OpenCloudOS-Kernel/drivers/md/dm-integrity.c

3653 lines
102 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
* Copyright (C) 2016-2017 Milan Broz
* Copyright (C) 2016-2017 Mikulas Patocka
*
* This file is released under the GPL.
*/
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/vmalloc.h>
#include <linux/sort.h>
#include <linux/rbtree.h>
#include <linux/delay.h>
#include <linux/random.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/async_tx.h>
#include <linux/dm-bufio.h>
#define DM_MSG_PREFIX "integrity"
#define DEFAULT_INTERLEAVE_SECTORS 32768
#define DEFAULT_JOURNAL_SIZE_FACTOR 7
#define DEFAULT_BUFFER_SECTORS 128
#define DEFAULT_JOURNAL_WATERMARK 50
#define DEFAULT_SYNC_MSEC 10000
#define DEFAULT_MAX_JOURNAL_SECTORS 131072
#define MIN_LOG2_INTERLEAVE_SECTORS 3
#define MAX_LOG2_INTERLEAVE_SECTORS 31
#define METADATA_WORKQUEUE_MAX_ACTIVE 16
#define RECALC_SECTORS 8192
#define RECALC_WRITE_SUPER 16
/*
* Warning - DEBUG_PRINT prints security-sensitive data to the log,
* so it should not be enabled in the official kernel
*/
//#define DEBUG_PRINT
//#define INTERNAL_VERIFY
/*
* On disk structures
*/
#define SB_MAGIC "integrt"
#define SB_VERSION_1 1
#define SB_VERSION_2 2
#define SB_SECTORS 8
#define MAX_SECTORS_PER_BLOCK 8
struct superblock {
__u8 magic[8];
__u8 version;
__u8 log2_interleave_sectors;
__u16 integrity_tag_size;
__u32 journal_sections;
__u64 provided_data_sectors; /* userspace uses this value */
__u32 flags;
__u8 log2_sectors_per_block;
__u8 pad[3];
__u64 recalc_sector;
};
#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
#define SB_FLAG_RECALCULATING 0x2
#define JOURNAL_ENTRY_ROUNDUP 8
typedef __u64 commit_id_t;
#define JOURNAL_MAC_PER_SECTOR 8
struct journal_entry {
union {
struct {
__u32 sector_lo;
__u32 sector_hi;
} s;
__u64 sector;
} u;
commit_id_t last_bytes[0];
/* __u8 tag[0]; */
};
#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
#if BITS_PER_LONG == 64
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
#elif defined(CONFIG_LBDAF)
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
#else
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
#define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
#endif
#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
#define JOURNAL_BLOCK_SECTORS 8
#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
struct journal_sector {
__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
__u8 mac[JOURNAL_MAC_PER_SECTOR];
commit_id_t commit_id;
};
#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
#define METADATA_PADDING_SECTORS 8
#define N_COMMIT_IDS 4
static unsigned char prev_commit_seq(unsigned char seq)
{
return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
}
static unsigned char next_commit_seq(unsigned char seq)
{
return (seq + 1) % N_COMMIT_IDS;
}
/*
* In-memory structures
*/
struct journal_node {
struct rb_node node;
sector_t sector;
};
struct alg_spec {
char *alg_string;
char *key_string;
__u8 *key;
unsigned key_size;
};
struct dm_integrity_c {
struct dm_dev *dev;
struct dm_dev *meta_dev;
unsigned tag_size;
__s8 log2_tag_size;
sector_t start;
mempool_t journal_io_mempool;
struct dm_io_client *io;
struct dm_bufio_client *bufio;
struct workqueue_struct *metadata_wq;
struct superblock *sb;
unsigned journal_pages;
struct page_list *journal;
struct page_list *journal_io;
struct page_list *journal_xor;
struct crypto_skcipher *journal_crypt;
struct scatterlist **journal_scatterlist;
struct scatterlist **journal_io_scatterlist;
struct skcipher_request **sk_requests;
struct crypto_shash *journal_mac;
struct journal_node *journal_tree;
struct rb_root journal_tree_root;
sector_t provided_data_sectors;
unsigned short journal_entry_size;
unsigned char journal_entries_per_sector;
unsigned char journal_section_entries;
unsigned short journal_section_sectors;
unsigned journal_sections;
unsigned journal_entries;
sector_t data_device_sectors;
sector_t meta_device_sectors;
unsigned initial_sectors;
unsigned metadata_run;
__s8 log2_metadata_run;
__u8 log2_buffer_sectors;
__u8 sectors_per_block;
unsigned char mode;
int suspending;
int failed;
struct crypto_shash *internal_hash;
/* these variables are locked with endio_wait.lock */
struct rb_root in_progress;
struct list_head wait_list;
wait_queue_head_t endio_wait;
struct workqueue_struct *wait_wq;
unsigned char commit_seq;
commit_id_t commit_ids[N_COMMIT_IDS];
unsigned committed_section;
unsigned n_committed_sections;
unsigned uncommitted_section;
unsigned n_uncommitted_sections;
unsigned free_section;
unsigned char free_section_entry;
unsigned free_sectors;
unsigned free_sectors_threshold;
struct workqueue_struct *commit_wq;
struct work_struct commit_work;
struct workqueue_struct *writer_wq;
struct work_struct writer_work;
struct workqueue_struct *recalc_wq;
struct work_struct recalc_work;
u8 *recalc_buffer;
u8 *recalc_tags;
struct bio_list flush_bio_list;
unsigned long autocommit_jiffies;
struct timer_list autocommit_timer;
unsigned autocommit_msec;
wait_queue_head_t copy_to_journal_wait;
struct completion crypto_backoff;
bool journal_uptodate;
bool just_formatted;
struct alg_spec internal_hash_alg;
struct alg_spec journal_crypt_alg;
struct alg_spec journal_mac_alg;
atomic64_t number_of_mismatches;
};
struct dm_integrity_range {
sector_t logical_sector;
unsigned n_sectors;
bool waiting;
union {
struct rb_node node;
struct {
struct task_struct *task;
struct list_head wait_entry;
};
};
};
struct dm_integrity_io {
struct work_struct work;
struct dm_integrity_c *ic;
bool write;
bool fua;
struct dm_integrity_range range;
sector_t metadata_block;
unsigned metadata_offset;
atomic_t in_flight;
blk_status_t bi_status;
struct completion *completion;
struct gendisk *orig_bi_disk;
u8 orig_bi_partno;
bio_end_io_t *orig_bi_end_io;
struct bio_integrity_payload *orig_bi_integrity;
struct bvec_iter orig_bi_iter;
};
struct journal_completion {
struct dm_integrity_c *ic;
atomic_t in_flight;
struct completion comp;
};
struct journal_io {
struct dm_integrity_range range;
struct journal_completion *comp;
};
static struct kmem_cache *journal_io_cache;
#define JOURNAL_IO_MEMPOOL 32
#ifdef DEBUG_PRINT
#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
{
va_list args;
va_start(args, msg);
vprintk(msg, args);
va_end(args);
if (len)
pr_cont(":");
while (len) {
pr_cont(" %02x", *bytes);
bytes++;
len--;
}
pr_cont("\n");
}
#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
#else
#define DEBUG_print(x, ...) do { } while (0)
#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
#endif
/*
* DM Integrity profile, protection is performed layer above (dm-crypt)
*/
static const struct blk_integrity_profile dm_integrity_profile = {
.name = "DM-DIF-EXT-TAG",
.generate_fn = NULL,
.verify_fn = NULL,
};
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
static void integrity_bio_wait(struct work_struct *w);
static void dm_integrity_dtr(struct dm_target *ti);
static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
{
if (err == -EILSEQ)
atomic64_inc(&ic->number_of_mismatches);
if (!cmpxchg(&ic->failed, 0, err))
DMERR("Error on %s: %d", msg, err);
}
static int dm_integrity_failed(struct dm_integrity_c *ic)
{
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
return READ_ONCE(ic->failed);
}
static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
unsigned j, unsigned char seq)
{
/*
* Xor the number with section and sector, so that if a piece of
* journal is written at wrong place, it is detected.
