OpenCloudOS-Kernel/kernel/irq/handle.c

557 lines
13 KiB
C
Raw Normal View History

/*
* linux/kernel/irq/handle.c
*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
*
* This file contains the core interrupt handling code.
*
* Detailed information is available in Documentation/DocBook/genericirq
*
*/
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/rculist.h>
#include <linux/hash.h>
#include <linux/radix-tree.h>
#include <trace/events/irq.h>
#include "internals.h"
/*
* lockdep: we want to handle all irq_desc locks as a single lock-class:
*/
struct lock_class_key irq_desc_lock_class;
/**
* handle_bad_irq - handle spurious and unhandled irqs
* @irq: the interrupt number
* @desc: description of the interrupt
*
* Handles spurious and unhandled IRQ's. It also prints a debugmessage.
*/
void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
{
print_irq_desc(irq, desc);
kstat_incr_irqs_this_cpu(irq, desc);
ack_bad_irq(irq);
}
#if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
static void __init init_irq_default_affinity(void)
{
alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
cpumask_setall(irq_default_affinity);
}
#else
static void __init init_irq_default_affinity(void)
{
}
#endif
/*
* Linux has a controller-independent interrupt architecture.
* Every controller has a 'controller-template', that is used
* by the main code to do the right thing. Each driver-visible
* interrupt source is transparently wired to the appropriate
* controller. Thus drivers need not be aware of the
* interrupt-controller.
*
* The code is designed to be easily extended with new/different
* interrupt controllers, without having to do assembly magic or
* having to touch the generic code.
*
* Controller mappings for all interrupt sources:
*/
int nr_irqs = NR_IRQS;
EXPORT_SYMBOL_GPL(nr_irqs);
#ifdef CONFIG_SPARSE_IRQ
static struct irq_desc irq_desc_init = {
.irq = -1,
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
};
void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr)
{
void *ptr;
ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs),
GFP_ATOMIC, node);
/*
* don't overwite if can not get new one
* init_copy_kstat_irqs() could still use old one
*/
if (ptr) {
printk(KERN_DEBUG " alloc kstat_irqs on node %d\n", node);
desc->kstat_irqs = ptr;
}
}
static void init_one_irq_desc(int irq, struct irq_desc *desc, int node)
{
memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
raw_spin_lock_init(&desc->lock);
desc->irq = irq;
#ifdef CONFIG_SMP
desc->node = node;
#endif
lockdep_set_class(&desc->lock, &irq_desc_lock_class);
init_kstat_irqs(desc, node, nr_cpu_ids);
if (!desc->kstat_irqs) {
printk(KERN_ERR "can not alloc kstat_irqs\n");
BUG_ON(1);
}
if (!alloc_desc_masks(desc, node, false)) {
printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
BUG_ON(1);
}
init_desc_masks(desc);
arch_init_chip_data(desc, node);
}
/*
* Protect the sparse_irqs:
*/
DEFINE_RAW_SPINLOCK(sparse_irq_lock);
static RADIX_TREE(irq_desc_tree, GFP_ATOMIC);
static void set_irq_desc(unsigned int irq, struct irq_desc *desc)
{
radix_tree_insert(&irq_desc_tree, irq, desc);
}
struct irq_desc *irq_to_desc(unsigned int irq)
{
return radix_tree_lookup(&irq_desc_tree, irq);
}
void replace_irq_desc(unsigned int irq, struct irq_desc *desc)
{
void **ptr;
ptr = radix_tree_lookup_slot(&irq_desc_tree, irq);
if (ptr)
radix_tree_replace_slot(ptr, desc);
}
static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
[0 ... NR_IRQS_LEGACY-1] = {
.irq = -1,
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
}
};
static unsigned int *kstat_irqs_legacy;
int __init early_irq_init(void)
{
struct irq_desc *desc;
int legacy_count;
int node;
int i;
init_irq_default_affinity();
/* initialize nr_irqs based on nr_cpu_ids */
arch_probe_nr_irqs();
printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
desc = irq_desc_legacy;
legacy_count = ARRAY_SIZE(irq_desc_legacy);
node = first_online_node;
/* allocate based on nr_cpu_ids */
kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids *
sizeof(int), GFP_NOWAIT, node);
for (i = 0; i < legacy_count; i++) {
desc[i].irq = i;
#ifdef CONFIG_SMP
desc[i].node = node;
#endif
desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
alloc_desc_masks(&desc[i], node, true);
init_desc_masks(&desc[i]);
set_irq_desc(i, &desc[i]);
}
return arch_early_irq_init();
}
struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node)
{
struct irq_desc *desc;
unsigned long flags;
if (irq >= nr_irqs) {
WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
irq, nr_irqs);
return NULL;
}
desc = irq_to_desc(irq);
if (desc)
return desc;
raw_spin_lock_irqsave(&sparse_irq_lock, flags);
/* We have to check it to avoid races with another CPU */
desc = irq_to_desc(irq);
if (desc)
goto out_unlock;
desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
printk(KERN_DEBUG " alloc irq_desc for %d on node %d\n", irq, node);
if (!desc) {
printk(KERN_ERR "can not alloc irq_desc\n");
BUG_ON(1);
}
init_one_irq_desc(irq, desc, node);
set_irq_desc(irq, desc);
out_unlock:
raw_spin_unlock_irqrestore(&sparse_irq_lock, flags);
return desc;
}
#else /* !CONFIG_SPARSE_IRQ */
struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
[0 ... NR_IRQS-1] = {
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
}
};
static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
int __init early_irq_init(void)
{
struct irq_desc *desc;
int count;
int i;
init_irq_default_affinity();
printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
desc = irq_desc;
count = ARRAY_SIZE(irq_desc);
for (i = 0; i < count; i++) {
desc[i].irq = i;
alloc_desc_masks(&desc[i], 0, true);
init_desc_masks(&desc[i]);
desc[i].kstat_irqs = kstat_irqs_all[i];
}
return arch_early_irq_init();
}
struct irq_desc *irq_to_desc(unsigned int irq)
{
return (irq < NR_IRQS) ? irq_desc + irq : NULL;
}
struct irq_desc *irq_to_desc_alloc_node(unsigned int irq, int node)
{
return irq_to_desc(irq);
}
#endif /* !CONFIG_SPARSE_IRQ */
void clear_kstat_irqs(struct irq_desc *desc)
{
memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
}
/*
* What should we do if we get a hw irq event on an illegal vector?
* Each architecture has to answer this themself.
*/
static void ack_bad(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
print_irq_desc(irq, desc);
ack_bad_irq(irq);
}
/*
* NOP functions
*/
static void noop(unsigned int irq)
{
}
static unsigned int noop_ret(unsigned int irq)
{
return 0;
}
/*
* Generic no controller implementation
*/
struct irq_chip no_irq_chip = {
.name = "none",
.startup = noop_ret,
.shutdown = noop,
.enable = noop,
.disable = noop,
.ack = ack_bad,
.end = noop,
};
/*
* Generic dummy implementation which can be used for
* real dumb interrupt sources
*/
struct irq_chip dummy_irq_chip = {
.name = "dummy",
.startup = noop_ret,
.shutdown = noop,
.enable = noop,
.disable = noop,
.ack = noop,
.mask = noop,
.unmask = noop,
.end = noop,
};
/*
* Special, empty irq handler:
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
irqreturn_t no_action(int cpl, void *dev_id)
{
return IRQ_NONE;
}
static void warn_no_thread(unsigned int irq, struct irqaction *action)
{
if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
return;
printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
"but no thread function available.", irq, action->name);
}
/**
* handle_IRQ_event - irq action chain handler
* @irq: the interrupt number
* @action: the interrupt action chain for this irq
*
* Handles the action chain of an irq event
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
irqreturn_t ret, retval = IRQ_NONE;
unsigned int status = 0;
do {
trace_irq_handler_entry(irq, action);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
ret = action->handler(irq, action->dev_id);
trace_irq_handler_exit(irq, action, ret);
switch (ret) {
case IRQ_WAKE_THREAD:
/*
* Set result to handled so the spurious check
* does not trigger.
