nfs_init_server()\n");
|
|
|
|
|
|
|
|
#ifdef CONFIG_NFS_V3
|
|
|
|
if (data->flags & NFS_MOUNT_VER3)
|
2007-12-15 03:56:07 +08:00
|
|
|
cl_init.rpc_ops = &nfs_v3_clientops;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Allocate or find a client reference we can use */
|
2007-12-15 03:56:04 +08:00
|
|
|
clp = nfs_get_client(&cl_init);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (IS_ERR(clp)) {
|
|
|
|
dprintk("<-- nfs_init_server() = error %ld\n", PTR_ERR(clp));
|
|
|
|
return PTR_ERR(clp);
|
|
|
|
}
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
nfs_init_timeout_values(&timeparms, data->nfs_server.protocol,
|
|
|
|
data->timeo, data->retrans);
|
|
|
|
error = nfs_init_client(clp, &timeparms, data);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
server->nfs_client = clp;
|
|
|
|
|
|
|
|
/* Initialise the client representation from the mount data */
|
|
|
|
server->flags = data->flags & NFS_MOUNT_FLAGMASK;
|
|
|
|
|
|
|
|
if (data->rsize)
|
|
|
|
server->rsize = nfs_block_size(data->rsize, NULL);
|
|
|
|
if (data->wsize)
|
|
|
|
server->wsize = nfs_block_size(data->wsize, NULL);
|
|
|
|
|
|
|
|
server->acregmin = data->acregmin * HZ;
|
|
|
|
server->acregmax = data->acregmax * HZ;
|
|
|
|
server->acdirmin = data->acdirmin * HZ;
|
|
|
|
server->acdirmax = data->acdirmax * HZ;
|
|
|
|
|
|
|
|
/* Start lockd here, before we might error out */
|
|
|
|
error = nfs_start_lockd(server);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
2008-03-15 02:10:22 +08:00
|
|
|
server->port = data->nfs_server.port;
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
error = nfs_init_server_rpcclient(server, &timeparms, data->auth_flavors[0]);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
2008-03-15 02:10:30 +08:00
|
|
|
/* Preserve the values of mount_server-related mount options */
|
|
|
|
if (data->mount_server.addrlen) {
|
|
|
|
memcpy(&server->mountd_address, &data->mount_server.address,
|
|
|
|
data->mount_server.addrlen);
|
|
|
|
server->mountd_addrlen = data->mount_server.addrlen;
|
|
|
|
}
|
|
|
|
server->mountd_version = data->mount_server.version;
|
|
|
|
server->mountd_port = data->mount_server.port;
|
|
|
|
server->mountd_protocol = data->mount_server.protocol;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
server->namelen = data->namlen;
|
|
|
|
/* Create a client RPC handle for the NFSv3 ACL management interface */
|
|
|
|
nfs_init_server_aclclient(server);
|
|
|
|
dprintk("<-- nfs_init_server() = 0 [new %p]\n", clp);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error:
|
|
|
|
server->nfs_client = NULL;
|
|
|
|
nfs_put_client(clp);
|
|
|
|
dprintk("<-- nfs_init_server() = xerror %d\n", error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load up the server record from information gained in an fsinfo record
|
|
|
|
*/
|
|
|
|
static void nfs_server_set_fsinfo(struct nfs_server *server, struct nfs_fsinfo *fsinfo)
|
|
|
|
{
|
|
|
|
unsigned long max_rpc_payload;
|
|
|
|
|
|
|
|
/* Work out a lot of parameters */
|
|
|
|
if (server->rsize == 0)
|
|
|
|
server->rsize = nfs_block_size(fsinfo->rtpref, NULL);
|
|
|
|
if (server->wsize == 0)
|
|
|
|
server->wsize = nfs_block_size(fsinfo->wtpref, NULL);
|
|
|
|
|
|
|
|
if (fsinfo->rtmax >= 512 && server->rsize > fsinfo->rtmax)
|
|
|
|
server->rsize = nfs_block_size(fsinfo->rtmax, NULL);
|
|
|
|
if (fsinfo->wtmax >= 512 && server->wsize > fsinfo->wtmax)
|
|
|
|
server->wsize = nfs_block_size(fsinfo->wtmax, NULL);
|
|
|
|
|
|
|
|
max_rpc_payload = nfs_block_size(rpc_max_payload(server->client), NULL);
|
|
|
|
if (server->rsize > max_rpc_payload)
|
|
|
|
server->rsize = max_rpc_payload;
|
|
|
|
if (server->rsize > NFS_MAX_FILE_IO_SIZE)
|
|
|
|
server->rsize = NFS_MAX_FILE_IO_SIZE;
|
|
|
|
server->rpages = (server->rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
2007-10-17 14:25:46 +08:00
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
server->backing_dev_info.ra_pages = server->rpages * NFS_MAX_READAHEAD;
|
|
|
|
|
|
|
|
if (server->wsize > max_rpc_payload)
|
|
|
|
server->wsize = max_rpc_payload;
|
|
|
|