*/
return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
}
static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
sector_t *area, sector_t *offset)
{
if (!ic->meta_dev) {
__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
*area = data_sector >> log2_interleave_sectors;
*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
} else {
*area = 0;
*offset = data_sector;
}
}
#define sector_to_block(ic, n) \
do { \
BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
(n) >>= (ic)->sb->log2_sectors_per_block; \
} while (0)
static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
sector_t offset, unsigned *metadata_offset)
{
__u64 ms;
unsigned mo;
ms = area << ic->sb->log2_interleave_sectors;
if (likely(ic->log2_metadata_run >= 0))
ms += area << ic->log2_metadata_run;
else
ms += area * ic->metadata_run;
ms >>= ic->log2_buffer_sectors;
sector_to_block(ic, offset);
if (likely(ic->log2_tag_size >= 0)) {
ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
} else {
ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
}
*metadata_offset = mo;
return ms;
}
static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
{
sector_t result;
if (ic->meta_dev)
return offset;
result = area << ic->sb->log2_interleave_sectors;
if (likely(ic->log2_metadata_run >= 0))
result += (area + 1) << ic->log2_metadata_run;
else
result += (area + 1) * ic->metadata_run;
result += (sector_t)ic->initial_sectors + offset;
result += ic->start;
return result;
}
static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
{
if (unlikely(*sec_ptr >= ic->journal_sections))
*sec_ptr -= ic->journal_sections;
}
static void sb_set_version(struct dm_integrity_c *ic)
{
if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
ic->sb->version = SB_VERSION_2;
else
ic->sb->version = SB_VERSION_1;
}
static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
io_req.bi_op = op;
io_req.bi_op_flags = op_flags;
io_req.mem.type = DM_IO_KMEM;
io_req.mem.ptr.addr = ic->sb;
io_req.notify.fn = NULL;
io_req.client = ic->io;
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
io_loc.sector = ic->start;
io_loc.count = SB_SECTORS;
return dm_io(&io_req, 1, &io_loc, NULL);
}
static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
bool e, const char *function)
{
#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
if (unlikely(section >= ic->journal_sections) ||
unlikely(offset >= limit)) {
printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
function, section, offset, ic->journal_sections, limit);
BUG();
}
#endif
}
static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
unsigned *pl_index, unsigned *pl_offset)
{
unsigned sector;
access_journal_check(ic, section, offset, false, "page_list_location");
sector = section * ic->journal_section_sectors + offset;
*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
}
static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
unsigned section, unsigned offset, unsigned *n_sectors)
{
unsigned pl_index, pl_offset;
char *va;
page_list_location(ic, section, offset, &pl_index, &pl_offset);
if (n_sectors)
*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
va = lowmem_page_address(pl[pl_index].page);
return (struct journal_sector *)(va + pl_offset);
}
static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
{
return access_page_list(ic, ic->journal, section, offset, NULL);
}
static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
{
unsigned rel_sector, offset;
struct journal_sector *js;
access_journal_check(ic, section, n, true, "access_journal_entry");
rel_sector = n % JOURNAL_BLOCK_SECTORS;
offset = n / JOURNAL_BLOCK_SECTORS;
js = access_journal(ic, section, rel_sector);
return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
}
static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
{
n <<= ic->sb->log2_sectors_per_block;
n += JOURNAL_BLOCK_SECTORS;
access_journal_check(ic, section, n, false, "access_journal_data");
return access_journal(ic, section, n);
}
static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
{
SHASH_DESC_ON_STACK(desc, ic->journal_mac);
int r;
unsigned j, size;
desc->tfm = ic->journal_mac;
desc->flags = 0;
r = crypto_shash_init(desc);
if (unlikely(r)) {
dm_integrity_io_error(ic, "crypto_shash_init", r);
goto err;
}
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, section, j);
r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
if (unlikely(r)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto err;
}
}
size = crypto_shash_digestsize(ic->journal_mac);
if (likely(size <= JOURNAL_MAC_SIZE)) {
r = crypto_shash_final(desc, result);
if (unlikely(r)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto err;
}
memset(result + size, 0, JOURNAL_MAC_SIZE - size);
} else {
__u8 digest[HASH_MAX_DIGESTSIZE];
if (WARN_ON(size > sizeof(digest))) {
dm_integrity_io_error(ic, "digest_size", -EINVAL);
goto err;
}
r = crypto_shash_final(desc, digest);
if (unlikely(r)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto err;
}
memcpy(result, digest, JOURNAL_MAC_SIZE);
}
return;
err:
memset(result, 0, JOURNAL_MAC_SIZE);
}
static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
{
__u8 result[JOURNAL_MAC_SIZE];
unsigned j;
if (!ic->journal_mac)
return;
section_mac(ic, section, result);
for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
struct journal_sector *js = access_journal(ic, section, j);
if (likely(wr))
memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
else {
if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
dm_integrity_io_error(ic, "journal mac", -EILSEQ);
}
}
}
static void complete_journal_op(void *context)
{
struct journal_completion *comp = context;
BUG_ON(!atomic_read(&comp->in_flight));
if (likely(atomic_dec_and_test(&comp->in_flight)))
complete(&comp->comp);
}
static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
unsigned n_sections, struct journal_completion *comp)
{
struct async_submit_ctl submit;
size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
unsigned pl_index, pl_offset, section_index;
struct page_list *source_pl, *target_pl;
if (likely(encrypt)) {
source_pl = ic->journal;
target_pl = ic->journal_io;
} else {
source_pl = ic->journal_io;
target_pl = ic->journal;
}
page_list_location(ic, section, 0, &pl_index, &pl_offset);
atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
section_index = pl_index;
do {
size_t this_step;
struct page *src_pages[2];
struct page *dst_page;
while (unlikely(pl_index == section_index)) {
unsigned dummy;
if (likely(encrypt))
rw_section_mac(ic, section, true);
section++;
n_sections--;
if (!n_sections)
break;
page_list_location(ic, section, 0, &section_index, &dummy);
}
this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
dst_page = target_pl[pl_index].page;
src_pages[0] = source_pl[pl_index].page;
src_pages[1] = ic->journal_xor[pl_index].page;
async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
pl_index++;
pl_offset = 0;
n_bytes -= this_step;
} while (n_bytes);
BUG_ON(n_sections);
async_tx_issue_pending_all();
}
static void complete_journal_encrypt(struct crypto_async_request *req, int err)
{
struct journal_completion *comp = req->data;
if (unlikely(err)) {
if (likely(err == -EINPROGRESS)) {
complete(&comp->ic->crypto_backoff);
return;
}
dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
}
complete_journal_op(comp);
}
static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
{
int r;
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
complete_journal_encrypt, comp);
if (likely(encrypt))
r = crypto_skcipher_encrypt(req);
else
r = crypto_skcipher_decrypt(req);
if (likely(!r))
return false;
if (likely(r == -EINPROGRESS))
return true;
if (likely(r == -EBUSY)) {
wait_for_completion(&comp->ic->crypto_backoff);
reinit_completion(&comp->ic->crypto_backoff);
return true;
}
dm_integrity_io_error(comp->ic, "encrypt", r);
return false;
}
static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
unsigned n_sections, struct journal_completion *comp)
{
struct scatterlist **source_sg;
struct scatterlist **target_sg;
atomic_add(2, &comp->in_flight);
if (likely(encrypt)) {
source_sg = ic->journal_scatterlist;
target_sg = ic->journal_io_scatterlist;
} else {
source_sg = ic->journal_io_scatterlist;
target_sg = ic->journal_scatterlist;
}
do {
struct skcipher_request *req;
unsigned ivsize;
char *iv;
if (likely(encrypt))
rw_section_mac(ic, section, true);
req = ic->sk_requests[section];
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
iv = req->iv;
memcpy(iv, iv + ivsize, ivsize);
req->src = source_sg[section];
req->dst = target_sg[section];
if (unlikely(do_crypt(encrypt, req, comp)))
atomic_inc(&comp->in_flight);
section++;
n_sections--;
} while (n_sections);
atomic_dec(&comp->in_flight);
complete_journal_op(comp);
}
static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
unsigned n_sections, struct journal_completion *comp)
{
if (ic->journal_xor)
return xor_journal(ic, encrypt, section, n_sections, comp);
else
return crypt_journal(ic, encrypt, section, n_sections, comp);
}
static void complete_journal_io(unsigned long error, void *context)
{
struct journal_completion *comp = context;
if (unlikely(error != 0))
dm_integrity_io_error(comp->ic, "writing journal", -EIO);
complete_journal_op(comp);
}
static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
unsigned n_sections, struct journal_completion *comp)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