*/
ret = IRQ_HANDLED;
/*
* Catch drivers which return WAKE_THREAD but
* did not set up a thread function
*/
if (unlikely(!action->thread_fn)) {
warn_no_thread(irq, action);
break;
}
/*
* Wake up the handler thread for this
* action. In case the thread crashed and was
* killed we just pretend that we handled the
* interrupt. The hardirq handler above has
* disabled the device interrupt, so no irq
* storm is lurking.
*/
if (likely(!test_bit(IRQTF_DIED,
&action->thread_flags))) {
set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
wake_up_process(action->thread);
}
/* Fall through to add to randomness */
case IRQ_HANDLED:
status |= action->flags;
break;
default:
break;
}
retval |= ret;
action = action->next;
} while (action);
if (status & IRQF_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
local_irq_disable();
return retval;
}
#ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
#ifdef CONFIG_ENABLE_WARN_DEPRECATED
# warning __do_IRQ is deprecated. Please convert to proper flow handlers
#endif
/**
* __do_IRQ - original all in one highlevel IRQ handler
* @irq: the interrupt number
*
* __do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*
* This is the original x86 implementation which is used for every
* interrupt type.
*/
unsigned int __do_IRQ(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
struct irqaction *action;
unsigned int status;
kstat_incr_irqs_this_cpu(irq, desc);
if (CHECK_IRQ_PER_CPU(desc->status)) {
irqreturn_t action_ret;
/*
* No locking required for CPU-local interrupts:
*/
if (desc->chip->ack)
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 17:24:36 +08:00
desc->chip->ack(irq);
if (likely(!(desc->status & IRQ_DISABLED))) {
action_ret = handle_IRQ_event(irq, desc->action);
if (!noirqdebug)
note_interrupt(irq, desc, action_ret);
}
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 17:24:36 +08:00
desc->chip->end(irq);
return 1;
}
raw_spin_lock(&desc->lock);
if (desc->chip->ack)
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 17:24:36 +08:00
desc->chip->ack(irq);
/*
* REPLAY is when Linux resends an IRQ that was dropped earlier
* WAITING is used by probe to mark irqs that are being tested
*/
status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */
/*
* If the IRQ is disabled for whatever reason, we cannot
* use the action we have.
*/
action = NULL;
if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
action = desc->action;
status &= ~IRQ_PENDING; /* we commit to handling */
status |= IRQ_INPROGRESS; /* we are handling it */
}
desc->status = status;
/*
* If there is no IRQ handler or it was disabled, exit early.
* Since we set PENDING, if another processor is handling
* a different instance of this same irq, the other processor
* will take care of it.
*/
if (unlikely(!action))
goto out;
/*
* Edge triggered interrupts need to remember
* pending events.
* This applies to any hw interrupts that allow a second
* instance of the same irq to arrive while we are in do_IRQ
* or in the handler. But the code here only handles the _second_
* instance of the irq, not the third or fourth. So it is mostly
* useful for irq hardware that does not mask cleanly in an
* SMP environment.
*/
for (;;) {
irqreturn_t action_ret;
raw_spin_unlock(&desc->lock);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
action_ret = handle_IRQ_event(irq, action);
if (!noirqdebug)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
note_interrupt(irq, desc, action_ret);
raw_spin_lock(&desc->lock);
if (likely(!(desc->status & IRQ_PENDING)))
break;
desc->status &= ~IRQ_PENDING;
}
desc->status &= ~IRQ_INPROGRESS;
out:
/*
* The ->end() handler has to deal with interrupts which got
* disabled while the handler was running.
*/
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 17:24:36 +08:00
desc->chip->end(irq);
raw_spin_unlock(&desc->lock);
return 1;
}
#endif
void early_init_irq_lock_class(void)
{
struct irq_desc *desc;
int i;
for_each_irq_desc(i, desc) {
lockdep_set_class(&desc->lock, &irq_desc_lock_class);
}
}
unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
{
struct irq_desc *desc = irq_to_desc(irq);
return desc ? desc->kstat_irqs[cpu] : 0;
}
EXPORT_SYMBOL(kstat_irqs_cpu);