if (server->wsize > NFS_MAX_FILE_IO_SIZE)
|
|
|
|
server->wsize = NFS_MAX_FILE_IO_SIZE;
|
|
|
|
server->wpages = (server->wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
server->wtmult = nfs_block_bits(fsinfo->wtmult, NULL);
|
|
|
|
|
|
|
|
server->dtsize = nfs_block_size(fsinfo->dtpref, NULL);
|
|
|
|
if (server->dtsize > PAGE_CACHE_SIZE)
|
|
|
|
server->dtsize = PAGE_CACHE_SIZE;
|
|
|
|
if (server->dtsize > server->rsize)
|
|
|
|
server->dtsize = server->rsize;
|
|
|
|
|
|
|
|
if (server->flags & NFS_MOUNT_NOAC) {
|
|
|
|
server->acregmin = server->acregmax = 0;
|
|
|
|
server->acdirmin = server->acdirmax = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
server->maxfilesize = fsinfo->maxfilesize;
|
|
|
|
|
|
|
|
/* We're airborne Set socket buffersize */
|
|
|
|
rpc_setbufsize(server->client, server->wsize + 100, server->rsize + 100);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Probe filesystem information, including the FSID on v2/v3
|
|
|
|
*/
|
|
|
|
static int nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *mntfh, struct nfs_fattr *fattr)
|
|
|
|
{
|
|
|
|
struct nfs_fsinfo fsinfo;
|
|
|
|
struct nfs_client *clp = server->nfs_client;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs_probe_fsinfo()\n");
|
|
|
|
|
|
|
|
if (clp->rpc_ops->set_capabilities != NULL) {
|
|
|
|
error = clp->rpc_ops->set_capabilities(server, mntfh);
|
|
|
|
if (error < 0)
|
|
|
|
goto out_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
fsinfo.fattr = fattr;
|
|
|
|
nfs_fattr_init(fattr);
|
|
|
|
error = clp->rpc_ops->fsinfo(server, mntfh, &fsinfo);
|
|
|
|
if (error < 0)
|
|
|
|
goto out_error;
|
|
|
|
|
|
|
|
nfs_server_set_fsinfo(server, &fsinfo);
|
2007-10-17 14:25:46 +08:00
|
|
|
error = bdi_init(&server->backing_dev_info);
|
|
|
|
if (error)
|
|
|
|
goto out_error;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
/* Get some general file system info */
|
|
|
|
if (server->namelen == 0) {
|
|
|
|
struct nfs_pathconf pathinfo;
|
|
|
|
|
|
|
|
pathinfo.fattr = fattr;
|
|
|
|
nfs_fattr_init(fattr);
|
|
|
|
|
|
|
|
if (clp->rpc_ops->pathconf(server, mntfh, &pathinfo) >= 0)
|
|
|
|
server->namelen = pathinfo.max_namelen;
|
|
|
|
}
|
|
|
|
|
|
|
|
dprintk("<-- nfs_probe_fsinfo() = 0\n");
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_error:
|
|
|
|
dprintk("nfs_probe_fsinfo: error = %d\n", -error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy useful information when duplicating a server record
|
|
|
|
*/
|
|
|
|
static void nfs_server_copy_userdata(struct nfs_server *target, struct nfs_server *source)
|
|
|
|
{
|
|
|
|
target->flags = source->flags;
|
|
|
|
target->acregmin = source->acregmin;
|
|
|
|
target->acregmax = source->acregmax;
|
|
|
|
target->acdirmin = source->acdirmin;
|
|
|
|
target->acdirmax = source->acdirmax;
|
|
|
|
target->caps = source->caps;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and initialise a server record
|
|
|
|
*/
|
|
|
|
static struct nfs_server *nfs_alloc_server(void)
|
|
|
|
{
|
|
|
|
struct nfs_server *server;
|
|
|
|
|
|
|
|
server = kzalloc(sizeof(struct nfs_server), GFP_KERNEL);
|
|
|
|
if (!server)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
server->client = server->client_acl = ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
/* Zero out the NFS state stuff */
|
|
|
|
INIT_LIST_HEAD(&server->client_link);
|
|
|
|
INIT_LIST_HEAD(&server->master_link);
|
|
|
|
|
2007-11-08 17:05:04 +08:00
|
|
|
init_waitqueue_head(&server->active_wq);
|
|
|
|
atomic_set(&server->active, 0);
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
server->io_stats = nfs_alloc_iostats();
|
|
|
|
if (!server->io_stats) {
|
|
|
|
kfree(server);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return server;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free up a server record
|
|
|
|
*/
|
|
|
|
void nfs_free_server(struct nfs_server *server)
|
|
|
|
{
|
|
|
|
dprintk("--> nfs_free_server()\n");
|
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_del(&server->client_link);
|
|
|
|
list_del(&server->master_link);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