unsigned sector, n_sectors, pl_index, pl_offset;
int r;
if (unlikely(dm_integrity_failed(ic))) {
if (comp)
complete_journal_io(-1UL, comp);
return;
}
sector = section * ic->journal_section_sectors;
n_sectors = n_sections * ic->journal_section_sectors;
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
io_req.bi_op = op;
io_req.bi_op_flags = op_flags;
io_req.mem.type = DM_IO_PAGE_LIST;
if (ic->journal_io)
io_req.mem.ptr.pl = &ic->journal_io[pl_index];
else
io_req.mem.ptr.pl = &ic->journal[pl_index];
io_req.mem.offset = pl_offset;
if (likely(comp != NULL)) {
io_req.notify.fn = complete_journal_io;
io_req.notify.context = comp;
} else {
io_req.notify.fn = NULL;
}
io_req.client = ic->io;
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
io_loc.sector = ic->start + SB_SECTORS + sector;
io_loc.count = n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
if (comp) {
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
complete_journal_io(-1UL, comp);
}
}
}
static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
{
struct journal_completion io_comp;
struct journal_completion crypt_comp_1;
struct journal_completion crypt_comp_2;
unsigned i;
io_comp.ic = ic;
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&io_comp.comp);
if (commit_start + commit_sections <= ic->journal_sections) {
io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (ic->journal_io) {
crypt_comp_1.ic = ic;
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
wait_for_completion_io(&crypt_comp_1.comp);
} else {
for (i = 0; i < commit_sections; i++)
rw_section_mac(ic, commit_start + i, true);
}
rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
commit_sections, &io_comp);
} else {
unsigned to_end;
io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
to_end = ic->journal_sections - commit_start;
if (ic->journal_io) {
crypt_comp_1.ic = ic;
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
if (try_wait_for_completion(&crypt_comp_1.comp)) {
rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
reinit_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
wait_for_completion_io(&crypt_comp_1.comp);
} else {
crypt_comp_2.ic = ic;
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&crypt_comp_2.comp);
crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
wait_for_completion_io(&crypt_comp_1.comp);
rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
wait_for_completion_io(&crypt_comp_2.comp);
}
} else {
for (i = 0; i < to_end; i++)
rw_section_mac(ic, commit_start + i, true);
rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
for (i = 0; i < commit_sections - to_end; i++)
rw_section_mac(ic, i, true);
}
rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
}
wait_for_completion_io(&io_comp.comp);
}
static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
int r;
unsigned sector, pl_index, pl_offset;
BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
if (unlikely(dm_integrity_failed(ic))) {
fn(-1UL, data);
return;
}
sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
io_req.bi_op = REQ_OP_WRITE;
io_req.bi_op_flags = 0;
io_req.mem.type = DM_IO_PAGE_LIST;
io_req.mem.ptr.pl = &ic->journal[pl_index];
io_req.mem.offset = pl_offset;
io_req.notify.fn = fn;
io_req.notify.context = data;
io_req.client = ic->io;
io_loc.bdev = ic->dev->bdev;
io_loc.sector = target;
io_loc.count = n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
fn(-1UL, data);
}
}
static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
{
return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
range1->logical_sector + range1->n_sectors > range2->logical_sector;
}
static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
{
struct rb_node **n = &ic->in_progress.rb_node;
struct rb_node *parent;
BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
if (likely(check_waiting)) {
struct dm_integrity_range *range;
list_for_each_entry(range, &ic->wait_list, wait_entry) {
if (unlikely(ranges_overlap(range, new_range)))
return false;
}
}
parent = NULL;
while (*n) {
struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
parent = *n;
if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
n = &range->node.rb_left;
} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
n = &range->node.rb_right;
} else {
return false;
}
}
rb_link_node(&new_range->node, parent, n);
rb_insert_color(&new_range->node, &ic->in_progress);
return true;
}
static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
{
rb_erase(&range->node, &ic->in_progress);
while (unlikely(!list_empty(&ic->wait_list))) {
struct dm_integrity_range *last_range =
list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
struct task_struct *last_range_task;
last_range_task = last_range->task;
list_del(&last_range->wait_entry);
if (!add_new_range(ic, last_range, false)) {
last_range->task = last_range_task;
list_add(&last_range->wait_entry, &ic->wait_list);
break;
}
last_range->waiting = false;
wake_up_process(last_range_task);
}
}
static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
{
unsigned long flags;
spin_lock_irqsave(&ic->endio_wait.lock, flags);
remove_range_unlocked(ic, range);
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
}
static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
{
new_range->waiting = true;
list_add_tail(&new_range->wait_entry, &ic->wait_list);
new_range->task = current;
do {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&ic->endio_wait.lock);
io_schedule();
spin_lock_irq(&ic->endio_wait.lock);
} while (unlikely(new_range->waiting));
}
static void init_journal_node(struct journal_node *node)
{
RB_CLEAR_NODE(&node->node);
node->sector = (sector_t)-1;
}
static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
{
struct rb_node **link;
struct rb_node *parent;
node->sector = sector;
BUG_ON(!RB_EMPTY_NODE(&node->node));
link = &ic->journal_tree_root.rb_node;
parent = NULL;
while (*link) {
struct journal_node *j;
parent = *link;
j = container_of(parent, struct journal_node, node);
if (sector < j->sector)
link = &j->node.rb_left;
else
link = &j->node.rb_right;
}
rb_link_node(&node->node, parent, link);
rb_insert_color(&node->node, &ic->journal_tree_root);
}
static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
{
BUG_ON(RB_EMPTY_NODE(&node->node));
rb_erase(&node->node, &ic->journal_tree_root);
init_journal_node(node);
}
#define NOT_FOUND (-1U)
static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
{
struct rb_node *n = ic->journal_tree_root.rb_node;
unsigned found = NOT_FOUND;
*next_sector = (sector_t)-1;
while (n) {
struct journal_node *j = container_of(n, struct journal_node, node);
if (sector == j->sector) {
found = j - ic->journal_tree;
}
if (sector < j->sector) {
*next_sector = j->sector;
n = j->node.rb_left;
} else {
n = j->node.rb_right;
}
}
return found;
}
static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
{
struct journal_node *node, *next_node;
struct rb_node *next;
if (unlikely(pos >= ic->journal_entries))
return false;
node = &ic->journal_tree[pos];
if (unlikely(RB_EMPTY_NODE(&node->node)))
return false;
if (unlikely(node->sector != sector))
return false;
next = rb_next(&node->node);
if (unlikely(!next))
return true;
next_node = container_of(next, struct journal_node, node);
return next_node->sector != sector;
}
static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
{
struct rb_node *next;
struct journal_node *next_node;
unsigned next_section;
BUG_ON(RB_EMPTY_NODE(&node->node));
next = rb_next(&node->node);
if (unlikely(!next))
return false;
next_node = container_of(next, struct journal_node, node);
if (next_node->sector != node->sector)
return false;
next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
if (next_section >= ic->committed_section &&
next_section < ic->committed_section + ic->n_committed_sections)
return true;
if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
return true;
return false;
}
#define TAG_READ 0
#define TAG_WRITE 1
#define TAG_CMP 2
static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
unsigned *metadata_offset, unsigned total_size, int op)
{
do {
unsigned char *data, *dp;
struct dm_buffer *b;
unsigned to_copy;
int r;
r = dm_integrity_failed(ic);
if (unlikely(r))
return r;
data = dm_bufio_read(ic->bufio, *metadata_block, &b);
if (IS_ERR(data))
return PTR_ERR(data);
to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
dp = data + *metadata_offset;
if (op == TAG_READ) {
memcpy(tag, dp, to_copy);
} else if (op == TAG_WRITE) {
memcpy(dp, tag, to_copy);
dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
} else {
/* e.g.: op == TAG_CMP */
if (unlikely(memcmp(dp, tag, to_copy))) {
unsigned i;
for (i = 0; i < to_copy; i++) {
if (dp[i] != tag[i])
break;
total_size--;
}
dm_bufio_release(b);
return total_size;
}
}
dm_bufio_release(b);
tag += to_copy;
*metadata_offset += to_copy;
if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
(*metadata_block)++;
*metadata_offset = 0;
}
total_size -= to_copy;
} while (unlikely(total_size));
return 0;
}
static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
{
int r;
r = dm_bufio_write_dirty_buffers(ic->bufio);
if (unlikely(r))
dm_integrity_io_error(ic, "writing tags", r);
}
static void sleep_on_endio_wait(struct dm_integrity_c *ic)
{
DECLARE_WAITQUEUE(wait, current);
__add_wait_queue(&ic->endio_wait, &wait);
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&ic->endio_wait.lock);
io_schedule();
spin_lock_irq(&ic->endio_wait.lock);
