OpenCloudOS-Kernel/kernel/softirq.c

985 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/softirq.c
*
* Copyright (C) 1992 Linus Torvalds
*
* Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/local_lock.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/percpu.h>
#include <linux/cpu.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/rcupdate.h>
#include <linux/ftrace.h>
#include <linux/smp.h>
#include <linux/smpboot.h>
#include <linux/tick.h>
#include <linux/irq.h>
#include <linux/wait_bit.h>
#include <asm/softirq_stack.h>
#define CREATE_TRACE_POINTS
#include <trace/events/irq.h>
/*
- No shared variables, all the data are CPU local.
- If a softirq needs serialization, let it serialize itself
by its own spinlocks.
- Even if softirq is serialized, only local cpu is marked for
execution. Hence, we get something sort of weak cpu binding.
Though it is still not clear, will it result in better locality
or will not.
Examples:
- NET RX softirq. It is multithreaded and does not require
any global serialization.
- NET TX softirq. It kicks software netdevice queues, hence
it is logically serialized per device, but this serialization
is invisible to common code.
- Tasklets: serialized wrt itself.
*/
#ifndef __ARCH_IRQ_STAT
DEFINE_PER_CPU_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);
#endif
static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp;
DEFINE_PER_CPU(struct task_struct *, ksoftirqd);
const char * const softirq_to_name[NR_SOFTIRQS] = {
"HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "IRQ_POLL",
rcu: Use softirq to address performance regression Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread) introduced performance regression. In an AIM7 test, this commit degraded performance by about 40%. The commit runs rcu callbacks in a kthread instead of softirq. We observed high rate of context switch which is caused by this. Out test system has 64 CPUs and HZ is 1000, so we saw more than 64k context switch per second which is caused by RCU's per-CPU kthread. A trace showed that most of the time the RCU per-CPU kthread doesn't actually handle any callbacks, but instead just does a very small amount of work handling grace periods. This means that RCU's per-CPU kthreads are making the scheduler do quite a bit of work in order to allow a very small amount of RCU-related processing to be done. Alex Shi's analysis determined that this slowdown is due to lock contention within the scheduler. Unfortunately, as Peter Zijlstra points out, the scheduler's real-time semantics require global action, which means that this contention is inherent in real-time scheduling. (Yes, perhaps someone will come up with a workaround -- otherwise, -rt is not going to do well on large SMP systems -- but this patch will work around this issue in the meantime. And "the meantime" might well be forever.) This patch therefore re-introduces softirq processing to RCU, but only for core RCU work. RCU callbacks are still executed in kthread context, so that only a small amount of RCU work runs in softirq context in the common case. This should minimize ksoftirqd execution, allowing us to skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Tested-by: "Alex,Shi" <alex.shi@intel.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-14 13:26:25 +08:00
"TASKLET", "SCHED", "HRTIMER", "RCU"
};
/*
* we cannot loop indefinitely here to avoid userspace starvation,
* but we also don't want to introduce a worst case 1/HZ latency
* to the pending events, so lets the scheduler to balance
* the softirq load for us.
*/
static void wakeup_softirqd(void)
{
/* Interrupts are disabled: no need to stop preemption */
struct task_struct *tsk = __this_cpu_read(ksoftirqd);
if (tsk && tsk->state != TASK_RUNNING)
wake_up_process(tsk);
}
softirq: Let ksoftirqd do its job A while back, Paolo and Hannes sent an RFC patch adding threaded-able napi poll loop support : (https://patchwork.ozlabs.org/patch/620657/) The problem seems to be that softirqs are very aggressive and are often handled by the current process, even if we are under stress and that ksoftirqd was scheduled, so that innocent threads would have more chance to make progress. This patch makes sure that if ksoftirq is running, we let it perform the softirq work. Jonathan Corbet summarized the issue in https://lwn.net/Articles/687617/ Tested: - NIC receiving traffic handled by CPU 0 - UDP receiver running on CPU 0, using a single UDP socket. - Incoming flood of UDP packets targeting the UDP socket. Before the patch, the UDP receiver could almost never get CPU cycles and could only receive ~2,000 packets per second. After the patch, CPU cycles are split 50/50 between user application and ksoftirqd/0, and we can effectively read ~900,000 packets per second, a huge improvement in DOS situation. (Note that more packets are now dropped by the NIC itself, since the BH handlers get less CPU cycles to drain RX ring buffer) Since the load runs in well identified threads context, an admin can more easily tune process scheduling parameters if needed. Reported-by: Paolo Abeni <pabeni@redhat.com> Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Hannes Frederic Sowa <hannes@redhat.com> Cc: Jesper Dangaard Brouer <jbrouer@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1472665349.14381.356.camel@edumazet-glaptop3.roam.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-01 01:42:29 +08:00
/*
* If ksoftirqd is scheduled, we do not want to process pending softirqs
Mark HI and TASKLET softirq synchronous Way back in 4.9, we committed 4cd13c21b207 ("softirq: Let ksoftirqd do its job"), and ever since we've had small nagging issues with it. For example, we've had: 1ff688209e2e ("watchdog: core: make sure the watchdog_worker is not deferred") 8d5755b3f77b ("watchdog: softdog: fire watchdog even if softirqs do not get to run") 217f69743681 ("net: busy-poll: allow preemption in sk_busy_loop()") all of which worked around some of the effects of that commit. The DVB people have also complained that the commit causes excessive USB URB latencies, which seems to be due to the USB code using tasklets to schedule USB traffic. This seems to be an issue mainly when already living on the edge, but waiting for ksoftirqd to handle it really does seem to cause excessive latencies. Now Hanna Hawa reports that this issue isn't just limited to USB URB and DVB, but also causes timeout problems for the Marvell SoC team: "I'm facing kernel panic issue while running raid 5 on sata disks connected to Macchiatobin (Marvell community board with Armada-8040 SoC with 4 ARMv8 cores of CA72) Raid 5 built with Marvell DMA engine and async_tx mechanism (ASYNC_TX_DMA [=y]); the DMA driver (mv_xor_v2) uses a tasklet to clean the done descriptors from the queue" The latency problem causes a panic: mv_xor_v2 f0400000.xor: dma_sync_wait: timeout! Kernel panic - not syncing: async_tx_quiesce: DMA error waiting for transaction We've discussed simply just reverting the original commit entirely, and also much more involved solutions (with per-softirq threads etc). This patch is intentionally stupid and fairly limited, because the issue still remains, and the other solutions either got sidetracked or had other issues. We should probably also consider the timer softirqs to be synchronous and not be delayed to ksoftirqd (since they were the issue with the earlier watchdog problems), but that should be done as a separate patch. This does only the tasklet cases. Reported-and-tested-by: Hanna Hawa <hannah@marvell.com> Reported-and-tested-by: Josef Griebichler <griebichler.josef@gmx.at> Reported-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-09 03:51:04 +08:00
* right now. Let ksoftirqd handle this at its own rate, to get fairness,
* unless we're doing some of the synchronous softirqs.