if (server->destroy != NULL)
|
|
|
|
server->destroy(server);
|
2007-12-12 11:01:56 +08:00
|
|
|
|
|
|
|
if (!IS_ERR(server->client_acl))
|
|
|
|
rpc_shutdown_client(server->client_acl);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (!IS_ERR(server->client))
|
|
|
|
rpc_shutdown_client(server->client);
|
|
|
|
|
|
|
|
nfs_put_client(server->nfs_client);
|
|
|
|
|
|
|
|
nfs_free_iostats(server->io_stats);
|
2007-10-17 14:25:46 +08:00
|
|
|
bdi_destroy(&server->backing_dev_info);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
kfree(server);
|
|
|
|
nfs_release_automount_timer();
|
|
|
|
dprintk("<-- nfs_free_server()\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a version 2 or 3 volume record
|
|
|
|
* - keyed on server and FSID
|
|
|
|
*/
|
2007-09-11 01:43:56 +08:00
|
|
|
struct nfs_server *nfs_create_server(const struct nfs_parsed_mount_data *data,
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
struct nfs_fh *mntfh)
|
|
|
|
{
|
|
|
|
struct nfs_server *server;
|
|
|
|
struct nfs_fattr fattr;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
server = nfs_alloc_server();
|
|
|
|
if (!server)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
/* Get a client representation */
|
|
|
|
error = nfs_init_server(server, data);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
BUG_ON(!server->nfs_client);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops->file_inode_ops);
|
|
|
|
|
|
|
|
/* Probe the root fh to retrieve its FSID */
|
|
|
|
error = nfs_probe_fsinfo(server, mntfh, &fattr);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
2007-09-29 00:27:41 +08:00
|
|
|
if (server->nfs_client->rpc_ops->version == 3) {
|
|
|
|
if (server->namelen == 0 || server->namelen > NFS3_MAXNAMLEN)
|
|
|
|
server->namelen = NFS3_MAXNAMLEN;
|
|
|
|
if (!(data->flags & NFS_MOUNT_NORDIRPLUS))
|
|
|
|
server->caps |= NFS_CAP_READDIRPLUS;
|
|
|
|
} else {
|
|
|
|
if (server->namelen == 0 || server->namelen > NFS2_MAXNAMLEN)
|
|
|
|
server->namelen = NFS2_MAXNAMLEN;
|
|
|
|
}
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (!(fattr.valid & NFS_ATTR_FATTR)) {
|
|
|
|
error = server->nfs_client->rpc_ops->getattr(server, mntfh, &fattr);
|
|
|
|
if (error < 0) {
|
|
|
|
dprintk("nfs_create_server: getattr error = %d\n", -error);
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memcpy(&server->fsid, &fattr.fsid, sizeof(server->fsid));
|
|
|
|
|
2006-08-25 03:44:16 +08:00
|
|
|
dprintk("Server FSID: %llx:%llx\n",
|
|
|
|
(unsigned long long) server->fsid.major,
|
|
|
|
(unsigned long long) server->fsid.minor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
BUG_ON(!server->nfs_client);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops->file_inode_ops);
|
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_add_tail(&server->client_link, &server->nfs_client->cl_superblocks);
|
|
|
|
list_add_tail(&server->master_link, &nfs_volume_list);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
server->mount_time = jiffies;
|
|
|
|
return server;
|
|
|
|
|
|
|
|
error:
|
|
|
|
nfs_free_server(server);
|
|
|
|
return ERR_PTR(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NFS_V4
|
|
|
|
/*
|
|
|
|
* Initialise an NFS4 client record
|
|
|
|
*/
|
|
|
|
static int nfs4_init_client(struct nfs_client *clp,
|
2007-12-21 05:03:59 +08:00
|
|
|
const struct rpc_timeout *timeparms,
|
2006-10-20 14:28:39 +08:00
|
|
|
const char *ip_addr,
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
rpc_authflavor_t authflavour)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (clp->cl_cons_state == NFS_CS_READY) {
|
|
|
|
/* the client is initialised already */
|
|
|
|
dprintk("<-- nfs4_init_client() = 0 [already %p]\n", clp);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check NFS protocol revision and initialize RPC op vector */
|
|
|
|
clp->rpc_ops = &nfs_v4_clientops;
|
|
|
|
|
2008-01-04 05:29:06 +08:00
|
|
|
error = nfs_create_rpc_client(clp, timeparms, authflavour,
|
2007-02-07 07:26:11 +08:00
|
|
|
RPC_CLNT_CREATE_DISCRTRY);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
2006-10-20 14:28:39 +08:00
