OpenCloudOS-Kernel/drivers/pnp/core.c

228 lines
4.8 KiB
C
Raw Normal View History

/*
* core.c - contains all core device and protocol registration functions
*
* Copyright 2002 Adam Belay <ambx1@neo.rr.com>
*/
#include <linux/pnp.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/dma-mapping.h>
#include "base.h"
static LIST_HEAD(pnp_protocols);
LIST_HEAD(pnp_global);
DEFINE_SPINLOCK(pnp_lock);
PNP: notice whether we have PNP devices (PNPBIOS or PNPACPI) This series converts i386 and x86_64 legacy serial ports to be platform devices and prevents probing for them if we have PNP. This prevents double discovery, where a device was found both by the legacy probe and by 8250_pnp. This also prevents the serial driver from claiming IRDA devices (unless they have a UART PNP ID). The serial legacy probe sometimes assumed the wrong IRQ, so the user had to use "setserial" to fix it. Removing the need for setserial to make IRDA devices work seems good, but it does break some things. In particular, you may need to keep setserial from poking legacy UART stuff back in by doing something like "dpkg-reconfigure setserial" with the "kernel" option. Otherwise, the setserial-discovered "UART" will claim resources and prevent the IRDA driver from loading. This patch: If we can discover devices using PNP, we can skip some legacy probes. This flag ("pnp_platform_devices") indicates that PNPBIOS or PNPACPI is enabled and should tell us about builtin devices. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Keith Owens <kaos@ocs.com.au> Cc: Len Brown <lenb@kernel.org> Cc: Adam Belay <ambx1@neo.rr.com> Cc: Matthieu CASTET <castet.matthieu@free.fr> Cc: Jean Tourrilhes <jt@hpl.hp.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Ville Syrjala <syrjala@sci.fi> Cc: Russell King <rmk+serial@arm.linux.org.uk> Cc: Samuel Ortiz <samuel@sortiz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 15:35:54 +08:00
/*
* ACPI or PNPBIOS should tell us about all platform devices, so we can
* skip some blind probes. ISAPNP typically enumerates only plug-in ISA
* devices, not built-in things like COM ports.
*/
int pnp_platform_devices;
EXPORT_SYMBOL(pnp_platform_devices);
void *pnp_alloc(long size)
{
void *result;
2007-07-19 16:49:03 +08:00
result = kzalloc(size, GFP_KERNEL);
if (!result) {
printk(KERN_ERR "pnp: Out of Memory\n");
return NULL;
}
return result;
}
/**
* pnp_protocol_register - adds a pnp protocol to the pnp layer
* @protocol: pointer to the corresponding pnp_protocol structure
*
* Ex protocols: ISAPNP, PNPBIOS, etc
*/
int pnp_register_protocol(struct pnp_protocol *protocol)
{
int nodenum;
struct list_head *pos;
INIT_LIST_HEAD(&protocol->devices);
INIT_LIST_HEAD(&protocol->cards);
nodenum = 0;
spin_lock(&pnp_lock);
/* assign the lowest unused number */
list_for_each(pos, &pnp_protocols) {
struct pnp_protocol *cur = to_pnp_protocol(pos);
if (cur->number == nodenum) {
pos = &pnp_protocols;
nodenum++;
}
}
list_add_tail(&protocol->protocol_list, &pnp_protocols);
spin_unlock(&pnp_lock);
protocol->number = nodenum;
dev_set_name(&protocol->dev, "pnp%d", nodenum);
return device_register(&protocol->dev);
}
/**
* pnp_protocol_unregister - removes a pnp protocol from the pnp layer
* @protocol: pointer to the corresponding pnp_protocol structure
*/
void pnp_unregister_protocol(struct pnp_protocol *protocol)
{
spin_lock(&pnp_lock);
list_del(&protocol->protocol_list);
spin_unlock(&pnp_lock);
device_unregister(&protocol->dev);
}
static void pnp_free_ids(struct pnp_dev *dev)
{
struct pnp_id *id;
struct pnp_id *next;
id = dev->id;
while (id) {
next = id->next;
kfree(id);
id = next;
}
}
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
void pnp_free_resource(struct pnp_resource *pnp_res)
{
list_del(&pnp_res->list);
kfree(pnp_res);
}
void pnp_free_resources(struct pnp_dev *dev)
{
struct pnp_resource *pnp_res, *tmp;
list_for_each_entry_safe(pnp_res, tmp, &dev->resources, list) {
pnp_free_resource(pnp_res);
}
}
static void pnp_release_device(struct device *dmdev)
{
struct pnp_dev *dev = to_pnp_dev(dmdev);
pnp_free_ids(dev);
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_free_resources(dev);
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
pnp_free_options(dev);
kfree(dev);
}
struct pnp_dev *pnp_alloc_dev(struct pnp_protocol *protocol, int id, char *pnpid)
{
struct pnp_dev *dev;
struct pnp_id *dev_id;
dev = kzalloc(sizeof(struct pnp_dev), GFP_KERNEL);
if (!dev)
return NULL;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
INIT_LIST_HEAD(&dev->resources);
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
INIT_LIST_HEAD(&dev->options);
dev->protocol = protocol;
dev->number = id;
dev->dma_mask = DMA_BIT_MASK(24);
dev->dev.parent = &dev->protocol->dev;
dev->dev.bus = &pnp_bus_type;
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.coherent_dma_mask = dev->dma_mask;
dev->dev.release = &pnp_release_device;
dev_set_name(&dev->dev, "%02x:%02x", dev->protocol->number, dev->number);
dev_id = pnp_add_id(dev, pnpid);
if (!dev_id) {
kfree(dev);
return NULL;
}
return dev;
}
int __pnp_add_device(struct pnp_dev *dev)
{
pnp_fixup_device(dev);
dev->status = PNP_READY;
spin_lock(&pnp_lock);
list_add_tail(&dev->global_list, &pnp_global);
list_add_tail(&dev->protocol_list, &dev->protocol->devices);
spin_unlock(&pnp_lock);
if (dev->protocol->can_wakeup)
device_set_wakeup_capable(&dev->dev,
dev->protocol->can_wakeup(dev));
return device_register(&dev->dev);
}
/*
* pnp_add_device - adds a pnp device to the pnp layer
* @dev: pointer to dev to add
*
* adds to driver model, name database, fixups, interface, etc.
*/
int pnp_add_device(struct pnp_dev *dev)
{
int ret;
char buf[128];
int len = 0;
struct pnp_id *id;
if (dev->card)
return -EINVAL;
ret = __pnp_add_device(dev);
if (ret)
return ret;
buf[0] = '\0';
for (id = dev->id; id; id = id->next)
len += scnprintf(buf + len, sizeof(buf) - len, " %s", id->id);
pnp_dbg(&dev->dev, "%s device, IDs%s (%s)\n",
dev->protocol->name, buf, dev->active ? "active" : "disabled");
return 0;
}
void __pnp_remove_device(struct pnp_dev *dev)
{
spin_lock(&pnp_lock);
list_del(&dev->global_list);
list_del(&dev->protocol_list);
spin_unlock(&pnp_lock);
device_unregister(&dev->dev);
}
static int __init pnp_init(void)
{
return bus_register(&pnp_bus_type);
}
subsys_initcall(pnp_init);
int pnp_debug;
#if defined(CONFIG_PNP_DEBUG_MESSAGES)
static int __init pnp_debug_setup(char *__unused)
{
pnp_debug = 1;
return 1;
}
__setup("pnp.debug", pnp_debug_setup);
#endif