softirq: Let ksoftirqd do its job A while back, Paolo and Hannes sent an RFC patch adding threaded-able napi poll loop support : (https://patchwork.ozlabs.org/patch/620657/) The problem seems to be that softirqs are very aggressive and are often handled by the current process, even if we are under stress and that ksoftirqd was scheduled, so that innocent threads would have more chance to make progress. This patch makes sure that if ksoftirq is running, we let it perform the softirq work. Jonathan Corbet summarized the issue in https://lwn.net/Articles/687617/ Tested: - NIC receiving traffic handled by CPU 0 - UDP receiver running on CPU 0, using a single UDP socket. - Incoming flood of UDP packets targeting the UDP socket. Before the patch, the UDP receiver could almost never get CPU cycles and could only receive ~2,000 packets per second. After the patch, CPU cycles are split 50/50 between user application and ksoftirqd/0, and we can effectively read ~900,000 packets per second, a huge improvement in DOS situation. (Note that more packets are now dropped by the NIC itself, since the BH handlers get less CPU cycles to drain RX ring buffer) Since the load runs in well identified threads context, an admin can more easily tune process scheduling parameters if needed. Reported-by: Paolo Abeni <pabeni@redhat.com> Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Hannes Frederic Sowa <hannes@redhat.com> Cc: Jesper Dangaard Brouer <jbrouer@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1472665349.14381.356.camel@edumazet-glaptop3.roam.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-01 01:42:29 +08:00
*/
Mark HI and TASKLET softirq synchronous Way back in 4.9, we committed 4cd13c21b207 ("softirq: Let ksoftirqd do its job"), and ever since we've had small nagging issues with it. For example, we've had: 1ff688209e2e ("watchdog: core: make sure the watchdog_worker is not deferred") 8d5755b3f77b ("watchdog: softdog: fire watchdog even if softirqs do not get to run") 217f69743681 ("net: busy-poll: allow preemption in sk_busy_loop()") all of which worked around some of the effects of that commit. The DVB people have also complained that the commit causes excessive USB URB latencies, which seems to be due to the USB code using tasklets to schedule USB traffic. This seems to be an issue mainly when already living on the edge, but waiting for ksoftirqd to handle it really does seem to cause excessive latencies. Now Hanna Hawa reports that this issue isn't just limited to USB URB and DVB, but also causes timeout problems for the Marvell SoC team: "I'm facing kernel panic issue while running raid 5 on sata disks connected to Macchiatobin (Marvell community board with Armada-8040 SoC with 4 ARMv8 cores of CA72) Raid 5 built with Marvell DMA engine and async_tx mechanism (ASYNC_TX_DMA [=y]); the DMA driver (mv_xor_v2) uses a tasklet to clean the done descriptors from the queue" The latency problem causes a panic: mv_xor_v2 f0400000.xor: dma_sync_wait: timeout! Kernel panic - not syncing: async_tx_quiesce: DMA error waiting for transaction We've discussed simply just reverting the original commit entirely, and also much more involved solutions (with per-softirq threads etc). This patch is intentionally stupid and fairly limited, because the issue still remains, and the other solutions either got sidetracked or had other issues. We should probably also consider the timer softirqs to be synchronous and not be delayed to ksoftirqd (since they were the issue with the earlier watchdog problems), but that should be done as a separate patch. This does only the tasklet cases. Reported-and-tested-by: Hanna Hawa <hannah@marvell.com> Reported-and-tested-by: Josef Griebichler <griebichler.josef@gmx.at> Reported-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-09 03:51:04 +08:00
#define SOFTIRQ_NOW_MASK ((1 << HI_SOFTIRQ) | (1 << TASKLET_SOFTIRQ))
static bool ksoftirqd_running(unsigned long pending)
softirq: Let ksoftirqd do its job A while back, Paolo and Hannes sent an RFC patch adding threaded-able napi poll loop support : (https://patchwork.ozlabs.org/patch/620657/) The problem seems to be that softirqs are very aggressive and are often handled by the current process, even if we are under stress and that ksoftirqd was scheduled, so that innocent threads would have more chance to make progress. This patch makes sure that if ksoftirq is running, we let it perform the softirq work. Jonathan Corbet summarized the issue in https://lwn.net/Articles/687617/ Tested: - NIC receiving traffic handled by CPU 0 - UDP receiver running on CPU 0, using a single UDP socket. - Incoming flood of UDP packets targeting the UDP socket. Before the patch, the UDP receiver could almost never get CPU cycles and could only receive ~2,000 packets per second. After the patch, CPU cycles are split 50/50 between user application and ksoftirqd/0, and we can effectively read ~900,000 packets per second, a huge improvement in DOS situation. (Note that more packets are now dropped by the NIC itself, since the BH handlers get less CPU cycles to drain RX ring buffer) Since the load runs in well identified threads context, an admin can more easily tune process scheduling parameters if needed. Reported-by: Paolo Abeni <pabeni@redhat.com> Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Hannes Frederic Sowa <hannes@redhat.com> Cc: Jesper Dangaard Brouer <jbrouer@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1472665349.14381.356.camel@edumazet-glaptop3.roam.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-01 01:42:29 +08:00
{
struct task_struct *tsk = __this_cpu_read(ksoftirqd);
Mark HI and TASKLET softirq synchronous Way back in 4.9, we committed 4cd13c21b207 ("softirq: Let ksoftirqd do its job"), and ever since we've had small nagging issues with it. For example, we've had: 1ff688209e2e ("watchdog: core: make sure the watchdog_worker is not deferred") 8d5755b3f77b ("watchdog: softdog: fire watchdog even if softirqs do not get to run") 217f69743681 ("net: busy-poll: allow preemption in sk_busy_loop()") all of which worked around some of the effects of that commit. The DVB people have also complained that the commit causes excessive USB URB latencies, which seems to be due to the USB code using tasklets to schedule USB traffic. This seems to be an issue mainly when already living on the edge, but waiting for ksoftirqd to handle it really does seem to cause excessive latencies. Now Hanna Hawa reports that this issue isn't just limited to USB URB and DVB, but also causes timeout problems for the Marvell SoC team: "I'm facing kernel panic issue while running raid 5 on sata disks connected to Macchiatobin (Marvell community board with Armada-8040 SoC with 4 ARMv8 cores of CA72) Raid 5 built with Marvell DMA engine and async_tx mechanism (ASYNC_TX_DMA [=y]); the DMA driver (mv_xor_v2) uses a tasklet to clean the done descriptors from the queue" The latency problem causes a panic: mv_xor_v2 f0400000.xor: dma_sync_wait: timeout! Kernel panic - not syncing: async_tx_quiesce: DMA error waiting for transaction We've discussed simply just reverting the original commit entirely, and also much more involved solutions (with per-softirq threads etc). This patch is intentionally stupid and fairly limited, because the issue still remains, and the other solutions either got sidetracked or had other issues. We should probably also consider the timer softirqs to be synchronous and not be delayed to ksoftirqd (since they were the issue with the earlier watchdog problems), but that should be done as a separate patch. This does only the tasklet cases. Reported-and-tested-by: Hanna Hawa <hannah@marvell.com> Reported-and-tested-by: Josef Griebichler <griebichler.josef@gmx.at> Reported-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-09 03:51:04 +08:00
if (pending & SOFTIRQ_NOW_MASK)
return false;
softirq: Don't skip softirq execution when softirq thread is parking When a CPU is unplugged the kernel threads of this CPU are parked (see smpboot_park_threads()). kthread_park() is used to mark each thread as parked and wake it up, so it can complete the process of parking itselfs (see smpboot_thread_fn()). If local softirqs are pending on interrupt exit invoke_softirq() is called to process the softirqs, however it skips processing when the softirq kernel thread of the local CPU is scheduled to run. The softirq kthread is one of the threads that is parked when a CPU is unplugged. Parking the kthread wakes it up, however only to complete the parking process, not to process the pending softirqs. Hence processing of softirqs at the end of an interrupt is skipped, but not done elsewhere, which can result in warnings about pending softirqs when a CPU is unplugged: /sys/devices/system/cpu # echo 0 > cpu4/online [ ... ] NOHZ: local_softirq_pending 02 [ ... ] NOHZ: local_softirq_pending 202 [ ... ] CPU4: shutdown [ ... ] psci: CPU4 killed. Don't skip processing of softirqs at the end of an interrupt when the softirq thread of the CPU is parking. Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Douglas Anderson <dianders@chromium.org> Cc: Stephen Boyd <swboyd@chromium.org> Link: https://lkml.kernel.org/r/20190128234625.78241-3-mka@chromium.org
2019-01-29 07:46:25 +08:00
return tsk && (tsk->state == TASK_RUNNING) &&
!__kthread_should_park(tsk);
softirq: Let ksoftirqd do its job A while back, Paolo and Hannes sent an RFC patch adding threaded-able napi poll loop support : (https://patchwork.ozlabs.org/patch/620657/) The problem seems to be that softirqs are very aggressive and are often handled by the current process, even if we are under stress and that ksoftirqd was scheduled, so that innocent threads would have more chance to make progress. This patch makes sure that if ksoftirq is running, we let it perform the softirq work. Jonathan Corbet summarized the issue in https://lwn.net/Articles/687617/ Tested: - NIC receiving traffic handled by CPU 0 - UDP receiver running on CPU 0, using a single UDP socket. - Incoming flood of UDP packets targeting the UDP socket. Before the patch, the UDP receiver could almost never get CPU cycles and could only receive ~2,000 packets per second. After the patch, CPU cycles are split 50/50 between user application and ksoftirqd/0, and we can effectively read ~900,000 packets per second, a huge improvement in DOS situation. (Note that more packets are now dropped by the NIC itself, since the BH handlers get less CPU cycles to drain RX ring buffer) Since the load runs in well identified threads context, an admin can more easily tune process scheduling parameters if needed. Reported-by: Paolo Abeni <pabeni@redhat.com> Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Hannes Frederic Sowa <hannes@redhat.com> Cc: Jesper Dangaard Brouer <jbrouer@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1472665349.14381.356.camel@edumazet-glaptop3.roam.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-01 01:42:29 +08:00
}
#ifdef CONFIG_TRACE_IRQFLAGS
DEFINE_PER_CPU(int, hardirqs_enabled);
DEFINE_PER_CPU(int, hardirq_context);
EXPORT_PER_CPU_SYMBOL_GPL(hardirqs_enabled);
EXPORT_PER_CPU_SYMBOL_GPL(hardirq_context);
#endif
/*
* SOFTIRQ_OFFSET usage:
*
* On !RT kernels 'count' is the preempt counter, on RT kernels this applies
* to a per CPU counter and to task::softirqs_disabled_cnt.
*
* - count is changed by SOFTIRQ_OFFSET on entering or leaving softirq
* processing.
*
* - count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET)
* on local_bh_disable or local_bh_enable.
*
* This lets us distinguish between whether we are currently processing
* softirq and whether we just have bh disabled.