__remove_wait_queue(&ic->endio_wait, &wait);
}
static void autocommit_fn(struct timer_list *t)
{
struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
if (likely(!dm_integrity_failed(ic)))
queue_work(ic->commit_wq, &ic->commit_work);
}
static void schedule_autocommit(struct dm_integrity_c *ic)
{
if (!timer_pending(&ic->autocommit_timer))
mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
}
static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
{
struct bio *bio;
unsigned long flags;
spin_lock_irqsave(&ic->endio_wait.lock, flags);
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
bio_list_add(&ic->flush_bio_list, bio);
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
queue_work(ic->commit_wq, &ic->commit_work);
}
static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
{
int r = dm_integrity_failed(ic);
if (unlikely(r) && !bio->bi_status)
bio->bi_status = errno_to_blk_status(r);
bio_endio(bio);
}
static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
{
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
submit_flush_bio(ic, dio);
else
do_endio(ic, bio);
}
static void dec_in_flight(struct dm_integrity_io *dio)
{
if (atomic_dec_and_test(&dio->in_flight)) {
struct dm_integrity_c *ic = dio->ic;
struct bio *bio;
remove_range(ic, &dio->range);
if (unlikely(dio->write))
schedule_autocommit(ic);
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
if (unlikely(dio->bi_status) && !bio->bi_status)
bio->bi_status = dio->bi_status;
if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
dio->range.logical_sector += dio->range.n_sectors;
bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->wait_wq, &dio->work);
return;
}
do_endio_flush(ic, dio);
}
}
static void integrity_end_io(struct bio *bio)
{
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
bio->bi_iter = dio->orig_bi_iter;
bio->bi_disk = dio->orig_bi_disk;
bio->bi_partno = dio->orig_bi_partno;
if (dio->orig_bi_integrity) {
bio->bi_integrity = dio->orig_bi_integrity;
bio->bi_opf |= REQ_INTEGRITY;
}
bio->bi_end_io = dio->orig_bi_end_io;
if (dio->completion)
complete(dio->completion);
dec_in_flight(dio);
}
static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
const char *data, char *result)
{
__u64 sector_le = cpu_to_le64(sector);
SHASH_DESC_ON_STACK(req, ic->internal_hash);
int r;
unsigned digest_size;
req->tfm = ic->internal_hash;
req->flags = 0;
r = crypto_shash_init(req);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_init", r);
goto failed;
}
r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto failed;
}
r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto failed;
}
r = crypto_shash_final(req, result);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto failed;
}
digest_size = crypto_shash_digestsize(ic->internal_hash);
if (unlikely(digest_size < ic->tag_size))
memset(result + digest_size, 0, ic->tag_size - digest_size);
return;
failed:
/* this shouldn't happen anyway, the hash functions have no reason to fail */
get_random_bytes(result, ic->tag_size);
}
static void integrity_metadata(struct work_struct *w)
{
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
struct dm_integrity_c *ic = dio->ic;
int r;
if (ic->internal_hash) {
struct bvec_iter iter;
struct bio_vec bv;
unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
char *checksums;
unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
char checksums_onstack[HASH_MAX_DIGESTSIZE];
unsigned sectors_to_process = dio->range.n_sectors;
sector_t sector = dio->range.logical_sector;
if (unlikely(ic->mode == 'R'))
goto skip_io;
checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
if (!checksums) {
checksums = checksums_onstack;
if (WARN_ON(extra_space &&
digest_size > sizeof(checksums_onstack))) {
r = -EINVAL;
goto error;
}
}
__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
unsigned pos;
char *mem, *checksums_ptr;
again:
mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
pos = 0;
checksums_ptr = checksums;
do {
integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
checksums_ptr += ic->tag_size;
sectors_to_process -= ic->sectors_per_block;
pos += ic->sectors_per_block << SECTOR_SHIFT;
sector += ic->sectors_per_block;
} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
kunmap_atomic(mem);
r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
if (unlikely(r)) {
if (r > 0) {
DMERR_LIMIT("Checksum failed at sector 0x%llx",
(unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
r = -EILSEQ;
atomic64_inc(&ic->number_of_mismatches);
}
if (likely(checksums != checksums_onstack))
kfree(checksums);
goto error;
}
if (!sectors_to_process)
break;
if (unlikely(pos < bv.bv_len)) {
bv.bv_offset += pos;
bv.bv_len -= pos;
goto again;
}
}
if (likely(checksums != checksums_onstack))
kfree(checksums);
} else {
struct bio_integrity_payload *bip = dio->orig_bi_integrity;
if (bip) {
struct bio_vec biv;
struct bvec_iter iter;
unsigned data_to_process = dio->range.n_sectors;
sector_to_block(ic, data_to_process);
data_to_process *= ic->tag_size;
bip_for_each_vec(biv, bip, iter) {
unsigned char *tag;
unsigned this_len;
BUG_ON(PageHighMem(biv.bv_page));
tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
this_len = min(biv.bv_len, data_to_process);
r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
this_len, !dio->write ? TAG_READ : TAG_WRITE);
if (unlikely(r))
goto error;
data_to_process -= this_len;
if (!data_to_process)
break;
}
}
}
skip_io:
dec_in_flight(dio);
return;
error:
dio->bi_status = errno_to_blk_status(r);
dec_in_flight(dio);
}
static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
{
struct dm_integrity_c *ic = ti->private;
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
struct bio_integrity_payload *bip;
sector_t area, offset;
dio->ic = ic;
dio->bi_status = 0;
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
submit_flush_bio(ic, dio);
return DM_MAPIO_SUBMITTED;
}
dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
dio->write = bio_op(bio) == REQ_OP_WRITE;
dio->fua = dio->write && bio->bi_opf & REQ_FUA;
if (unlikely(dio->fua)) {
/*
* Don't pass down the FUA flag because we have to flush
* disk cache anyway.
*/
bio->bi_opf &= ~REQ_FUA;
}
if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
(unsigned long long)dio->range.logical_sector, bio_sectors(bio),
(unsigned long long)ic->provided_data_sectors);
return DM_MAPIO_KILL;
}
if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
ic->sectors_per_block,
(unsigned long long)dio->range.logical_sector, bio_sectors(bio));
return DM_MAPIO_KILL;
}
if (ic->sectors_per_block > 1) {
struct bvec_iter iter;
struct bio_vec bv;
bio_for_each_segment(bv, bio, iter) {
if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
bv.bv_offset, bv.bv_len, ic->sectors_per_block);
return DM_MAPIO_KILL;
}
}
}
bip = bio_integrity(bio);
if (!ic->internal_hash) {
if (bip) {
unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
if (ic->log2_tag_size >= 0)
wanted_tag_size <<= ic->log2_tag_size;
else
wanted_tag_size *= ic->tag_size;
if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
return DM_MAPIO_KILL;
}
}
} else {
if (unlikely(bip != NULL)) {
DMERR("Unexpected integrity data when using internal hash");
return DM_MAPIO_KILL;
}
}
if (unlikely(ic->mode == 'R') && unlikely(dio->write))
return DM_MAPIO_KILL;
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
dm_integrity_map_continue(dio, true);
return DM_MAPIO_SUBMITTED;
}
static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
unsigned journal_section, unsigned journal_entry)
{
struct dm_integrity_c *ic = dio->ic;
sector_t logical_sector;
unsigned n_sectors;
logical_sector = dio->range.logical_sector;
n_sectors = dio->range.n_sectors;
do {
struct bio_vec bv = bio_iovec(bio);
char *mem;
if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
bv.bv_len = n_sectors << SECTOR_SHIFT;
n_sectors -= bv.bv_len >> SECTOR_SHIFT;
bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
retry_kmap:
mem = kmap_atomic(bv.bv_page);
if (likely(dio->write))
flush_dcache_page(bv.bv_page);
do {
struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
if (unlikely(!dio->write)) {
struct journal_sector *js;
char *mem_ptr;
unsigned s;
if (unlikely(journal_entry_is_inprogress(je))) {
flush_dcache_page(bv.bv_page);
kunmap_atomic(mem);
__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
goto retry_kmap;
}
smp_rmb();
BUG_ON(journal_entry_get_sector(je) != logical_sector);
js = access_journal_data(ic, journal_section, journal_entry);
mem_ptr = mem + bv.bv_offset;
s = 0;
do {
memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
js++;
mem_ptr += 1 << SECTOR_SHIFT;
} while (++s < ic->sectors_per_block);
#ifdef INTERNAL_VERIFY
if (ic->internal_hash) {
char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
(unsigned long long)logical_sector);
}
}
#endif
}
if (!ic->internal_hash) {
struct bio_integrity_payload *bip = bio_integrity(bio);
unsigned tag_todo = ic->tag_size;
char *tag_ptr = journal_entry_tag(ic, je);
if (bip) do {
struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
unsigned tag_now = min(biv.bv_len, tag_todo);
char *tag_addr;
BUG_ON(PageHighMem(biv.bv_page));
tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
if (likely(dio->write))
memcpy(tag_ptr, tag_addr, tag_now);
else
memcpy(tag_addr, tag_ptr, tag_now);
bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
tag_ptr += tag_now;
tag_todo -= tag_now;
} while (unlikely(tag_todo)); else {
if (likely(dio->write))
