OpenCloudOS-Kernel/mm/memcontrol.c

337 lines
8.2 KiB
C
Raw Normal View History

/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
#include <linux/page-flags.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
struct cgroup_subsys mem_cgroup_subsys;
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
* we hit the water mark. May be even add a low water mark, such that
* no reclaim occurs from a cgroup at it's low water mark, this is
* a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for memory usage
*/
struct res_counter res;
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
* TODO: Consider making these lists per zone
*/
struct list_head active_list;
struct list_head inactive_list;
};
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
/*
* We use the lower bit of the page->page_cgroup pointer as a bit spin
* lock. We need to ensure that page->page_cgroup is atleast two
* byte aligned (based on comments from Nick Piggin)
*/
#define PAGE_CGROUP_LOCK_BIT 0x0
#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
/*
* A page_cgroup page is associated with every page descriptor. The
* page_cgroup helps us identify information about the cgroup
*/
struct page_cgroup {
struct list_head lru; /* per cgroup LRU list */
struct page *page;
struct mem_cgroup *mem_cgroup;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
atomic_t ref_cnt; /* Helpful when pages move b/w */
/* mapped and cached states */
};
static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
struct mem_cgroup *mem;
mem = mem_cgroup_from_task(p);
css_get(&mem->css);
mm->mem_cgroup = mem;
}
void mm_free_cgroup(struct mm_struct *mm)
{
css_put(&mm->mem_cgroup->css);
}
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
static inline int page_cgroup_locked(struct page *page)
{
return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
&page->page_cgroup);
}
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
int locked;
/*
* While resetting the page_cgroup we might not hold the
* page_cgroup lock. free_hot_cold_page() is an example
* of such a scenario
*/
if (pc)
VM_BUG_ON(!page_cgroup_locked(page));
locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
page->page_cgroup = ((unsigned long)pc | locked);
}
struct page_cgroup *page_get_page_cgroup(struct page *page)
{
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
return (struct page_cgroup *)
(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}
void __always_inline lock_page_cgroup(struct page *page)
{
bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
VM_BUG_ON(!page_cgroup_locked(page));
}
void __always_inline unlock_page_cgroup(struct page *page)
{
bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}
/*
* Charge the memory controller for page usage.
* Return
* 0 if the charge was successful
* < 0 if the cgroup is over its limit
*/
int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
{
struct mem_cgroup *mem;
struct page_cgroup *pc, *race_pc;
/*
* Should page_cgroup's go to their own slab?
* One could optimize the performance of the charging routine
* by saving a bit in the page_flags and using it as a lock
* to see if the cgroup page already has a page_cgroup associated
* with it
*/
lock_page_cgroup(page);
pc = page_get_page_cgroup(page);
/*
* The page_cgroup exists and the page has already been accounted
*/
if (pc) {
atomic_inc(&pc->ref_cnt);
goto done;
}
unlock_page_cgroup(page);
pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
if (pc == NULL)
goto err;
rcu_read_lock();
/*
* We always charge the cgroup the mm_struct belongs to
* the mm_struct's mem_cgroup changes on task migration if the
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
if (!mm)
mm = &init_mm;
mem = rcu_dereference(mm->mem_cgroup);
/*
* For every charge from the cgroup, increment reference
* count
*/
css_get(&mem->css);
rcu_read_unlock();
/*
* If we created the page_cgroup, we should free it on exceeding
* the cgroup limit.
*/
if (res_counter_charge(&mem->res, 1)) {
css_put(&mem->css);
goto free_pc;
}
lock_page_cgroup(page);
/*
* Check if somebody else beat us to allocating the page_cgroup
*/
race_pc = page_get_page_cgroup(page);
if (race_pc) {
kfree(pc);
pc = race_pc;
atomic_inc(&pc->ref_cnt);
res_counter_uncharge(&mem->res, 1);
css_put(&mem->css);
goto done;
}
atomic_set(&pc->ref_cnt, 1);
pc->mem_cgroup = mem;
pc->page = page;
page_assign_page_cgroup(page, pc);
done:
unlock_page_cgroup(page);
return 0;
free_pc:
kfree(pc);
return -ENOMEM;
err:
unlock_page_cgroup(page);
return -ENOMEM;
}
/*
* Uncharging is always a welcome operation, we never complain, simply
* uncharge.
*/
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
struct mem_cgroup *mem;
struct page *page;
if (!pc)
return;
if (atomic_dec_and_test(&pc->ref_cnt)) {
page = pc->page;
lock_page_cgroup(page);
mem = pc->mem_cgroup;
css_put(&mem->css);
page_assign_page_cgroup(page, NULL);
unlock_page_cgroup(page);
res_counter_uncharge(&mem->res, 1);
kfree(pc);
}
}
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
struct file *file, char __user *userbuf, size_t nbytes,
loff_t *ppos)
{
return res_counter_read(&mem_cgroup_from_cont(cont)->res,
cft->private, userbuf, nbytes, ppos);
}
static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
struct file *file, const char __user *userbuf,
size_t nbytes, loff_t *ppos)
{
return res_counter_write(&mem_cgroup_from_cont(cont)->res,
cft->private, userbuf, nbytes, ppos);
}
static struct cftype mem_cgroup_files[] = {
{
.name = "usage",
.private = RES_USAGE,
.read = mem_cgroup_read,
},
{
.name = "limit",
.private = RES_LIMIT,
.write = mem_cgroup_write,
.read = mem_cgroup_read,
},
{
.name = "failcnt",
.private = RES_FAILCNT,
.read = mem_cgroup_read,
},
};
static struct mem_cgroup init_mem_cgroup;
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct mem_cgroup *mem;
if (unlikely((cont->parent) == NULL)) {
mem = &init_mem_cgroup;
init_mm.mem_cgroup = mem;
} else
mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
if (mem == NULL)
return NULL;
res_counter_init(&mem->res);
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 16:13:53 +08:00
INIT_LIST_HEAD(&mem->active_list);
INIT_LIST_HEAD(&mem->inactive_list);
return &mem->css;
}
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
kfree(mem_cgroup_from_cont(cont));
}
static int mem_cgroup_populate(struct cgroup_subsys *ss,
struct cgroup *cont)
{
return cgroup_add_files(cont, ss, mem_cgroup_files,
ARRAY_SIZE(mem_cgroup_files));
}
struct cgroup_subsys mem_cgroup_subsys = {
.name = "memory",
.subsys_id = mem_cgroup_subsys_id,
.create = mem_cgroup_create,
.destroy = mem_cgroup_destroy,
.populate = mem_cgroup_populate,
.early_init = 1,
};