*/
#ifdef CONFIG_PREEMPT_RT
/*
* RT accounts for BH disabled sections in task::softirqs_disabled_cnt and
* also in per CPU softirq_ctrl::cnt. This is necessary to allow tasks in a
* softirq disabled section to be preempted.
*
* The per task counter is used for softirq_count(), in_softirq() and
* in_serving_softirqs() because these counts are only valid when the task
* holding softirq_ctrl::lock is running.
*
* The per CPU counter prevents pointless wakeups of ksoftirqd in case that
* the task which is in a softirq disabled section is preempted or blocks.
*/
struct softirq_ctrl {
local_lock_t lock;
int cnt;
};
static DEFINE_PER_CPU(struct softirq_ctrl, softirq_ctrl) = {
.lock = INIT_LOCAL_LOCK(softirq_ctrl.lock),
};
void __local_bh_disable_ip(unsigned long ip, unsigned int cnt)
{
unsigned long flags;
int newcnt;
WARN_ON_ONCE(in_hardirq());
/* First entry of a task into a BH disabled section? */
if (!current->softirq_disable_cnt) {
if (preemptible()) {
local_lock(&softirq_ctrl.lock);
/* Required to meet the RCU bottomhalf requirements. */
rcu_read_lock();
} else {
DEBUG_LOCKS_WARN_ON(this_cpu_read(softirq_ctrl.cnt));
}
}
/*
* Track the per CPU softirq disabled state. On RT this is per CPU
* state to allow preemption of bottom half disabled sections.
*/
newcnt = __this_cpu_add_return(softirq_ctrl.cnt, cnt);
/*
* Reflect the result in the task state to prevent recursion on the
* local lock and to make softirq_count() & al work.
*/
current->softirq_disable_cnt = newcnt;
if (IS_ENABLED(CONFIG_TRACE_IRQFLAGS) && newcnt == cnt) {
raw_local_irq_save(flags);
lockdep_softirqs_off(ip);
raw_local_irq_restore(flags);
}
}
EXPORT_SYMBOL(__local_bh_disable_ip);
static void __local_bh_enable(unsigned int cnt, bool unlock)
{
unsigned long flags;
int newcnt;
DEBUG_LOCKS_WARN_ON(current->softirq_disable_cnt !=
this_cpu_read(softirq_ctrl.cnt));
if (IS_ENABLED(CONFIG_TRACE_IRQFLAGS) && softirq_count() == cnt) {
raw_local_irq_save(flags);
lockdep_softirqs_on(_RET_IP_);
raw_local_irq_restore(flags);
}
newcnt = __this_cpu_sub_return(softirq_ctrl.cnt, cnt);
current->softirq_disable_cnt = newcnt;
if (!newcnt && unlock) {
rcu_read_unlock();
local_unlock(&softirq_ctrl.lock);
}
}
void __local_bh_enable_ip(unsigned long ip, unsigned int cnt)
{
bool preempt_on = preemptible();
unsigned long flags;
u32 pending;
int curcnt;
WARN_ON_ONCE(in_irq());
lockdep_assert_irqs_enabled();
local_irq_save(flags);
curcnt = __this_cpu_read(softirq_ctrl.cnt);
/*
* If this is not reenabling soft interrupts, no point in trying to
* run pending ones.
*/
if (curcnt != cnt)
goto out;
pending = local_softirq_pending();
if (!pending || ksoftirqd_running(pending))
goto out;
/*
* If this was called from non preemptible context, wake up the
* softirq daemon.
*/
if (!preempt_on) {
wakeup_softirqd();
goto out;
}
/*
* Adjust softirq count to SOFTIRQ_OFFSET which makes
* in_serving_softirq() become true.
*/
cnt = SOFTIRQ_OFFSET;
__local_bh_enable(cnt, false);
__do_softirq();
out:
__local_bh_enable(cnt, preempt_on);
local_irq_restore(flags);
}
EXPORT_SYMBOL(__local_bh_enable_ip);
/*
* Invoked from ksoftirqd_run() outside of the interrupt disabled section
* to acquire the per CPU local lock for reentrancy protection.
*/
static inline void ksoftirqd_run_begin(void)
{
__local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);
local_irq_disable();
}
/* Counterpart to ksoftirqd_run_begin() */
static inline void ksoftirqd_run_end(void)
{
__local_bh_enable(SOFTIRQ_OFFSET, true);
WARN_ON_ONCE(in_interrupt());
local_irq_enable();
}
static inline void softirq_handle_begin(void) { }
static inline void softirq_handle_end(void) { }
static inline bool should_wake_ksoftirqd(void)
{
return !this_cpu_read(softirq_ctrl.cnt);
}
static inline void invoke_softirq(void)
{
if (should_wake_ksoftirqd())
wakeup_softirqd();
}
#else /* CONFIG_PREEMPT_RT */
/*
* This one is for softirq.c-internal use, where hardirqs are disabled
* legitimately:
*/
#ifdef CONFIG_TRACE_IRQFLAGS
void __local_bh_disable_ip(unsigned long ip, unsigned int cnt)
{
unsigned long flags;
WARN_ON_ONCE(in_irq());
raw_local_irq_save(flags);
/*
* The preempt tracer hooks into preempt_count_add and will break
* lockdep because it calls back into lockdep after SOFTIRQ_OFFSET
* is set and before current->softirq_enabled is cleared.
* We must manually increment preempt_count here and manually
* call the trace_preempt_off later.
*/
__preempt_count_add(cnt);
/*
* Were softirqs turned off above:
*/
if (softirq_count() == (cnt & SOFTIRQ_MASK))
lockdep_softirqs_off(ip);
raw_local_irq_restore(flags);
if (preempt_count() == cnt) {
#ifdef CONFIG_DEBUG_PREEMPT
current->preempt_disable_ip = get_lock_parent_ip();
#endif
trace_preempt_off(CALLER_ADDR0, get_lock_parent_ip());
}
}
EXPORT_SYMBOL(__local_bh_disable_ip);
[PATCH] Reducing local_bh_enable/disable overhead in irqtrace The recent changes from irqtrace feature has added overheads to local_bh_disable and local_bh_enable that reduces UDP performance across x86_64 and IA64, even though IA64 does not support the irqtrace feature. Patch in question is [PATCH]lockdep: irqtrace subsystem, core http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=c ommit;h=de30a2b355ea85350ca2f58f3b9bf4e5bc007986 Prior to this patch, local_bh_disable was a short macro. Now it is a function which calls __local_bh_disable with added irq flags save and restore. The irq flags save and restore were also added to local_bh_enable, probably for injecting the trace irqs code. This overhead is on the generic code path across all architectures. On a IA_64 test machine (Itanium-2 1.6 GHz) running a benchmark like netperf's UDP streaming test, the added overhead results in a drop of 3% in throughput, as udp_sendmsg calls the local_bh_enable/disable several times. Other workloads that have heavy usages of local_bh_enable/disable could also be affected. The patch ideally should not have affected IA-64 performance as it does not have IRQ tracing support. A significant portion of the overhead is in the added irq flags save and restore, which I think is not needed if IRQ tracing is unused. A suggested patch is attached below that recovers the lost performance. However, the "ifdef"s in the patch are a bit ugly. Signed-off-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-30 18:04:02 +08:00
#endif /* CONFIG_TRACE_IRQFLAGS */
static void __local_bh_enable(unsigned int cnt)
{
lockdep_assert_irqs_disabled();
softirq: Reorder trace_softirqs_on to prevent lockdep splat I'm able to reproduce a lockdep splat with config options: CONFIG_PROVE_LOCKING=y, CONFIG_DEBUG_LOCK_ALLOC=y and CONFIG_PREEMPTIRQ_EVENTS=y $ echo 1 > /d/tracing/events/preemptirq/preempt_enable/enable [ 26.112609] DEBUG_LOCKS_WARN_ON(current->softirqs_enabled) [ 26.112636] WARNING: CPU: 0 PID: 118 at kernel/locking/lockdep.c:3854 [...] [ 26.144229] Call Trace: [ 26.144926] <IRQ> [ 26.145506] lock_acquire+0x55/0x1b0 [ 26.146499] ? __do_softirq+0x46f/0x4d9 [ 26.147571] ? __do_softirq+0x46f/0x4d9 [ 26.148646] trace_preempt_on+0x8f/0x240 [ 26.149744] ? trace_preempt_on+0x4d/0x240 [ 26.150862] ? __do_softirq+0x46f/0x4d9 [ 26.151930] preempt_count_sub+0x18a/0x1a0 [ 26.152985] __do_softirq+0x46f/0x4d9 [ 26.153937] irq_exit+0x68/0xe0 [ 26.154755] smp_apic_timer_interrupt+0x271/0x280 [ 26.156056] apic_timer_interrupt+0xf/0x20 [ 26.157105] </IRQ> The issue was this: preempt_count = 1 << SOFTIRQ_SHIFT __local_bh_enable(cnt = 1 << SOFTIRQ_SHIFT) { if (softirq_count() == (cnt && SOFTIRQ_MASK)) { trace_softirqs_on() { current->softirqs_enabled = 1; } } preempt_count_sub(cnt) { trace_preempt_on() { tracepoint() { rcu_read_lock_sched() { // jumps into lockdep Where preempt_count still has softirqs disabled, but current->softirqs_enabled is true, and we get a splat. Link: http://lkml.kernel.org/r/20180607201143.247775-1-joel@joelfernandes.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Thomas Glexiner <tglx@linutronix.de> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Todd Kjos <tkjos@google.com> Cc: Erick Reyes <erickreyes@google.com> Cc: Julia Cartwright <julia@ni.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: stable@vger.kernel.org Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Fixes: d59158162e032 ("tracing: Add support for preempt and irq enable/disable events") Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-08 04:11:43 +08:00
if (preempt_count() == cnt)
trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
if (softirq_count() == (cnt & SOFTIRQ_MASK))
lockdep_softirqs_on(_RET_IP_);