|
|
|
memcpy(clp->cl_ipaddr, ip_addr, sizeof(clp->cl_ipaddr));
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
error = nfs_idmap_new(clp);
|
|
|
|
if (error < 0) {
|
|
|
|
dprintk("%s: failed to create idmapper. Error = %d\n",
|
|
|
|
__FUNCTION__, error);
|
|
|
|
goto error;
|
|
|
|
}
|
2006-08-23 08:06:14 +08:00
|
|
|
__set_bit(NFS_CS_IDMAP, &clp->cl_res_state);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
nfs_mark_client_ready(clp, NFS_CS_READY);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error:
|
|
|
|
nfs_mark_client_ready(clp, error);
|
|
|
|
dprintk("<-- nfs4_init_client() = xerror %d\n", error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up an NFS4 client
|
|
|
|
*/
|
|
|
|
static int nfs4_set_client(struct nfs_server *server,
|
2007-12-11 03:58:59 +08:00
|
|
|
const char *hostname,
|
|
|
|
const struct sockaddr *addr,
|
|
|
|
const size_t addrlen,
|
2006-10-20 14:28:39 +08:00
|
|
|
const char *ip_addr,
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
rpc_authflavor_t authflavour,
|
2007-12-21 05:03:59 +08:00
|
|
|
int proto, const struct rpc_timeout *timeparms)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
2007-12-15 03:56:04 +08:00
|
|
|
struct nfs_client_initdata cl_init = {
|
|
|
|
.hostname = hostname,
|
2007-12-11 03:58:59 +08:00
|
|
|
.addr = addr,
|
|
|
|
.addrlen = addrlen,
|
2007-12-15 03:56:07 +08:00
|
|
|
.rpc_ops = &nfs_v4_clientops,
|
2008-01-04 05:29:06 +08:00
|
|
|
.proto = proto,
|
2007-12-15 03:56:04 +08:00
|
|
|
};
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
struct nfs_client *clp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs4_set_client()\n");
|
|
|
|
|
|
|
|
/* Allocate or find a client reference we can use */
|
2007-12-15 03:56:04 +08:00
|
|
|
clp = nfs_get_client(&cl_init);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (IS_ERR(clp)) {
|
|
|
|
error = PTR_ERR(clp);
|
|
|
|
goto error;
|
|
|
|
}
|
2008-01-04 05:29:06 +08:00
|
|
|
error = nfs4_init_client(clp, timeparms, ip_addr, authflavour);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error_put;
|
|
|
|
|
|
|
|
server->nfs_client = clp;
|
|
|
|
dprintk("<-- nfs4_set_client() = 0 [new %p]\n", clp);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_put:
|
|
|
|
nfs_put_client(clp);
|
|
|
|
error:
|
|
|
|
dprintk("<-- nfs4_set_client() = xerror %d\n", error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a version 4 volume record
|
|
|
|
*/
|
|
|
|
static int nfs4_init_server(struct nfs_server *server,
|
2007-09-11 01:44:33 +08:00
|
|
|
const struct nfs_parsed_mount_data *data)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
2007-12-21 05:03:59 +08:00
|
|
|
struct rpc_timeout timeparms;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs4_init_server()\n");
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
nfs_init_timeout_values(&timeparms, data->nfs_server.protocol,
|
|
|
|
data->timeo, data->retrans);
|
|
|
|
|
|
|
|
/* Get a client record */
|
|
|
|
error = nfs4_set_client(server,
|
|
|
|
data->nfs_server.hostname,
|
|
|
|
(const struct sockaddr *)&data->nfs_server.address,
|
|
|
|
data->nfs_server.addrlen,
|
|
|
|
data->client_address,
|
|
|
|
data->auth_flavors[0],
|
|
|
|
data->nfs_server.protocol,
|
|
|
|
&timeparms);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
/* Initialise the client representation from the mount data */
|
|
|
|
server->flags = data->flags & NFS_MOUNT_FLAGMASK;
|
|
|
|
server->caps |= NFS_CAP_ATOMIC_OPEN;
|
|
|
|
|
|
|
|
if (data->rsize)
|
|
|
|
server->rsize = nfs_block_size(data->rsize, NULL);
|
|
|
|
if (data->wsize)
|
|
|
|
server->wsize = nfs_block_size(data->wsize, NULL);
|
|
|
|
|
|
|
|
server->acregmin = data->acregmin * HZ;
|
|
|
|
server->acregmax = data->acregmax * HZ;
|
|
|
|
server->acdirmin = data->acdirmin * HZ;
|
|
|
|
server->acdirmax = data->acdirmax * HZ;
|
|
|
|
|
2008-03-15 02:10:22 +08:00
|
|
|
server->port = data->nfs_server.port;
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
error = nfs_init_server_rpcclient(server, &timeparms, data->auth_flavors[0]);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