memset(tag_ptr, 0, tag_todo);
}
}
if (likely(dio->write)) {
struct journal_sector *js;
unsigned s;
js = access_journal_data(ic, journal_section, journal_entry);
memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
s = 0;
do {
je->last_bytes[s] = js[s].commit_id;
} while (++s < ic->sectors_per_block);
if (ic->internal_hash) {
unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
if (unlikely(digest_size > ic->tag_size)) {
char checksums_onstack[HASH_MAX_DIGESTSIZE];
integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
} else
integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
}
journal_entry_set_sector(je, logical_sector);
}
logical_sector += ic->sectors_per_block;
journal_entry++;
if (unlikely(journal_entry == ic->journal_section_entries)) {
journal_entry = 0;
journal_section++;
wraparound_section(ic, &journal_section);
}
bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
if (unlikely(!dio->write))
flush_dcache_page(bv.bv_page);
kunmap_atomic(mem);
} while (n_sectors);
if (likely(dio->write)) {
smp_mb();
if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
wake_up(&ic->copy_to_journal_wait);
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
queue_work(ic->commit_wq, &ic->commit_work);
} else {
schedule_autocommit(ic);
}
} else {
remove_range(ic, &dio->range);
}
if (unlikely(bio->bi_iter.bi_size)) {
sector_t area, offset;
dio->range.logical_sector = logical_sector;
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
return true;
}
return false;
}
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
{
struct dm_integrity_c *ic = dio->ic;
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
unsigned journal_section, journal_entry;
unsigned journal_read_pos;
struct completion read_comp;
bool need_sync_io = ic->internal_hash && !dio->write;
if (need_sync_io && from_map) {
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->metadata_wq, &dio->work);
return;
}
lock_retry:
spin_lock_irq(&ic->endio_wait.lock);
retry:
if (unlikely(dm_integrity_failed(ic))) {
spin_unlock_irq(&ic->endio_wait.lock);
do_endio(ic, bio);
return;
}
dio->range.n_sectors = bio_sectors(bio);
journal_read_pos = NOT_FOUND;
if (likely(ic->mode == 'J')) {
if (dio->write) {
unsigned next_entry, i, pos;
unsigned ws, we, range_sectors;
dio->range.n_sectors = min(dio->range.n_sectors,
ic->free_sectors << ic->sb->log2_sectors_per_block);
if (unlikely(!dio->range.n_sectors)) {
if (from_map)
goto offload_to_thread;
sleep_on_endio_wait(ic);
goto retry;
}
range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
ic->free_sectors -= range_sectors;
journal_section = ic->free_section;
journal_entry = ic->free_section_entry;
next_entry = ic->free_section_entry + range_sectors;
ic->free_section_entry = next_entry % ic->journal_section_entries;
ic->free_section += next_entry / ic->journal_section_entries;
ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
wraparound_section(ic, &ic->free_section);
pos = journal_section * ic->journal_section_entries + journal_entry;
ws = journal_section;
we = journal_entry;
i = 0;
do {
struct journal_entry *je;
add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
pos++;
if (unlikely(pos >= ic->journal_entries))
pos = 0;
je = access_journal_entry(ic, ws, we);
BUG_ON(!journal_entry_is_unused(je));
journal_entry_set_inprogress(je);
we++;
if (unlikely(we == ic->journal_section_entries)) {
we = 0;
ws++;
wraparound_section(ic, &ws);
}
} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
spin_unlock_irq(&ic->endio_wait.lock);
goto journal_read_write;
} else {
sector_t next_sector;
journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
if (likely(journal_read_pos == NOT_FOUND)) {
if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
dio->range.n_sectors = next_sector - dio->range.logical_sector;
} else {
unsigned i;
unsigned jp = journal_read_pos + 1;
for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
break;
}
dio->range.n_sectors = i;
}
}
}
if (unlikely(!add_new_range(ic, &dio->range, true))) {
/*
* We must not sleep in the request routine because it could
* stall bios on current->bio_list.
* So, we offload the bio to a workqueue if we have to sleep.
*/
if (from_map) {
offload_to_thread:
spin_unlock_irq(&ic->endio_wait.lock);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->wait_wq, &dio->work);
return;
}
wait_and_add_new_range(ic, &dio->range);
}
spin_unlock_irq(&ic->endio_wait.lock);
if (unlikely(journal_read_pos != NOT_FOUND)) {
journal_section = journal_read_pos / ic->journal_section_entries;
journal_entry = journal_read_pos % ic->journal_section_entries;
goto journal_read_write;
}
dio->in_flight = (atomic_t)ATOMIC_INIT(2);
if (need_sync_io) {
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&read_comp);
dio->completion = &read_comp;
} else
dio->completion = NULL;
dio->orig_bi_iter = bio->bi_iter;
dio->orig_bi_disk = bio->bi_disk;
dio->orig_bi_partno = bio->bi_partno;
bio_set_dev(bio, ic->dev->bdev);
dio->orig_bi_integrity = bio_integrity(bio);
bio->bi_integrity = NULL;
bio->bi_opf &= ~REQ_INTEGRITY;
dio->orig_bi_end_io = bio->bi_end_io;
bio->bi_end_io = integrity_end_io;
bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
generic_make_request(bio);
if (need_sync_io) {
wait_for_completion_io(&read_comp);
if (unlikely(ic->recalc_wq != NULL) &&
ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
goto skip_check;
if (likely(!bio->bi_status))
integrity_metadata(&dio->work);
else
skip_check:
dec_in_flight(dio);
} else {
INIT_WORK(&dio->work, integrity_metadata);
queue_work(ic->metadata_wq, &dio->work);
}
return;
journal_read_write:
if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
goto lock_retry;
do_endio_flush(ic, dio);
}
static void integrity_bio_wait(struct work_struct *w)
{
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
dm_integrity_map_continue(dio, false);
}
static void pad_uncommitted(struct dm_integrity_c *ic)
{
if (ic->free_section_entry) {
ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
ic->free_section_entry = 0;
ic->free_section++;
wraparound_section(ic, &ic->free_section);
ic->n_uncommitted_sections++;
}
WARN_ON(ic->journal_sections * ic->journal_section_entries !=
(ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
}
static void integrity_commit(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
unsigned commit_start, commit_sections;
unsigned i, j, n;
struct bio *flushes;
del_timer(&ic->autocommit_timer);
spin_lock_irq(&ic->endio_wait.lock);
flushes = bio_list_get(&ic->flush_bio_list);
if (unlikely(ic->mode != 'J')) {
spin_unlock_irq(&ic->endio_wait.lock);
dm_integrity_flush_buffers(ic);
goto release_flush_bios;
}
pad_uncommitted(ic);
commit_start = ic->uncommitted_section;
commit_sections = ic->n_uncommitted_sections;
spin_unlock_irq(&ic->endio_wait.lock);
if (!commit_sections)
goto release_flush_bios;
i = commit_start;
for (n = 0; n < commit_sections; n++) {
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je;
je = access_journal_entry(ic, i, j);
io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
}
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js;
js = access_journal(ic, i, j);
js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
}
i++;
if (unlikely(i >= ic->journal_sections))
ic->commit_seq = next_commit_seq(ic->commit_seq);
wraparound_section(ic, &i);
}
smp_rmb();
write_journal(ic, commit_start, commit_sections);
spin_lock_irq(&ic->endio_wait.lock);
ic->uncommitted_section += commit_sections;
wraparound_section(ic, &ic->uncommitted_section);
ic->n_uncommitted_sections -= commit_sections;
ic->n_committed_sections += commit_sections;
spin_unlock_irq(&ic->endio_wait.lock);
locking/atomics, dm-integrity: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't pick up some uses, including those in dm-integrity.c. As a preparatory step, this patch converts the driver to use {READ,WRITE}_ONCE() consistently. At the same time, this patch adds the missing include of <linux/compiler.h> necessary for the {READ,WRITE}_ONCE() definitions. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-1-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:11 +08:00
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
queue_work(ic->writer_wq, &ic->writer_work);
release_flush_bios:
while (flushes) {
struct bio *next = flushes->bi_next;
flushes->bi_next = NULL;
do_endio(ic, flushes);
flushes = next;
}
}
static void complete_copy_from_journal(unsigned long error, void *context)
{
struct journal_io *io = context;
struct journal_completion *comp = io->comp;
struct dm_integrity_c *ic = comp->ic;
remove_range(ic, &io->range);
mempool_free(io, &ic->journal_io_mempool);
if (unlikely(error != 0))
dm_integrity_io_error(ic, "copying from journal", -EIO);
complete_journal_op(comp);
}
static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
struct journal_entry *je)
{
unsigned s = 0;
do {
js->commit_id = je->last_bytes[s];
js++;
} while (++s < ic->sectors_per_block);
}
static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
unsigned write_sections, bool from_replay)
{
unsigned i, j, n;
struct journal_completion comp;
struct blk_plug plug;
blk_start_plug(&plug);
comp.ic = ic;
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&comp.comp);
i = write_start;
for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
#ifndef INTERNAL_VERIFY
if (unlikely(from_replay))
#endif
rw_section_mac(ic, i, false);
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