softirq: Reorder trace_softirqs_on to prevent lockdep splat I'm able to reproduce a lockdep splat with config options: CONFIG_PROVE_LOCKING=y, CONFIG_DEBUG_LOCK_ALLOC=y and CONFIG_PREEMPTIRQ_EVENTS=y $ echo 1 > /d/tracing/events/preemptirq/preempt_enable/enable [ 26.112609] DEBUG_LOCKS_WARN_ON(current->softirqs_enabled) [ 26.112636] WARNING: CPU: 0 PID: 118 at kernel/locking/lockdep.c:3854 [...] [ 26.144229] Call Trace: [ 26.144926] <IRQ> [ 26.145506] lock_acquire+0x55/0x1b0 [ 26.146499] ? __do_softirq+0x46f/0x4d9 [ 26.147571] ? __do_softirq+0x46f/0x4d9 [ 26.148646] trace_preempt_on+0x8f/0x240 [ 26.149744] ? trace_preempt_on+0x4d/0x240 [ 26.150862] ? __do_softirq+0x46f/0x4d9 [ 26.151930] preempt_count_sub+0x18a/0x1a0 [ 26.152985] __do_softirq+0x46f/0x4d9 [ 26.153937] irq_exit+0x68/0xe0 [ 26.154755] smp_apic_timer_interrupt+0x271/0x280 [ 26.156056] apic_timer_interrupt+0xf/0x20 [ 26.157105] </IRQ> The issue was this: preempt_count = 1 << SOFTIRQ_SHIFT __local_bh_enable(cnt = 1 << SOFTIRQ_SHIFT) { if (softirq_count() == (cnt && SOFTIRQ_MASK)) { trace_softirqs_on() { current->softirqs_enabled = 1; } } preempt_count_sub(cnt) { trace_preempt_on() { tracepoint() { rcu_read_lock_sched() { // jumps into lockdep Where preempt_count still has softirqs disabled, but current->softirqs_enabled is true, and we get a splat. Link: http://lkml.kernel.org/r/20180607201143.247775-1-joel@joelfernandes.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Thomas Glexiner <tglx@linutronix.de> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Todd Kjos <tkjos@google.com> Cc: Erick Reyes <erickreyes@google.com> Cc: Julia Cartwright <julia@ni.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: stable@vger.kernel.org Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Fixes: d59158162e032 ("tracing: Add support for preempt and irq enable/disable events") Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-08 04:11:43 +08:00
__preempt_count_sub(cnt);
}
/*
* Special-case - softirqs can safely be enabled by __do_softirq(),
* without processing still-pending softirqs:
*/
void _local_bh_enable(void)
{
WARN_ON_ONCE(in_irq());
__local_bh_enable(SOFTIRQ_DISABLE_OFFSET);
}
EXPORT_SYMBOL(_local_bh_enable);
void __local_bh_enable_ip(unsigned long ip, unsigned int cnt)
{
WARN_ON_ONCE(in_irq());
lockdep_assert_irqs_enabled();
[PATCH] Reducing local_bh_enable/disable overhead in irqtrace The recent changes from irqtrace feature has added overheads to local_bh_disable and local_bh_enable that reduces UDP performance across x86_64 and IA64, even though IA64 does not support the irqtrace feature. Patch in question is [PATCH]lockdep: irqtrace subsystem, core http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=c ommit;h=de30a2b355ea85350ca2f58f3b9bf4e5bc007986 Prior to this patch, local_bh_disable was a short macro. Now it is a function which calls __local_bh_disable with added irq flags save and restore. The irq flags save and restore were also added to local_bh_enable, probably for injecting the trace irqs code. This overhead is on the generic code path across all architectures. On a IA_64 test machine (Itanium-2 1.6 GHz) running a benchmark like netperf's UDP streaming test, the added overhead results in a drop of 3% in throughput, as udp_sendmsg calls the local_bh_enable/disable several times. Other workloads that have heavy usages of local_bh_enable/disable could also be affected. The patch ideally should not have affected IA-64 performance as it does not have IRQ tracing support. A significant portion of the overhead is in the added irq flags save and restore, which I think is not needed if IRQ tracing is unused. A suggested patch is attached below that recovers the lost performance. However, the "ifdef"s in the patch are a bit ugly. Signed-off-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-30 18:04:02 +08:00
#ifdef CONFIG_TRACE_IRQFLAGS
local_irq_disable();
[PATCH] Reducing local_bh_enable/disable overhead in irqtrace The recent changes from irqtrace feature has added overheads to local_bh_disable and local_bh_enable that reduces UDP performance across x86_64 and IA64, even though IA64 does not support the irqtrace feature. Patch in question is [PATCH]lockdep: irqtrace subsystem, core http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=c ommit;h=de30a2b355ea85350ca2f58f3b9bf4e5bc007986 Prior to this patch, local_bh_disable was a short macro. Now it is a function which calls __local_bh_disable with added irq flags save and restore. The irq flags save and restore were also added to local_bh_enable, probably for injecting the trace irqs code. This overhead is on the generic code path across all architectures. On a IA_64 test machine (Itanium-2 1.6 GHz) running a benchmark like netperf's UDP streaming test, the added overhead results in a drop of 3% in throughput, as udp_sendmsg calls the local_bh_enable/disable several times. Other workloads that have heavy usages of local_bh_enable/disable could also be affected. The patch ideally should not have affected IA-64 performance as it does not have IRQ tracing support. A significant portion of the overhead is in the added irq flags save and restore, which I think is not needed if IRQ tracing is unused. A suggested patch is attached below that recovers the lost performance. However, the "ifdef"s in the patch are a bit ugly. Signed-off-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-30 18:04:02 +08:00
#endif
/*
* Are softirqs going to be turned on now:
*/
if (softirq_count() == SOFTIRQ_DISABLE_OFFSET)
lockdep_softirqs_on(ip);
/*
* Keep preemption disabled until we are done with
* softirq processing:
*/
__preempt_count_sub(cnt - 1);
if (unlikely(!in_interrupt() && local_softirq_pending())) {
/*
* Run softirq if any pending. And do it in its own stack
* as we may be calling this deep in a task call stack already.
*/
do_softirq();
}
preempt_count_dec();
[PATCH] Reducing local_bh_enable/disable overhead in irqtrace The recent changes from irqtrace feature has added overheads to local_bh_disable and local_bh_enable that reduces UDP performance across x86_64 and IA64, even though IA64 does not support the irqtrace feature. Patch in question is [PATCH]lockdep: irqtrace subsystem, core http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=c ommit;h=de30a2b355ea85350ca2f58f3b9bf4e5bc007986 Prior to this patch, local_bh_disable was a short macro. Now it is a function which calls __local_bh_disable with added irq flags save and restore. The irq flags save and restore were also added to local_bh_enable, probably for injecting the trace irqs code. This overhead is on the generic code path across all architectures. On a IA_64 test machine (Itanium-2 1.6 GHz) running a benchmark like netperf's UDP streaming test, the added overhead results in a drop of 3% in throughput, as udp_sendmsg calls the local_bh_enable/disable several times. Other workloads that have heavy usages of local_bh_enable/disable could also be affected. The patch ideally should not have affected IA-64 performance as it does not have IRQ tracing support. A significant portion of the overhead is in the added irq flags save and restore, which I think is not needed if IRQ tracing is unused. A suggested patch is attached below that recovers the lost performance. However, the "ifdef"s in the patch are a bit ugly. Signed-off-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-30 18:04:02 +08:00
#ifdef CONFIG_TRACE_IRQFLAGS
local_irq_enable();
[PATCH] Reducing local_bh_enable/disable overhead in irqtrace The recent changes from irqtrace feature has added overheads to local_bh_disable and local_bh_enable that reduces UDP performance across x86_64 and IA64, even though IA64 does not support the irqtrace feature. Patch in question is [PATCH]lockdep: irqtrace subsystem, core http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=c ommit;h=de30a2b355ea85350ca2f58f3b9bf4e5bc007986 Prior to this patch, local_bh_disable was a short macro. Now it is a function which calls __local_bh_disable with added irq flags save and restore. The irq flags save and restore were also added to local_bh_enable, probably for injecting the trace irqs code. This overhead is on the generic code path across all architectures. On a IA_64 test machine (Itanium-2 1.6 GHz) running a benchmark like netperf's UDP streaming test, the added overhead results in a drop of 3% in throughput, as udp_sendmsg calls the local_bh_enable/disable several times. Other workloads that have heavy usages of local_bh_enable/disable could also be affected. The patch ideally should not have affected IA-64 performance as it does not have IRQ tracing support. A significant portion of the overhead is in the added irq flags save and restore, which I think is not needed if IRQ tracing is unused. A suggested patch is attached below that recovers the lost performance. However, the "ifdef"s in the patch are a bit ugly. Signed-off-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-30 18:04:02 +08:00
#endif
preempt_check_resched();
}
EXPORT_SYMBOL(__local_bh_enable_ip);
static inline void softirq_handle_begin(void)
{
__local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);
}
static inline void softirq_handle_end(void)
{
__local_bh_enable(SOFTIRQ_OFFSET);
WARN_ON_ONCE(in_interrupt());
}
static inline void ksoftirqd_run_begin(void)
{
local_irq_disable();
}
static inline void ksoftirqd_run_end(void)
{
local_irq_enable();
}
static inline bool should_wake_ksoftirqd(void)
{
return true;
}
static inline void invoke_softirq(void)
{
if (ksoftirqd_running(local_softirq_pending()))
return;
if (!force_irqthreads) {
#ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK
/*
* We can safely execute softirq on the current stack if
* it is the irq stack, because it should be near empty
* at this stage.