error:
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
/* Done */
|
|
|
|
dprintk("<-- nfs4_init_server() = %d\n", error);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a version 4 volume record
|
|
|
|
* - keyed on server and FSID
|
|
|
|
*/
|
2007-09-11 01:44:33 +08:00
|
|
|
struct nfs_server *nfs4_create_server(const struct nfs_parsed_mount_data *data,
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
struct nfs_fh *mntfh)
|
|
|
|
{
|
|
|
|
struct nfs_fattr fattr;
|
|
|
|
struct nfs_server *server;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs4_create_server()\n");
|
|
|
|
|
|
|
|
server = nfs_alloc_server();
|
|
|
|
if (!server)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
/* set up the general RPC client */
|
2007-09-11 01:44:33 +08:00
|
|
|
error = nfs4_init_server(server, data);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
BUG_ON(!server->nfs_client);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops->file_inode_ops);
|
|
|
|
|
|
|
|
/* Probe the root fh to retrieve its FSID */
|
2007-09-11 01:44:33 +08:00
|
|
|
error = nfs4_path_walk(server, mntfh, data->nfs_server.export_path);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
2006-08-25 03:44:16 +08:00
|
|
|
dprintk("Server FSID: %llx:%llx\n",
|
|
|
|
(unsigned long long) server->fsid.major,
|
|
|
|
(unsigned long long) server->fsid.minor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
dprintk("Mount FH: %d\n", mntfh->size);
|
|
|
|
|
|
|
|
error = nfs_probe_fsinfo(server, mntfh, &fattr);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
2007-09-29 00:27:41 +08:00
|
|
|
if (server->namelen == 0 || server->namelen > NFS4_MAXNAMLEN)
|
|
|
|
server->namelen = NFS4_MAXNAMLEN;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
BUG_ON(!server->nfs_client);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops->file_inode_ops);
|
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_add_tail(&server->client_link, &server->nfs_client->cl_superblocks);
|
|
|
|
list_add_tail(&server->master_link, &nfs_volume_list);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
server->mount_time = jiffies;
|
|
|
|
dprintk("<-- nfs4_create_server() = %p\n", server);
|
|
|
|
return server;
|
|
|
|
|
|
|
|
error:
|
|
|
|
nfs_free_server(server);
|
|
|
|
dprintk("<-- nfs4_create_server() = error %d\n", error);
|
|
|
|
return ERR_PTR(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create an NFS4 referral server record
|
|
|
|
*/
|
|
|
|
struct nfs_server *nfs4_create_referral_server(struct nfs_clone_mount *data,
|
2007-02-03 06:46:09 +08:00
|
|
|
struct nfs_fh *mntfh)
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
{
|
|
|
|
struct nfs_client *parent_client;
|
|
|
|
struct nfs_server *server, *parent_server;
|
|
|
|
struct nfs_fattr fattr;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs4_create_referral_server()\n");
|
|
|
|
|
|
|
|
server = nfs_alloc_server();
|
|
|
|
if (!server)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
parent_server = NFS_SB(data->sb);
|
|
|
|
parent_client = parent_server->nfs_client;
|
|
|
|
|
|
|
|
/* Get a client representation.
|
|
|
|
* Note: NFSv4 always uses TCP, */
|
2007-12-11 03:58:59 +08:00
|
|
|
error = nfs4_set_client(server, data->hostname,
|
2007-12-11 03:59:06 +08:00
|
|
|
data->addr,
|
|
|
|
data->addrlen,
|
2007-12-11 03:58:59 +08:00
|
|
|
parent_client->cl_ipaddr,
|
|
|
|
data->authflavor,
|
|
|
|
parent_server->client->cl_xprt->prot,
|
2007-12-21 05:03:59 +08:00
|
|
|
parent_server->client->cl_timeout);
|
2006-08-30 00:19:41 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
/* Initialise the client representation from the parent server */
|
|
|
|
nfs_server_copy_userdata(server, parent_server);
|
|
|
|
server->caps |= NFS_CAP_ATOMIC_OPEN;
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
error = nfs_init_server_rpcclient(server, parent_server->client->cl_timeout, data->authflavor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
BUG_ON(!server->nfs_client);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops);
|
|
|
|