sector_t sec, area, offset;
unsigned k, l, next_loop;
sector_t metadata_block;
unsigned metadata_offset;
struct journal_io *io;
if (journal_entry_is_unused(je))
continue;
BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
sec = journal_entry_get_sector(je);
if (unlikely(from_replay)) {
if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
sec &= ~(sector_t)(ic->sectors_per_block - 1);
}
}
get_area_and_offset(ic, sec, &area, &offset);
restore_last_bytes(ic, access_journal_data(ic, i, j), je);
for (k = j + 1; k < ic->journal_section_entries; k++) {
struct journal_entry *je2 = access_journal_entry(ic, i, k);
sector_t sec2, area2, offset2;
if (journal_entry_is_unused(je2))
break;
BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
sec2 = journal_entry_get_sector(je2);
get_area_and_offset(ic, sec2, &area2, &offset2);
if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
break;
restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
}
next_loop = k - 1;
io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
io->comp = &comp;
io->range.logical_sector = sec;
io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
spin_lock_irq(&ic->endio_wait.lock);
if (unlikely(!add_new_range(ic, &io->range, true)))
wait_and_add_new_range(ic, &io->range);
if (likely(!from_replay)) {
struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
/* don't write if there is newer committed sector */
while (j < k && find_newer_committed_node(ic, &section_node[j])) {
struct journal_entry *je2 = access_journal_entry(ic, i, j);
journal_entry_set_unused(je2);
remove_journal_node(ic, &section_node[j]);
j++;
sec += ic->sectors_per_block;
offset += ic->sectors_per_block;
}
while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
journal_entry_set_unused(je2);
remove_journal_node(ic, &section_node[k - 1]);
k--;
}
if (j == k) {
remove_range_unlocked(ic, &io->range);
spin_unlock_irq(&ic->endio_wait.lock);
mempool_free(io, &ic->journal_io_mempool);
goto skip_io;
}
for (l = j; l < k; l++) {
remove_journal_node(ic, &section_node[l]);
}
}
spin_unlock_irq(&ic->endio_wait.lock);
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
for (l = j; l < k; l++) {
int r;
struct journal_entry *je2 = access_journal_entry(ic, i, l);
if (
#ifndef INTERNAL_VERIFY
unlikely(from_replay) &&
#endif
ic->internal_hash) {
char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
(char *)access_journal_data(ic, i, l), test_tag);
if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
}
journal_entry_set_unused(je2);
r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
ic->tag_size, TAG_WRITE);
if (unlikely(r)) {
dm_integrity_io_error(ic, "reading tags", r);
}
}
atomic_inc(&comp.in_flight);
copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
(k - j) << ic->sb->log2_sectors_per_block,
get_data_sector(ic, area, offset),
complete_copy_from_journal, io);
skip_io:
j = next_loop;
}
}
dm_bufio_write_dirty_buffers_async(ic->bufio);
blk_finish_plug(&plug);
complete_journal_op(&comp);
wait_for_completion_io(&comp.comp);
dm_integrity_flush_buffers(ic);
}
static void integrity_writer(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
unsigned write_start, write_sections;
unsigned prev_free_sectors;
/* the following test is not needed, but it tests the replay code */
if (READ_ONCE(ic->suspending) && !ic->meta_dev)
return;
spin_lock_irq(&ic->endio_wait.lock);
write_start = ic->committed_section;
write_sections = ic->n_committed_sections;
spin_unlock_irq(&ic->endio_wait.lock);
if (!write_sections)
return;
do_journal_write(ic, write_start, write_sections, false);
spin_lock_irq(&ic->endio_wait.lock);
ic->committed_section += write_sections;
wraparound_section(ic, &ic->committed_section);
ic->n_committed_sections -= write_sections;
prev_free_sectors = ic->free_sectors;
ic->free_sectors += write_sections * ic->journal_section_entries;
if (unlikely(!prev_free_sectors))
wake_up_locked(&ic->endio_wait);
spin_unlock_irq(&ic->endio_wait.lock);
}
static void recalc_write_super(struct dm_integrity_c *ic)
{
int r;
dm_integrity_flush_buffers(ic);
if (dm_integrity_failed(ic))
return;
sb_set_version(ic);
r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
}
static void integrity_recalc(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
struct dm_integrity_range range;
struct dm_io_request io_req;
struct dm_io_region io_loc;
sector_t area, offset;
sector_t metadata_block;
unsigned metadata_offset;
__u8 *t;
unsigned i;
int r;
unsigned super_counter = 0;
spin_lock_irq(&ic->endio_wait.lock);
next_chunk:
if (unlikely(READ_ONCE(ic->suspending)))
goto unlock_ret;
range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
if (unlikely(range.logical_sector >= ic->provided_data_sectors))
goto unlock_ret;
get_area_and_offset(ic, range.logical_sector, &area, &offset);
range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
if (!ic->meta_dev)
range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
if (unlikely(!add_new_range(ic, &range, true)))
wait_and_add_new_range(ic, &range);
spin_unlock_irq(&ic->endio_wait.lock);
if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
recalc_write_super(ic);
super_counter = 0;
}
if (unlikely(dm_integrity_failed(ic)))
goto err;
io_req.bi_op = REQ_OP_READ;
io_req.bi_op_flags = 0;
io_req.mem.type = DM_IO_VMA;
io_req.mem.ptr.addr = ic->recalc_buffer;
io_req.notify.fn = NULL;
io_req.client = ic->io;
io_loc.bdev = ic->dev->bdev;
io_loc.sector = get_data_sector(ic, area, offset);
io_loc.count = range.n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
dm_integrity_io_error(ic, "reading data", r);
goto err;
}
t = ic->recalc_tags;
for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
t += ic->tag_size;
}
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
if (unlikely(r)) {
dm_integrity_io_error(ic, "writing tags", r);
goto err;
}
spin_lock_irq(&ic->endio_wait.lock);
remove_range_unlocked(ic, &range);
ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
goto next_chunk;
err:
remove_range(ic, &range);
return;
unlock_ret:
spin_unlock_irq(&ic->endio_wait.lock);
recalc_write_super(ic);
}
static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
unsigned n_sections, unsigned char commit_seq)
{
unsigned i, j, n;
if (!n_sections)
return;
for (n = 0; n < n_sections; n++) {
i = start_section + n;
wraparound_section(ic, &i);
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js = access_journal(ic, i, j);
memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
}
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
journal_entry_set_unused(je);
}
}
write_journal(ic, start_section, n_sections);
}
static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
{
unsigned char k;
for (k = 0; k < N_COMMIT_IDS; k++) {
if (dm_integrity_commit_id(ic, i, j, k) == id)
return k;
}
dm_integrity_io_error(ic, "journal commit id", -EIO);
return -EIO;
}
static void replay_journal(struct dm_integrity_c *ic)
{
unsigned i, j;
bool used_commit_ids[N_COMMIT_IDS];
unsigned max_commit_id_sections[N_COMMIT_IDS];
unsigned write_start, write_sections;
unsigned continue_section;
bool journal_empty;
unsigned char unused, last_used, want_commit_seq;
if (ic->mode == 'R')
return;
if (ic->journal_uptodate)
return;
last_used = 0;
write_start = 0;
if (!ic->just_formatted) {
DEBUG_print("reading journal\n");
rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
if (ic->journal_io)
DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
if (ic->journal_io) {
struct journal_completion crypt_comp;
crypt_comp.ic = ic;
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&crypt_comp.comp);
crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
wait_for_completion(&crypt_comp.comp);
}
DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
}
if (dm_integrity_failed(ic))
goto clear_journal;
journal_empty = true;
memset(used_commit_ids, 0, sizeof used_commit_ids);
memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
for (i = 0; i < ic->journal_sections; i++) {
for (j = 0; j < ic->journal_section_sectors; j++) {
int k;
struct journal_sector *js = access_journal(ic, i, j);
k = find_commit_seq(ic, i, j, js->commit_id);
if (k < 0)
goto clear_journal;
used_commit_ids[k] = true;
max_commit_id_sections[k] = i;
}
if (journal_empty) {
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
if (!journal_entry_is_unused(je)) {
journal_empty = false;
break;
}
}
}
}
if (!used_commit_ids[N_COMMIT_IDS - 1]) {
unused = N_COMMIT_IDS - 1;
while (unused && !used_commit_ids[unused - 1])
unused--;
} else {
for (unused = 0; unused < N_COMMIT_IDS; unused++)
if (!used_commit_ids[unused])
break;
if (unused == N_COMMIT_IDS) {
dm_integrity_io_error(ic, "journal commit ids", -EIO);
goto clear_journal;
}
}
DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
unused, used_commit_ids[0], used_commit_ids[1],
used_commit_ids[2], used_commit_ids[3]);
last_used = prev_commit_seq(unused);
want_commit_seq = prev_commit_seq(last_used);
if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
journal_empty = true;
write_start = max_commit_id_sections[last_used] + 1;
if (unlikely(write_start >= ic->journal_sections))
want_commit_seq = next_commit_seq(want_commit_seq);
wraparound_section(ic, &write_start);
i = write_start;
for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js = access_journal(ic, i, j);
if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
/*
* This could be caused by crash during writing.