*/
__do_softirq();
#else
/*
* Otherwise, irq_exit() is called on the task stack that can
* be potentially deep already. So call softirq in its own stack
* to prevent from any overrun.
*/
do_softirq_own_stack();
#endif
} else {
wakeup_softirqd();
}
}
asmlinkage __visible void do_softirq(void)
{
__u32 pending;
unsigned long flags;
if (in_interrupt())
return;
local_irq_save(flags);
pending = local_softirq_pending();
if (pending && !ksoftirqd_running(pending))
do_softirq_own_stack();
local_irq_restore(flags);
}
#endif /* !CONFIG_PREEMPT_RT */
/*
Fix lockup related to stop_machine being stuck in __do_softirq. The stop machine logic can lock up if all but one of the migration threads make it through the disable-irq step and the one remaining thread gets stuck in __do_softirq. The reason __do_softirq can hang is that it has a bail-out based on jiffies timeout, but in the lockup case, jiffies itself is not incremented. To work around this, re-add the max_restart counter in __do_irq and stop processing irqs after 10 restarts. Thanks to Tejun Heo and Rusty Russell and others for helping me track this down. This was introduced in 3.9 by commit c10d73671ad3 ("softirq: reduce latencies"). It may be worth looking into ath9k to see if it has issues with its irq handler at a later date. The hang stack traces look something like this: ------------[ cut here ]------------ WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7() Watchdog detected hard LOCKUP on cpu 2 Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11 Call Trace: <NMI> warn_slowpath_common+0x85/0x9f warn_slowpath_fmt+0x46/0x48 watchdog_overflow_callback+0x9c/0xa7 __perf_event_overflow+0x137/0x1cb perf_event_overflow+0x14/0x16 intel_pmu_handle_irq+0x2dc/0x359 perf_event_nmi_handler+0x19/0x1b nmi_handle+0x7f/0xc2 do_nmi+0xbc/0x304 end_repeat_nmi+0x1e/0x2e <<EOE>> cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 ---[ end trace 4947dfa9b0a4cec3 ]--- BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17] Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] irq event stamp: 835637905 hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257 hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80 softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257 softirqs last disabled at (5654725): irq_exit+0x5f/0xbb CPU 1 Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M. RIP: tasklet_hi_action+0xf0/0xf0 Process migration/1 Call Trace: <IRQ> __do_softirq+0x117/0x257 irq_exit+0x5f/0xbb smp_apic_timer_interrupt+0x8a/0x98 apic_timer_interrupt+0x72/0x80 <EOI> printk+0x4d/0x4f stop_machine_cpu_stop+0x22c/0x274 cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 Signed-off-by: Ben Greear <greearb@candelatech.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Pekka Riikonen <priikone@iki.fi> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-07 05:29:49 +08:00
* We restart softirq processing for at most MAX_SOFTIRQ_RESTART times,
* but break the loop if need_resched() is set or after 2 ms.
* The MAX_SOFTIRQ_TIME provides a nice upper bound in most cases, but in
* certain cases, such as stop_machine(), jiffies may cease to
* increment and so we need the MAX_SOFTIRQ_RESTART limit as
* well to make sure we eventually return from this method.
*
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
* These limits have been established via experimentation.
* The two things to balance is latency against fairness -
* we want to handle softirqs as soon as possible, but they
* should not be able to lock up the box.
*/
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
#define MAX_SOFTIRQ_TIME msecs_to_jiffies(2)
Fix lockup related to stop_machine being stuck in __do_softirq. The stop machine logic can lock up if all but one of the migration threads make it through the disable-irq step and the one remaining thread gets stuck in __do_softirq. The reason __do_softirq can hang is that it has a bail-out based on jiffies timeout, but in the lockup case, jiffies itself is not incremented. To work around this, re-add the max_restart counter in __do_irq and stop processing irqs after 10 restarts. Thanks to Tejun Heo and Rusty Russell and others for helping me track this down. This was introduced in 3.9 by commit c10d73671ad3 ("softirq: reduce latencies"). It may be worth looking into ath9k to see if it has issues with its irq handler at a later date. The hang stack traces look something like this: ------------[ cut here ]------------ WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7() Watchdog detected hard LOCKUP on cpu 2 Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11 Call Trace: <NMI> warn_slowpath_common+0x85/0x9f warn_slowpath_fmt+0x46/0x48 watchdog_overflow_callback+0x9c/0xa7 __perf_event_overflow+0x137/0x1cb perf_event_overflow+0x14/0x16 intel_pmu_handle_irq+0x2dc/0x359 perf_event_nmi_handler+0x19/0x1b nmi_handle+0x7f/0xc2 do_nmi+0xbc/0x304 end_repeat_nmi+0x1e/0x2e <<EOE>> cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 ---[ end trace 4947dfa9b0a4cec3 ]--- BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17] Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] irq event stamp: 835637905 hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257 hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80 softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257 softirqs last disabled at (5654725): irq_exit+0x5f/0xbb CPU 1 Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M. RIP: tasklet_hi_action+0xf0/0xf0 Process migration/1 Call Trace: <IRQ> __do_softirq+0x117/0x257 irq_exit+0x5f/0xbb smp_apic_timer_interrupt+0x8a/0x98 apic_timer_interrupt+0x72/0x80 <EOI> printk+0x4d/0x4f stop_machine_cpu_stop+0x22c/0x274 cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 Signed-off-by: Ben Greear <greearb@candelatech.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Pekka Riikonen <priikone@iki.fi> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-07 05:29:49 +08:00
#define MAX_SOFTIRQ_RESTART 10
#ifdef CONFIG_TRACE_IRQFLAGS
/*
* When we run softirqs from irq_exit() and thus on the hardirq stack we need
* to keep the lockdep irq context tracking as tight as possible in order to
* not miss-qualify lock contexts and miss possible deadlocks.
*/
static inline bool lockdep_softirq_start(void)
{
bool in_hardirq = false;
if (lockdep_hardirq_context()) {
in_hardirq = true;
lockdep_hardirq_exit();
}
lockdep_softirq_enter();
return in_hardirq;
}
static inline void lockdep_softirq_end(bool in_hardirq)
{
lockdep_softirq_exit();
if (in_hardirq)
lockdep_hardirq_enter();
}
#else
static inline bool lockdep_softirq_start(void) { return false; }
static inline void lockdep_softirq_end(bool in_hardirq) { }
#endif
asmlinkage __visible void __softirq_entry __do_softirq(void)
{
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
mm: allow PF_MEMALLOC from softirq context This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:44:07 +08:00
unsigned long old_flags = current->flags;
Fix lockup related to stop_machine being stuck in __do_softirq. The stop machine logic can lock up if all but one of the migration threads make it through the disable-irq step and the one remaining thread gets stuck in __do_softirq. The reason __do_softirq can hang is that it has a bail-out based on jiffies timeout, but in the lockup case, jiffies itself is not incremented. To work around this, re-add the max_restart counter in __do_irq and stop processing irqs after 10 restarts. Thanks to Tejun Heo and Rusty Russell and others for helping me track this down. This was introduced in 3.9 by commit c10d73671ad3 ("softirq: reduce latencies"). It may be worth looking into ath9k to see if it has issues with its irq handler at a later date. The hang stack traces look something like this: ------------[ cut here ]------------ WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7() Watchdog detected hard LOCKUP on cpu 2 Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11 Call Trace: <NMI> warn_slowpath_common+0x85/0x9f warn_slowpath_fmt+0x46/0x48 watchdog_overflow_callback+0x9c/0xa7 __perf_event_overflow+0x137/0x1cb perf_event_overflow+0x14/0x16 intel_pmu_handle_irq+0x2dc/0x359 perf_event_nmi_handler+0x19/0x1b nmi_handle+0x7f/0xc2 do_nmi+0xbc/0x304 end_repeat_nmi+0x1e/0x2e <<EOE>> cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 ---[ end trace 4947dfa9b0a4cec3 ]--- BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17] Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] irq event stamp: 835637905 hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257 hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80 softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257 softirqs last disabled at (5654725): irq_exit+0x5f/0xbb CPU 1 Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M. RIP: tasklet_hi_action+0xf0/0xf0 Process migration/1 Call Trace: <IRQ> __do_softirq+0x117/0x257 irq_exit+0x5f/0xbb smp_apic_timer_interrupt+0x8a/0x98 apic_timer_interrupt+0x72/0x80 <EOI> printk+0x4d/0x4f stop_machine_cpu_stop+0x22c/0x274 cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 Signed-off-by: Ben Greear <greearb@candelatech.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Pekka Riikonen <priikone@iki.fi> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-07 05:29:49 +08:00
int max_restart = MAX_SOFTIRQ_RESTART;
struct softirq_action *h;
bool in_hardirq;
__u32 pending;
int softirq_bit;
mm: allow PF_MEMALLOC from softirq context This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:44:07 +08:00
/*
* Mask out PF_MEMALLOC as the current task context is borrowed for the
* softirq. A softirq handled, such as network RX, might set PF_MEMALLOC
* again if the socket is related to swapping.