BUG_ON(!server->nfs_client->rpc_ops->file_inode_ops);
|
|
|
|
|
2007-02-03 06:46:09 +08:00
|
|
|
/* Probe the root fh to retrieve its FSID and filehandle */
|
|
|
|
error = nfs4_path_walk(server, mntfh, data->mnt_path);
|
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
/* probe the filesystem info for this server filesystem */
|
2007-02-03 06:46:09 +08:00
|
|
|
error = nfs_probe_fsinfo(server, mntfh, &fattr);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto error;
|
|
|
|
|
2007-09-29 00:27:41 +08:00
|
|
|
if (server->namelen == 0 || server->namelen > NFS4_MAXNAMLEN)
|
|
|
|
server->namelen = NFS4_MAXNAMLEN;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
dprintk("Referral FSID: %llx:%llx\n",
|
2006-08-25 03:44:16 +08:00
|
|
|
(unsigned long long) server->fsid.major,
|
|
|
|
(unsigned long long) server->fsid.minor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_add_tail(&server->client_link, &server->nfs_client->cl_superblocks);
|
|
|
|
list_add_tail(&server->master_link, &nfs_volume_list);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
server->mount_time = jiffies;
|
|
|
|
|
|
|
|
dprintk("<-- nfs_create_referral_server() = %p\n", server);
|
|
|
|
return server;
|
|
|
|
|
|
|
|
error:
|
|
|
|
nfs_free_server(server);
|
|
|
|
dprintk("<-- nfs4_create_referral_server() = error %d\n", error);
|
|
|
|
return ERR_PTR(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_NFS_V4 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clone an NFS2, NFS3 or NFS4 server record
|
|
|
|
*/
|
|
|
|
struct nfs_server *nfs_clone_server(struct nfs_server *source,
|
|
|
|
struct nfs_fh *fh,
|
|
|
|
struct nfs_fattr *fattr)
|
|
|
|
{
|
|
|
|
struct nfs_server *server;
|
|
|
|
struct nfs_fattr fattr_fsinfo;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dprintk("--> nfs_clone_server(,%llx:%llx,)\n",
|
2006-08-25 03:44:16 +08:00
|
|
|
(unsigned long long) fattr->fsid.major,
|
|
|
|
(unsigned long long) fattr->fsid.minor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
server = nfs_alloc_server();
|
|
|
|
if (!server)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
/* Copy data from the source */
|
|
|
|
server->nfs_client = source->nfs_client;
|
|
|
|
atomic_inc(&server->nfs_client->cl_count);
|
|
|
|
nfs_server_copy_userdata(server, source);
|
|
|
|
|
|
|
|
server->fsid = fattr->fsid;
|
|
|
|
|
2007-12-21 05:03:59 +08:00
|
|
|
error = nfs_init_server_rpcclient(server,
|
|
|
|
source->client->cl_timeout,
|
|
|
|
source->client->cl_auth->au_flavor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
if (error < 0)
|
|
|
|
goto out_free_server;
|
|
|
|
if (!IS_ERR(source->client_acl))
|
|
|
|
nfs_init_server_aclclient(server);
|
|
|
|
|
|
|
|
/* probe the filesystem info for this server filesystem */
|
|
|
|
error = nfs_probe_fsinfo(server, fh, &fattr_fsinfo);
|
|
|
|
if (error < 0)
|
|
|
|
goto out_free_server;
|
|
|
|
|
2007-09-29 00:27:41 +08:00
|
|
|
if (server->namelen == 0 || server->namelen > NFS4_MAXNAMLEN)
|
|
|
|
server->namelen = NFS4_MAXNAMLEN;
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
dprintk("Cloned FSID: %llx:%llx\n",
|
2006-08-25 03:44:16 +08:00
|
|
|
(unsigned long long) server->fsid.major,
|
|
|
|
(unsigned long long) server->fsid.minor);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
error = nfs_start_lockd(server);
|
|
|
|
if (error < 0)
|
|
|
|
goto out_free_server;
|
|
|
|
|
|
|
|
spin_lock(&nfs_client_lock);
|
|
|
|
list_add_tail(&server->client_link, &server->nfs_client->cl_superblocks);
|
|
|
|
list_add_tail(&server->master_link, &nfs_volume_list);
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
|
|
|
|
server->mount_time = jiffies;
|
|
|
|
|
|
|
|
dprintk("<-- nfs_clone_server() = %p\n", server);
|
|
|
|
return server;
|
|
|
|
|
|
|
|
out_free_server:
|
|
|
|
nfs_free_server(server);
|
|
|
|
dprintk("<-- nfs_clone_server() = error %d\n", error);
|
|
|
|
return ERR_PTR(error);
|
|
|
|
}
|
2006-08-23 08:06:13 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static struct proc_dir_entry *proc_fs_nfs;
|
|
|
|
|
|
|
|
static int nfs_server_list_open(struct inode *inode, struct file *file);