mm: allow PF_MEMALLOC from softirq context This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:44:07 +08:00
*/
current->flags &= ~PF_MEMALLOC;
pending = local_softirq_pending();
softirq_handle_begin();
in_hardirq = lockdep_softirq_start();
account_softirq_enter(current);
restart:
/* Reset the pending bitmask before enabling irqs */
set_softirq_pending(0);
local_irq_enable();
h = softirq_vec;
while ((softirq_bit = ffs(pending))) {
unsigned int vec_nr;
int prev_count;
h += softirq_bit - 1;
vec_nr = h - softirq_vec;
prev_count = preempt_count();
kstat_incr_softirqs_this_cpu(vec_nr);
trace_softirq_entry(vec_nr);
h->action(h);
trace_softirq_exit(vec_nr);
if (unlikely(prev_count != preempt_count())) {
pr_err("huh, entered softirq %u %s %p with preempt_count %08x, exited with %08x?\n",
vec_nr, softirq_to_name[vec_nr], h->action,
prev_count, preempt_count());
preempt_count_set(prev_count);
}
h++;
pending >>= softirq_bit;
}
if (!IS_ENABLED(CONFIG_PREEMPT_RT) &&
__this_cpu_read(ksoftirqd) == current)
rcu_softirq_qs();
local_irq_disable();
pending = local_softirq_pending();
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
if (pending) {
Fix lockup related to stop_machine being stuck in __do_softirq. The stop machine logic can lock up if all but one of the migration threads make it through the disable-irq step and the one remaining thread gets stuck in __do_softirq. The reason __do_softirq can hang is that it has a bail-out based on jiffies timeout, but in the lockup case, jiffies itself is not incremented. To work around this, re-add the max_restart counter in __do_irq and stop processing irqs after 10 restarts. Thanks to Tejun Heo and Rusty Russell and others for helping me track this down. This was introduced in 3.9 by commit c10d73671ad3 ("softirq: reduce latencies"). It may be worth looking into ath9k to see if it has issues with its irq handler at a later date. The hang stack traces look something like this: ------------[ cut here ]------------ WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7() Watchdog detected hard LOCKUP on cpu 2 Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11 Call Trace: <NMI> warn_slowpath_common+0x85/0x9f warn_slowpath_fmt+0x46/0x48 watchdog_overflow_callback+0x9c/0xa7 __perf_event_overflow+0x137/0x1cb perf_event_overflow+0x14/0x16 intel_pmu_handle_irq+0x2dc/0x359 perf_event_nmi_handler+0x19/0x1b nmi_handle+0x7f/0xc2 do_nmi+0xbc/0x304 end_repeat_nmi+0x1e/0x2e <<EOE>> cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 ---[ end trace 4947dfa9b0a4cec3 ]--- BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17] Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc] irq event stamp: 835637905 hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257 hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80 softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257 softirqs last disabled at (5654725): irq_exit+0x5f/0xbb CPU 1 Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M. RIP: tasklet_hi_action+0xf0/0xf0 Process migration/1 Call Trace: <IRQ> __do_softirq+0x117/0x257 irq_exit+0x5f/0xbb smp_apic_timer_interrupt+0x8a/0x98 apic_timer_interrupt+0x72/0x80 <EOI> printk+0x4d/0x4f stop_machine_cpu_stop+0x22c/0x274 cpu_stopper_thread+0xae/0x162 smpboot_thread_fn+0x258/0x260 kthread+0xc7/0xcf ret_from_fork+0x7c/0xb0 Signed-off-by: Ben Greear <greearb@candelatech.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Pekka Riikonen <priikone@iki.fi> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-07 05:29:49 +08:00
if (time_before(jiffies, end) && !need_resched() &&
--max_restart)
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
goto restart;
wakeup_softirqd();
softirq: reduce latencies In various network workloads, __do_softirq() latencies can be up to 20 ms if HZ=1000, and 200 ms if HZ=100. This is because we iterate 10 times in the softirq dispatcher, and some actions can consume a lot of cycles. This patch changes the fallback to ksoftirqd condition to : - A time limit of 2 ms. - need_resched() being set on current task When one of this condition is met, we wakeup ksoftirqd for further softirq processing if we still have pending softirqs. Using need_resched() as the only condition can trigger RCU stalls, as we can keep BH disabled for too long. I ran several benchmarks and got no significant difference in throughput, but a very significant reduction of latencies (one order of magnitude) : In following bench, 200 antagonist "netperf -t TCP_RR" are started in background, using all available cpus. Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC IRQ (hard+soft) Before patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=550110.424 MIN_LATENCY=146858 MAX_LATENCY=997109 P50_LATENCY=305000 P90_LATENCY=550000 P99_LATENCY=710000 MEAN_LATENCY=376989.12 STDDEV_LATENCY=184046.92 After patch : # netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind RT_LATENCY=40545.492 MIN_LATENCY=9834 MAX_LATENCY=78366 P50_LATENCY=33583 P90_LATENCY=59000 P99_LATENCY=69000 MEAN_LATENCY=38364.67 STDDEV_LATENCY=12865.26 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: David Miller <davem@davemloft.net> Cc: Tom Herbert <therbert@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-11 07:26:34 +08:00
}
account_softirq_exit(current);
lockdep_softirq_end(in_hardirq);
softirq_handle_end();
current_restore_flags(old_flags, PF_MEMALLOC);
}
/**
* irq_enter_rcu - Enter an interrupt context with RCU watching
*/
void irq_enter_rcu(void)
{
__irq_enter_raw();
if (is_idle_task(current) && (irq_count() == HARDIRQ_OFFSET))
tick_irq_enter();
account_hardirq_enter(current);
}
/**
* irq_enter - Enter an interrupt context including RCU update
*/
void irq_enter(void)
{
rcu_irq_enter();
irq_enter_rcu();
}
static inline void tick_irq_exit(void)
{
#ifdef CONFIG_NO_HZ_COMMON
int cpu = smp_processor_id();
/* Make sure that timer wheel updates are propagated */
if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) {
nohz: Fix missing tick reprogram when interrupting an inline softirq The full nohz tick is reprogrammed in irq_exit() only if the exit is not in a nesting interrupt. This stands as an optimization: whether a hardirq or a softirq is interrupted, the tick is going to be reprogrammed when necessary at the end of the inner interrupt, with even potential new updates on the timer queue. When soft interrupts are interrupted, it's assumed that they are executing on the tail of an interrupt return. In that case tick_nohz_irq_exit() is called after softirq processing to take care of the tick reprogramming. But the assumption is wrong: softirqs can be processed inline as well, ie: outside of an interrupt, like in a call to local_bh_enable() or from ksoftirqd. Inline softirqs don't reprogram the tick once they are done, as opposed to interrupt tail softirq processing. So if a tick interrupts an inline softirq processing, the next timer will neither be reprogrammed from the interrupting tick's irq_exit() nor after the interrupted softirq processing. This situation may leave the tick unprogrammed while timers are armed. To fix this, simply keep reprogramming the tick even if a softirq has been interrupted. That can be optimized further, but for now correctness is more important. Note that new timers enqueued in nohz_full mode after a softirq gets interrupted will still be handled just fine through self-IPIs triggered by the timer code. Reported-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: stable@vger.kernel.org # 4.14+ Link: https://lkml.kernel.org/r/1533303094-15855-1-git-send-email-frederic@kernel.org
2018-08-03 21:31:34 +08:00
if (!in_irq())
tick_nohz_irq_exit();
}
#endif
}
static inline void __irq_exit_rcu(void)
{
#ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED
local_irq_disable();
#else
lockdep_assert_irqs_disabled();
#endif
account_hardirq_exit(current);
preempt_count_sub(HARDIRQ_OFFSET);
if (!in_interrupt() && local_softirq_pending())
invoke_softirq();
tick_irq_exit();
}
/**
* irq_exit_rcu() - Exit an interrupt context without updating RCU
*
* Also processes softirqs if needed and possible.