|
|
|
|
static void *nfs_server_list_start(struct seq_file *p, loff_t *pos);
|
|
|
|
static void *nfs_server_list_next(struct seq_file *p, void *v, loff_t *pos);
|
|
|
|
static void nfs_server_list_stop(struct seq_file *p, void *v);
|
|
|
|
static int nfs_server_list_show(struct seq_file *m, void *v);
|
|
|
|
|
|
|
|
static struct seq_operations nfs_server_list_ops = {
|
|
|
|
.start = nfs_server_list_start,
|
|
|
|
.next = nfs_server_list_next,
|
|
|
|
.stop = nfs_server_list_stop,
|
|
|
|
.show = nfs_server_list_show,
|
|
|
|
};
|
|
|
|
|
2007-02-12 16:55:34 +08:00
|
|
|
static const struct file_operations nfs_server_list_fops = {
|
2006-08-23 08:06:13 +08:00
|
|
|
.open = nfs_server_list_open,
|
|
|
|
.read = seq_read,
|
|
|
|
.llseek = seq_lseek,
|
|
|
|
.release = seq_release,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int nfs_volume_list_open(struct inode *inode, struct file *file);
|
|
|
|
static void *nfs_volume_list_start(struct seq_file *p, loff_t *pos);
|
|
|
|
static void *nfs_volume_list_next(struct seq_file *p, void *v, loff_t *pos);
|
|
|
|
static void nfs_volume_list_stop(struct seq_file *p, void *v);
|
|
|
|
static int nfs_volume_list_show(struct seq_file *m, void *v);
|
|
|
|
|
|
|
|
static struct seq_operations nfs_volume_list_ops = {
|
|
|
|
.start = nfs_volume_list_start,
|
|
|
|
.next = nfs_volume_list_next,
|
|
|
|
.stop = nfs_volume_list_stop,
|
|
|
|
.show = nfs_volume_list_show,
|
|
|
|
};
|
|
|
|
|
2007-02-12 16:55:34 +08:00
|
|
|
static const struct file_operations nfs_volume_list_fops = {
|
2006-08-23 08:06:13 +08:00
|
|
|
.open = nfs_volume_list_open,
|
|
|
|
.read = seq_read,
|
|
|
|
.llseek = seq_lseek,
|
|
|
|
.release = seq_release,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* open "/proc/fs/nfsfs/servers" which provides a summary of servers with which
|
|
|
|
* we're dealing
|
|
|
|
*/
|
|
|
|
static int nfs_server_list_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct seq_file *m;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = seq_open(file, &nfs_server_list_ops);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
m = file->private_data;
|
|
|
|
m->private = PDE(inode)->data;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set up the iterator to start reading from the server list and return the first item
|
|
|
|
*/
|
|
|
|
static void *nfs_server_list_start(struct seq_file *m, loff_t *_pos)
|
|
|
|
{
|
|
|
|
/* lock the list against modification */
|
|
|
|
spin_lock(&nfs_client_lock);
|
2007-07-16 14:39:56 +08:00
|
|
|
return seq_list_start_head(&nfs_client_list, *_pos);
|
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* move to next server
|
|
|
|
*/
|
|
|
|
static void *nfs_server_list_next(struct seq_file *p, void *v, loff_t *pos)
|
|
|
|
{
|
2007-07-16 14:39:56 +08:00
|
|
|
return seq_list_next(v, &nfs_client_list, pos);
|
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* clean up after reading from the transports list
|
|
|
|
*/
|
|
|
|
static void nfs_server_list_stop(struct seq_file *p, void *v)
|
|
|
|
{
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* display a header line followed by a load of call lines
|
|
|
|
*/
|
|
|
|
static int nfs_server_list_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct nfs_client *clp;
|
|
|
|
|
|
|
|
/* display header on line 1 */
|
2007-07-16 14:39:56 +08:00
|
|
|
if (v == &nfs_client_list) {
|
2006-08-23 08:06:13 +08:00
|
|
|
seq_puts(m, "NV SERVER PORT USE HOSTNAME\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* display one transport per line on subsequent lines */
|
|
|
|
clp = list_entry(v, struct nfs_client, cl_share_link);
|
|
|
|
|
2007-12-11 03:57:16 +08:00
|
|
|
seq_printf(m, "v%u %s %s %3d %s\n",
|
2007-12-15 03:56:07 +08:00
|
|
|
clp->rpc_ops->version,
|
2007-12-11 03:57:16 +08:00
|
|
|
rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_HEX_ADDR),
|
|
|
|
rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_HEX_PORT),
|
2006-08-23 08:06:13 +08:00
|
|
|
atomic_read(&clp->cl_count),
|
|
|
|