*/
void irq_exit_rcu(void)
{
__irq_exit_rcu();
/* must be last! */
lockdep_hardirq_exit();
}
/**
* irq_exit - Exit an interrupt context, update RCU and lockdep
*
* Also processes softirqs if needed and possible.
*/
void irq_exit(void)
{
__irq_exit_rcu();
rcu: Fix early call to rcu_idle_enter() On the irq exit path, tick_nohz_irq_exit() may raise a softirq, which action leads to the wake up path and select_task_rq_fair() that makes use of rcu to iterate the domains. This is an illegal use of RCU because we may be in RCU extended quiescent state if we interrupted an RCU-idle window in the idle loop: [ 132.978883] =============================== [ 132.978883] [ INFO: suspicious RCU usage. ] [ 132.978883] ------------------------------- [ 132.978883] kernel/sched_fair.c:1707 suspicious rcu_dereference_check() usage! [ 132.978883] [ 132.978883] other info that might help us debug this: [ 132.978883] [ 132.978883] [ 132.978883] rcu_scheduler_active = 1, debug_locks = 0 [ 132.978883] RCU used illegally from extended quiescent state! [ 132.978883] 2 locks held by swapper/0: [ 132.978883] #0: (&p->pi_lock){-.-.-.}, at: [<ffffffff8105a729>] try_to_wake_up+0x39/0x2f0 [ 132.978883] #1: (rcu_read_lock){.+.+..}, at: [<ffffffff8105556a>] select_task_rq_fair+0x6a/0xec0 [ 132.978883] [ 132.978883] stack backtrace: [ 132.978883] Pid: 0, comm: swapper Tainted: G W 3.0.0+ #178 [ 132.978883] Call Trace: [ 132.978883] <IRQ> [<ffffffff810a01f6>] lockdep_rcu_suspicious+0xe6/0x100 [ 132.978883] [<ffffffff81055c49>] select_task_rq_fair+0x749/0xec0 [ 132.978883] [<ffffffff8105556a>] ? select_task_rq_fair+0x6a/0xec0 [ 132.978883] [<ffffffff812fe494>] ? do_raw_spin_lock+0x54/0x150 [ 132.978883] [<ffffffff810a1f2d>] ? trace_hardirqs_on+0xd/0x10 [ 132.978883] [<ffffffff8105a7c3>] try_to_wake_up+0xd3/0x2f0 [ 132.978883] [<ffffffff81094f98>] ? ktime_get+0x68/0xf0 [ 132.978883] [<ffffffff8105aa35>] wake_up_process+0x15/0x20 [ 132.978883] [<ffffffff81069dd5>] raise_softirq_irqoff+0x65/0x110 [ 132.978883] [<ffffffff8108eb65>] __hrtimer_start_range_ns+0x415/0x5a0 [ 132.978883] [<ffffffff812fe3ee>] ? do_raw_spin_unlock+0x5e/0xb0 [ 132.978883] [<ffffffff8108ed08>] hrtimer_start+0x18/0x20 [ 132.978883] [<ffffffff8109c9c3>] tick_nohz_stop_sched_tick+0x393/0x450 [ 132.978883] [<ffffffff810694f2>] irq_exit+0xd2/0x100 [ 132.978883] [<ffffffff81829e96>] do_IRQ+0x66/0xe0 [ 132.978883] [<ffffffff81820d53>] common_interrupt+0x13/0x13 [ 132.978883] <EOI> [<ffffffff8103434b>] ? native_safe_halt+0xb/0x10 [ 132.978883] [<ffffffff810a1f2d>] ? trace_hardirqs_on+0xd/0x10 [ 132.978883] [<ffffffff810144ea>] default_idle+0xba/0x370 [ 132.978883] [<ffffffff810147fe>] amd_e400_idle+0x5e/0x130 [ 132.978883] [<ffffffff8100a9f6>] cpu_idle+0xb6/0x120 [ 132.978883] [<ffffffff817f217f>] rest_init+0xef/0x150 [ 132.978883] [<ffffffff817f20e2>] ? rest_init+0x52/0x150 [ 132.978883] [<ffffffff81ed9cf3>] start_kernel+0x3da/0x3e5 [ 132.978883] [<ffffffff81ed9346>] x86_64_start_reservations+0x131/0x135 [ 132.978883] [<ffffffff81ed944d>] x86_64_start_kernel+0x103/0x112 Fix this by calling rcu_idle_enter() after tick_nohz_irq_exit(). Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-08 07:31:02 +08:00
rcu_irq_exit();
/* must be last! */
lockdep_hardirq_exit();
}
/*
* This function must run with irqs disabled!
*/
inline void raise_softirq_irqoff(unsigned int nr)
{
__raise_softirq_irqoff(nr);
/*
* If we're in an interrupt or softirq, we're done
* (this also catches softirq-disabled code). We will
* actually run the softirq once we return from
* the irq or softirq.
*
* Otherwise we wake up ksoftirqd to make sure we
* schedule the softirq soon.
*/
if (!in_interrupt() && should_wake_ksoftirqd())
wakeup_softirqd();
}
void raise_softirq(unsigned int nr)
{
unsigned long flags;
local_irq_save(flags);
raise_softirq_irqoff(nr);
local_irq_restore(flags);
}
void __raise_softirq_irqoff(unsigned int nr)
{
lockdep_assert_irqs_disabled();
trace_softirq_raise(nr);
or_softirq_pending(1UL << nr);
}
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
softirq_vec[nr].action = action;
}
/*
* Tasklets
*/
struct tasklet_head {
struct tasklet_struct *head;
struct tasklet_struct **tail;
};
static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);
static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec);
static void __tasklet_schedule_common(struct tasklet_struct *t,
struct tasklet_head __percpu *headp,
unsigned int softirq_nr)
{
struct tasklet_head *head;
unsigned long flags;
local_irq_save(flags);
head = this_cpu_ptr(headp);
t->next = NULL;
*head->tail = t;
head->tail = &(t->next);
raise_softirq_irqoff(softirq_nr);
local_irq_restore(flags);
}
void __tasklet_schedule(struct tasklet_struct *t)
{
__tasklet_schedule_common(t, &tasklet_vec,
TASKLET_SOFTIRQ);
}
EXPORT_SYMBOL(__tasklet_schedule);
void __tasklet_hi_schedule(struct tasklet_struct *t)
{
__tasklet_schedule_common(t, &tasklet_hi_vec,
HI_SOFTIRQ);
}
EXPORT_SYMBOL(__tasklet_hi_schedule);
static bool tasklet_clear_sched(struct tasklet_struct *t)
{
if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) {
wake_up_var(&t->state);
return true;
}
WARN_ONCE(1, "tasklet SCHED state not set: %s %pS\n",
t->use_callback ? "callback" : "func",
t->use_callback ? (void *)t->callback : (void *)t->func);
return false;
}
static void tasklet_action_common(struct softirq_action *a,
struct tasklet_head *tl_head,
unsigned int softirq_nr)
{
struct tasklet_struct *list;
local_irq_disable();
list = tl_head->head;
tl_head->head = NULL;
tl_head->tail = &tl_head->head;
local_irq_enable();
while (list) {
struct tasklet_struct *t = list;
list = list->next;
if (tasklet_trylock(t)) {
if (!atomic_read(&t->count)) {
if (tasklet_clear_sched(t)) {
if (t->use_callback)
t->callback(t);
else
t->func(t->data);
}
tasklet_unlock(t);
continue;
}
tasklet_unlock(t);
}
local_irq_disable();
t->next = NULL;
*tl_head->tail = t;
tl_head->tail = &t->next;
__raise_softirq_irqoff(softirq_nr);
local_irq_enable();
}
}
static __latent_entropy void tasklet_action(struct softirq_action *a)
{
tasklet_action_common(a, this_cpu_ptr(&tasklet_vec), TASKLET_SOFTIRQ);
}
static __latent_entropy void tasklet_hi_action(struct softirq_action *a)
{
tasklet_action_common(a, this_cpu_ptr(&tasklet_hi_vec), HI_SOFTIRQ);
}
tasklet: Introduce new initialization API Nowadays, modern kernel subsystems that use callbacks pass the data structure associated with a given callback as argument to the callback. The tasklet subsystem remains one which passes an arbitrary unsigned long to the callback function. This has several problems: - This keeps an extra field for storing the argument in each tasklet data structure, it bloats the tasklet_struct structure with a redundant .data field - No type checking can be performed on this argument. Instead of using container_of() like other callback subsystems, it forces callbacks to do explicit type cast of the unsigned long argument into the required object type. - Buffer overflows can overwrite the .func and the .data field, so an attacker can easily overwrite the function and its first argument to whatever it wants. Add a new tasklet initialization API, via DECLARE_TASKLET() and tasklet_setup(), which will replace the existing ones. This work is greatly inspired by the timer_struct conversion series, see commit e99e88a9d2b0 ("treewide: setup_timer() -> timer_setup()") To avoid problems with both -Wcast-function-type (which is enabled in the kernel via -Wextra is several subsystems), and with mismatched function prototypes when build with Control Flow Integrity enabled, this adds the "use_callback" member to let the tasklet caller choose which union member to call through. Once all old API uses are removed, this and the .data member will be removed as well. (On 64-bit this does not grow the struct size as the new member fills the hole after atomic_t, which is also "int" sized.) Signed-off-by: Romain Perier <romain.perier@gmail.com> Co-developed-by: Allen Pais <allen.lkml@gmail.com> Signed-off-by: Allen Pais <allen.lkml@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Co-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2019-09-30 00:30:13 +08:00
void tasklet_setup(struct tasklet_struct *t,
void (*callback)(struct tasklet_struct *))
{
t->next = NULL;
t->state = 0;
atomic_set(&t->count, 0);
t->callback = callback;
t->use_callback = true;
t->data = 0;
}
EXPORT_SYMBOL(tasklet_setup);
void tasklet_init(struct tasklet_struct *t,
void (*func)(unsigned long), unsigned long data)
{
t->next = NULL;
t->state = 0;
atomic_set(&t->count, 0);
t->func = func;
tasklet: Introduce new initialization API Nowadays, modern kernel subsystems that use callbacks pass the data structure associated with a given callback as argument to the callback. The tasklet subsystem remains one which passes an arbitrary unsigned long to the callback function. This has several problems: - This keeps an extra field for storing the argument in each tasklet data structure, it bloats the tasklet_struct structure with a redundant .data field - No type checking can be performed on this argument. Instead of using container_of() like other callback subsystems, it forces callbacks to do explicit type cast of the unsigned long argument into the required object type. - Buffer overflows can overwrite the .func and the .data field, so an attacker can easily overwrite the function and its first argument to whatever it wants. Add a new tasklet initialization API, via DECLARE_TASKLET() and tasklet_setup(), which will replace the existing ones. This work is greatly inspired by the timer_struct conversion series, see commit e99e88a9d2b0 ("treewide: setup_timer() -> timer_setup()") To avoid problems with both -Wcast-function-type (which is enabled in the kernel via -Wextra is several subsystems), and with mismatched function prototypes when build with Control Flow Integrity enabled, this adds the "use_callback" member to let the tasklet caller choose which union member to call through. Once all old API uses are removed, this and the .data member will be removed as well. (On 64-bit this does not grow the struct size as the new member fills the hole after atomic_t, which is also "int" sized.) Signed-off-by: Romain Perier <romain.perier@gmail.com> Co-developed-by: Allen Pais <allen.lkml@gmail.com> Signed-off-by: Allen Pais <allen.lkml@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Co-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2019-09-30 00:30:13 +08:00
t->use_callback = false;
t->data = data;
}
EXPORT_SYMBOL(tasklet_init);
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
/*
* Do not use in new code. Waiting for tasklets from atomic contexts is
* error prone and should be avoided.
*/
void tasklet_unlock_spin_wait(struct tasklet_struct *t)
{
while (test_bit(TASKLET_STATE_RUN, &(t)->state)) {
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
/*
* Prevent a live lock when current preempted soft
* interrupt processing or prevents ksoftirqd from
* running. If the tasklet runs on a different CPU
* then this has no effect other than doing the BH
* disable/enable dance for nothing.
*/
local_bh_disable();
local_bh_enable();
} else {
cpu_relax();
}
}
}
EXPORT_SYMBOL(tasklet_unlock_spin_wait);
#endif
void tasklet_kill(struct tasklet_struct *t)
{
if (in_interrupt())
pr_notice("Attempt to kill tasklet from interrupt\n");
while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
wait_var_event(&t->state, !test_bit(TASKLET_STATE_SCHED, &t->state));
tasklet_unlock_wait(t);
tasklet_clear_sched(t);
}
EXPORT_SYMBOL(tasklet_kill);
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
void tasklet_unlock(struct tasklet_struct *t)
{
smp_mb__before_atomic();
clear_bit(TASKLET_STATE_RUN, &t->state);
smp_mb__after_atomic();
wake_up_var(&t->state);
}
EXPORT_SYMBOL_GPL(tasklet_unlock);
void tasklet_unlock_wait(struct tasklet_struct *t)
{
wait_var_event(&t->state, !test_bit(TASKLET_STATE_RUN, &t->state));
}
EXPORT_SYMBOL_GPL(tasklet_unlock_wait);
#endif
void __init softirq_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
per_cpu(tasklet_vec, cpu).tail =
&per_cpu(tasklet_vec, cpu).head;
per_cpu(tasklet_hi_vec, cpu).tail =
&per_cpu(tasklet_hi_vec, cpu).head;
}
open_softirq(TASKLET_SOFTIRQ, tasklet_action);
open_softirq(HI_SOFTIRQ, tasklet_hi_action);
}
static int ksoftirqd_should_run(unsigned int cpu)
{
return local_softirq_pending();
}
static void run_ksoftirqd(unsigned int cpu)
{
ksoftirqd_run_begin();
if (local_softirq_pending()) {
/*
* We can safely run softirq on inline stack, as we are not deep
* in the task stack here.
*/
__do_softirq();
ksoftirqd_run_end();
cond_resched();
return;
}
ksoftirqd_run_end();
}
#ifdef CONFIG_HOTPLUG_CPU
static int takeover_tasklets(unsigned int cpu)
{
/* CPU is dead, so no lock needed. */
local_irq_disable();
/* Find end, append list for that CPU. */
if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) {
*__this_cpu_read(tasklet_vec.tail) = per_cpu(tasklet_vec, cpu).head;
__this_cpu_write(tasklet_vec.tail, per_cpu(tasklet_vec, cpu).tail);
per_cpu(tasklet_vec, cpu).head = NULL;
per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head;
}
raise_softirq_irqoff(TASKLET_SOFTIRQ);
if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) {
*__this_cpu_read(tasklet_hi_vec.tail) = per_cpu(tasklet_hi_vec, cpu).head;
__this_cpu_write(tasklet_hi_vec.tail, per_cpu(tasklet_hi_vec, cpu).tail);
per_cpu(tasklet_hi_vec, cpu).head = NULL;
per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head;
}
raise_softirq_irqoff(HI_SOFTIRQ);
local_irq_enable();
return 0;
}
#else
#define takeover_tasklets NULL
#endif /* CONFIG_HOTPLUG_CPU */
static struct smp_hotplug_thread softirq_threads = {
.store = &ksoftirqd,
.thread_should_run = ksoftirqd_should_run,
.thread_fn = run_ksoftirqd,
.thread_comm = "ksoftirqd/%u",
};
static __init int spawn_ksoftirqd(void)
{
cpuhp_setup_state_nocalls(CPUHP_SOFTIRQ_DEAD, "softirq:dead", NULL,
takeover_tasklets);
BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
return 0;
}
early_initcall(spawn_ksoftirqd);
/*
* [ These __weak aliases are kept in a separate compilation unit, so that
* GCC does not inline them incorrectly. ]
*/
int __init __weak early_irq_init(void)
{
return 0;
}
int __init __weak arch_probe_nr_irqs(void)
{
return NR_IRQS_LEGACY;
}
int __init __weak arch_early_irq_init(void)
{
return 0;
}
genirq: x86: Ensure that dynamic irq allocation does not conflict On x86 the allocation of irq descriptors may allocate interrupts which are in the range of the GSI interrupts. That's wrong as those interrupts are hardwired and we don't have the irq domain translation like PPC. So one of these interrupts can be hooked up later to one of the devices which are hard wired to it and the io_apic init code for that particular interrupt line happily reuses that descriptor with a completely different configuration so hell breaks lose. Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs, except for a few usage sites which have not yet blown up in our face for whatever reason. But for drivers which need an irq range, like the GPIO drivers, we have no limit in place and we don't want to expose such a detail to a driver. To cure this introduce a function which an architecture can implement to impose a lower bound on the dynamic interrupt allocations. Implement it for x86 and set the lower bound to nr_gsi_irqs, which is the end of the hardwired interrupt space, so all dynamic allocations happen above. That not only allows the GPIO driver to work sanely, it also protects the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and htirq code. They need to be cleaned up as well, but that's a separate issue. Reported-by: Jin Yao <yao.jin@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Mathias Nyman <mathias.nyman@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Grant Likely <grant.likely@linaro.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Krogerus Heikki <heikki.krogerus@intel.com> Cc: Linus Walleij <linus.walleij@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-24 15:50:53 +08:00
unsigned int __weak arch_dynirq_lower_bound(unsigned int from)
{
return from;
}