clp->cl_hostname);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* open "/proc/fs/nfsfs/volumes" which provides a summary of extant volumes
|
|
|
|
*/
|
|
|
|
static int nfs_volume_list_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct seq_file *m;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = seq_open(file, &nfs_volume_list_ops);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
m = file->private_data;
|
|
|
|
m->private = PDE(inode)->data;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set up the iterator to start reading from the volume list and return the first item
|
|
|
|
*/
|
|
|
|
static void *nfs_volume_list_start(struct seq_file *m, loff_t *_pos)
|
|
|
|
{
|
|
|
|
/* lock the list against modification */
|
|
|
|
spin_lock(&nfs_client_lock);
|
2007-07-16 14:39:56 +08:00
|
|
|
return seq_list_start_head(&nfs_volume_list, *_pos);
|
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* move to next volume
|
|
|
|
*/
|
|
|
|
static void *nfs_volume_list_next(struct seq_file *p, void *v, loff_t *pos)
|
|
|
|
{
|
2007-07-16 14:39:56 +08:00
|
|
|
return seq_list_next(v, &nfs_volume_list, pos);
|
2006-08-23 08:06:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* clean up after reading from the transports list
|
|
|
|
*/
|
|
|
|
static void nfs_volume_list_stop(struct seq_file *p, void *v)
|
|
|
|
{
|
|
|
|
spin_unlock(&nfs_client_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* display a header line followed by a load of call lines
|
|
|
|
*/
|
|
|
|
static int nfs_volume_list_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct nfs_server *server;
|
|
|
|
struct nfs_client *clp;
|
|
|
|
char dev[8], fsid[17];
|
|
|
|
|
|
|
|
/* display header on line 1 */
|
2007-07-16 14:39:56 +08:00
|
|
|
if (v == &nfs_volume_list) {
|
2006-08-23 08:06:13 +08:00
|
|
|
seq_puts(m, "NV SERVER PORT DEV FSID\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* display one transport per line on subsequent lines */
|
|
|
|
server = list_entry(v, struct nfs_server, master_link);
|
|
|
|
clp = server->nfs_client;
|
|
|
|
|
|
|
|
snprintf(dev, 8, "%u:%u",
|
|
|
|
MAJOR(server->s_dev), MINOR(server->s_dev));
|
|
|
|
|
|
|
|
snprintf(fsid, 17, "%llx:%llx",
|
2006-08-25 03:44:16 +08:00
|
|
|
(unsigned long long) server->fsid.major,
|
|
|
|
(unsigned long long) server->fsid.minor);
|
2006-08-23 08:06:13 +08:00
|
|
|
|
2007-12-11 03:57:16 +08:00
|
|
|
seq_printf(m, "v%u %s %s %-7s %-17s\n",
|
2007-12-15 03:56:07 +08:00
|
|
|
clp->rpc_ops->version,
|
2007-12-11 03:57:16 +08:00
|
|
|
rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_HEX_ADDR),
|
|
|
|
rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_HEX_PORT),
|
2006-08-23 08:06:13 +08:00
|
|
|
dev,
|
|
|
|
fsid);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* initialise the /proc/fs/nfsfs/ directory
|
|
|
|
*/
|
|
|
|
int __init nfs_fs_proc_init(void)
|
|
|
|
{
|
|
|
|
struct proc_dir_entry *p;
|
|
|
|
|
|
|
|
proc_fs_nfs = proc_mkdir("nfsfs", proc_root_fs);
|
|
|
|
if (!proc_fs_nfs)
|
|
|
|
goto error_0;
|
|
|
|
|
|
|
|
proc_fs_nfs->owner = THIS_MODULE;
|
|
|
|
|
|
|
|
/* a file of servers with which we're dealing */
|
|
|
|
p = create_proc_entry("servers", S_IFREG|S_IRUGO, proc_fs_nfs);
|
|
|
|
if (!p)
|
|
|
|
goto error_1;
|
|
|
|
|
|
|
|
p->proc_fops = &nfs_server_list_fops;
|
|
|
|
p->owner = THIS_MODULE;
|
|
|
|
|
|
|
|
/* a file of volumes that we have mounted */
|
|
|
|
p = create_proc_entry("volumes", S_IFREG|S_IRUGO, proc_fs_nfs);
|
|
|
|
if (!p)
|
|
|
|
goto error_2;
|
|
|
|
|
|
|
|
p->proc_fops = &nfs_volume_list_fops;
|
|
|
|
p->owner = THIS_MODULE;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_2:
|
|
|
|
remove_proc_entry("servers", proc_fs_nfs);
|
|
|
|
error_1:
|
|
|
|
remove_proc_entry("nfsfs", proc_root_fs);
|
|
|
|
error_0:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* clean up the /proc/fs/nfsfs/ directory
|
|
|
|
*/
|
|
|
|
void nfs_fs_proc_exit(void)
|
|
|
|
{
|
|
|
|
remove_proc_entry("volumes", proc_fs_nfs);
|
|
|
|
remove_proc_entry("servers", proc_fs_nfs);
|
|
|
|
remove_proc_entry("nfsfs", proc_root_fs);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_PROC_FS */
|