* We won't replay the inconsistent part of the
* journal.
*/
DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
goto brk;
}
}
i++;
if (unlikely(i >= ic->journal_sections))
want_commit_seq = next_commit_seq(want_commit_seq);
wraparound_section(ic, &i);
}
brk:
if (!journal_empty) {
DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
write_sections, write_start, want_commit_seq);
do_journal_write(ic, write_start, write_sections, true);
}
if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
continue_section = write_start;
ic->commit_seq = want_commit_seq;
DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
} else {
unsigned s;
unsigned char erase_seq;
clear_journal:
DEBUG_print("clearing journal\n");
erase_seq = prev_commit_seq(prev_commit_seq(last_used));
s = write_start;
init_journal(ic, s, 1, erase_seq);
s++;
wraparound_section(ic, &s);
if (ic->journal_sections >= 2) {
init_journal(ic, s, ic->journal_sections - 2, erase_seq);
s += ic->journal_sections - 2;
wraparound_section(ic, &s);
init_journal(ic, s, 1, erase_seq);
}
continue_section = 0;
ic->commit_seq = next_commit_seq(erase_seq);
}
ic->committed_section = continue_section;
ic->n_committed_sections = 0;
ic->uncommitted_section = continue_section;
ic->n_uncommitted_sections = 0;
ic->free_section = continue_section;
ic->free_section_entry = 0;
ic->free_sectors = ic->journal_entries;
ic->journal_tree_root = RB_ROOT;
for (i = 0; i < ic->journal_entries; i++)
init_journal_node(&ic->journal_tree[i]);
}
static void dm_integrity_postsuspend(struct dm_target *ti)
{
struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
del_timer_sync(&ic->autocommit_timer);
WRITE_ONCE(ic->suspending, 1);
if (ic->recalc_wq)
drain_workqueue(ic->recalc_wq);
queue_work(ic->commit_wq, &ic->commit_work);
drain_workqueue(ic->commit_wq);
if (ic->mode == 'J') {
if (ic->meta_dev)
queue_work(ic->writer_wq, &ic->writer_work);
drain_workqueue(ic->writer_wq);
dm_integrity_flush_buffers(ic);
}
WRITE_ONCE(ic->suspending, 0);
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
ic->journal_uptodate = true;
}
static void dm_integrity_resume(struct dm_target *ti)
{
struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
replay_journal(ic);
if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
if (recalc_pos < ic->provided_data_sectors) {
queue_work(ic->recalc_wq, &ic->recalc_work);
} else if (recalc_pos > ic->provided_data_sectors) {
ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
recalc_write_super(ic);
}
}
}
static void dm_integrity_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
unsigned arg_count;
size_t sz = 0;
switch (type) {
case STATUSTYPE_INFO:
DMEMIT("%llu %llu",
(unsigned long long)atomic64_read(&ic->number_of_mismatches),
(unsigned long long)ic->provided_data_sectors);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
else
DMEMIT(" -");
break;
case STATUSTYPE_TABLE: {
__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
watermark_percentage += ic->journal_entries / 2;
do_div(watermark_percentage, ic->journal_entries);
arg_count = 3;
arg_count += !!ic->meta_dev;
arg_count += ic->sectors_per_block != 1;
arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
arg_count += ic->mode == 'J';
arg_count += ic->mode == 'J';
arg_count += !!ic->internal_hash_alg.alg_string;
arg_count += !!ic->journal_crypt_alg.alg_string;
arg_count += !!ic->journal_mac_alg.alg_string;
DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
ic->tag_size, ic->mode, arg_count);
if (ic->meta_dev)
DMEMIT(" meta_device:%s", ic->meta_dev->name);
if (ic->sectors_per_block != 1)
DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
DMEMIT(" recalculate");
DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
if (ic->mode == 'J') {
DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
DMEMIT(" commit_time:%u", ic->autocommit_msec);
}
#define EMIT_ALG(a, n) \
do { \
if (ic->a.alg_string) { \
DMEMIT(" %s:%s", n, ic->a.alg_string); \
if (ic->a.key_string) \
DMEMIT(":%s", ic->a.key_string);\
} \
} while (0)
EMIT_ALG(internal_hash_alg, "internal_hash");
EMIT_ALG(journal_crypt_alg, "journal_crypt");
EMIT_ALG(journal_mac_alg, "journal_mac");
break;
}
}
}
static int dm_integrity_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct dm_integrity_c *ic = ti->private;
if (!ic->meta_dev)
return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
else
return fn(ti, ic->dev, 0, ti->len, data);
}
static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct dm_integrity_c *ic = ti->private;
if (ic->sectors_per_block > 1) {
limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
}
}
static void calculate_journal_section_size(struct dm_integrity_c *ic)
{
unsigned sector_space = JOURNAL_SECTOR_DATA;
ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
JOURNAL_ENTRY_ROUNDUP);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
sector_space -= JOURNAL_MAC_PER_SECTOR;
ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
}
static int calculate_device_limits(struct dm_integrity_c *ic)
{
__u64 initial_sectors;
calculate_journal_section_size(ic);
initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
return -EINVAL;
ic->initial_sectors = initial_sectors;
if (!ic->meta_dev) {
sector_t last_sector, last_area, last_offset;
ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
if (!(ic->metadata_run & (ic->metadata_run - 1)))
ic->log2_metadata_run = __ffs(ic->metadata_run);
else
ic->log2_metadata_run = -1;
get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
last_sector = get_data_sector(ic, last_area, last_offset);
if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
return -EINVAL;
} else {
__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
meta_size <<= ic->log2_buffer_sectors;
if (ic->initial_sectors + meta_size < ic->initial_sectors ||
ic->initial_sectors + meta_size > ic->meta_device_sectors)
return -EINVAL;
ic->metadata_run = 1;
ic->log2_metadata_run = 0;
}
return 0;
}
static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
{
unsigned journal_sections;
int test_bit;
memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
memcpy(ic->sb->magic, SB_MAGIC, 8);
ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
if (ic->journal_mac_alg.alg_string)
ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
calculate_journal_section_size(ic);
journal_sections = journal_sectors / ic->journal_section_sectors;
if (!journal_sections)
journal_sections = 1;
if (!ic->meta_dev) {
ic->sb->journal_sections = cpu_to_le32(journal_sections);
if (!interleave_sectors)
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
ic->provided_data_sectors = 0;
for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
__u64 prev_data_sectors = ic->provided_data_sectors;
ic->provided_data_sectors |= (sector_t)1 << test_bit;
if (calculate_device_limits(ic))
ic->provided_data_sectors = prev_data_sectors;
}
if (!ic->provided_data_sectors)
return -EINVAL;
} else {
ic->sb->log2_interleave_sectors = 0;
ic->provided_data_sectors = ic->data_device_sectors;
ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
try_smaller_buffer:
ic->sb->journal_sections = cpu_to_le32(0);
for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
if (test_journal_sections > journal_sections)
continue;
ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
if (calculate_device_limits(ic))
ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
}
if (!le32_to_cpu(ic->sb->journal_sections)) {
if (ic->log2_buffer_sectors > 3) {
ic->log2_buffer_sectors--;
goto try_smaller_buffer;
}
return -EINVAL;
}
}
ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
sb_set_version(ic);
return 0;
}
static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
{
struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
struct blk_integrity bi;
memset(&bi, 0, sizeof(bi));
bi.profile = &dm_integrity_profile;
bi.tuple_size = ic->tag_size;
bi.tag_size = bi.tuple_size;
bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
blk_integrity_register(disk, &bi);
blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
}
static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
{
unsigned i;
if (!pl)
return;
for (i = 0; i < ic->journal_pages; i++)
if (pl[i].page)
__free_page(pl[i].page);
kvfree(pl);
}
static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
{
size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
struct page_list *pl;
unsigned i;
pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
if (!pl)
return NULL;
for (i = 0; i < ic->journal_pages; i++) {
pl[i].page = alloc_page(GFP_KERNEL);
if (!pl[i].page) {
dm_integrity_free_page_list(ic, pl);
return NULL;
}
if (i)
pl[i - 1].next = &pl[i];
}
return pl;
}
static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
{
unsigned i;
for (i = 0; i < ic->journal_sections; i++)
kvfree(sl[i]);
kvfree(sl);
}
static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
{
struct scatterlist **sl;
unsigned i;
treewide: kvmalloc() -> kvmalloc_array() The kvmalloc() function has a 2-factor argument form, kvmalloc_array(). This patch replaces cases of: kvmalloc(a * b, gfp) with: kvmalloc_array(a * b, gfp) as well as handling cases of: kvmalloc(a * b * c, gfp) with: kvmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(char) * COUNT + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvmalloc + kvmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvmalloc(C1 * C2 * C3, ...) | kvmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvmalloc(sizeof(THING) * C2, ...) | kvmalloc(sizeof(TYPE) * C2, ...) | kvmalloc(C1 * C2 * C3, ...) | kvmalloc(C1 * C2, ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:32 +08:00
sl = kvmalloc_array(ic->journal_sections,
sizeof(struct scatterlist *),
GFP_KERNEL | __GFP_ZERO);
if (!sl)
return NULL;
for (i = 0; i < ic->journal_sections; i++) {
struct scatterlist *s;
unsigned start_index, start_offset;
unsigned end_index, end_offset;
unsigned n_pages;
unsigned idx;
page_list_location(ic, i, 0, &start_index, &start_offset);
page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
n_pages = (end_index - start_index + 1);
treewide: kvmalloc() -> kvmalloc_array() The kvmalloc() function has a 2-factor argument form, kvmalloc_array(). This patch replaces cases of: kvmalloc(a * b, gfp) with: kvmalloc_array(a * b, gfp) as well as handling cases of: kvmalloc(a * b * c, gfp) with: kvmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(char) * COUNT + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvmalloc + kvmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvmalloc(C1 * C2 * C3, ...) | kvmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvmalloc(sizeof(THING) * C2, ...) | kvmalloc(sizeof(TYPE) * C2, ...) | kvmalloc(C1 * C2 * C3, ...) | kvmalloc(C1 * C2, ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:32 +08:00
s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
GFP_KERNEL);
if (!s) {
dm_integrity_free_journal_scatterlist(ic, sl);
return NULL;
}
sg_init_table(s, n_pages);
for (idx = start_index; idx <= end_index; idx++) {
char *va = lowmem_page_address(pl[idx].page);
unsigned start = 0, end = PAGE_SIZE;
if (idx == start_index)
start = start_offset;
if (idx == end_index)
end = end_offset + (1 << SECTOR_SHIFT);
sg_set_buf(&s[idx - start_index], va + start, end - start);
}
sl[i] = s;
}
return sl;
}
static void free_alg(struct alg_spec *a)
{
kzfree(a->alg_string);
kzfree(a->key);
memset(a, 0, sizeof *a);
}
static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
{
char *k;
free_alg(a);
a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
if (!a->alg_string)
goto nomem;
k = strchr(a->alg_string, ':');
if (k) {
*k = 0;
a->key_string = k + 1;
if (strlen(a->key_string) & 1)
goto inval;
a->key_size = strlen(a->key_string) / 2;
a->key = kmalloc(a->key_size, GFP_KERNEL);
if (!a->key)
goto nomem;
if (hex2bin(a->key, a->key_string, a->key_size))
goto inval;
}
return 0;
inval:
*error = error_inval;
return -EINVAL;
nomem:
*error = "Out of memory for an argument";
return -ENOMEM;
}
static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
char *error_alg, char *error_key)
{
int r;
if (a->alg_string) {
*hash = crypto_alloc_shash(a->alg_string, 0, 0);
if (IS_ERR(*hash)) {
*error = error_alg;
r = PTR_ERR(*hash);
*hash = NULL;
return r;
}
if (a->key) {
r = crypto_shash_setkey(*hash, a->key, a->key_size);
if (r) {
*error = error_key;
return r;
}
} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
*error = error_key;
return -ENOKEY;
}
}
return 0;
}
static int create_journal(struct dm_integrity_c *ic, char **error)
{
int r = 0;
unsigned i;
__u64 journal_pages, journal_desc_size, journal_tree_size;
unsigned char *crypt_data = NULL, *crypt_iv = NULL;
struct skcipher_request *req = NULL;
ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
journal_desc_size = journal_pages * sizeof(struct page_list);
if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
*error = "Journal doesn't fit into memory";
r = -ENOMEM;
goto bad;
}
ic->journal_pages = journal_pages;
ic->journal = dm_integrity_alloc_page_list(ic);
if (!ic->journal) {
*error = "Could not allocate memory for journal";
r = -ENOMEM;
goto bad;
}
if (ic->journal_crypt_alg.alg_string) {
unsigned ivsize, blocksize;
struct journal_completion comp;
comp.ic = ic;
ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
if (IS_ERR(ic->journal_crypt)) {
*error = "Invalid journal cipher";
r = PTR_ERR(ic->journal_crypt);
ic->journal_crypt = NULL;
goto bad;
}
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
if (ic->journal_crypt_alg.key) {
r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
ic->journal_crypt_alg.key_size);
if (r) {
*error = "Error setting encryption key";
goto bad;
}
}
DEBUG_print("cipher %s, block size %u iv size %u\n",
ic->journal_crypt_alg.alg_string, blocksize, ivsize);
ic->journal_io = dm_integrity_alloc_page_list(ic);
if (!ic->journal_io) {
*error = "Could not allocate memory for journal io";
r = -ENOMEM;
goto bad;
}
if (blocksize == 1) {
struct scatterlist *sg;
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!req) {
*error = "Could not allocate crypt request";
r = -ENOMEM;
goto bad;
}
crypt_iv = kmalloc(ivsize, GFP_KERNEL);
if (!crypt_iv) {
*error = "Could not allocate iv";
r = -ENOMEM;
goto bad;
}
ic->journal_xor = dm_integrity_alloc_page_list(ic);
if (!ic->journal_xor) {
*error = "Could not allocate memory for journal xor";
r = -ENOMEM;
goto bad;
}
treewide: kvmalloc() -> kvmalloc_array() The kvmalloc() function has a 2-factor argument form, kvmalloc_array(). This patch replaces cases of: kvmalloc(a * b, gfp) with: kvmalloc_array(a * b, gfp) as well as handling cases of: kvmalloc(a * b * c, gfp) with: kvmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(char) * COUNT + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvmalloc + kvmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvmalloc(C1 * C2 * C3, ...) | kvmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvmalloc(sizeof(THING) * C2, ...) | kvmalloc(sizeof(TYPE) * C2, ...) | kvmalloc(C1 * C2 * C3, ...) | kvmalloc(C1 * C2, ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:32 +08:00
sg = kvmalloc_array(ic->journal_pages + 1,
sizeof(struct scatterlist),
GFP_KERNEL);
if (!sg) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
sg_init_table(sg, ic->journal_pages + 1);
for (i = 0; i < ic->journal_pages; i++) {
char *va = lowmem_page_address(ic->journal_xor[i].page);
clear_page(va);
sg_set_buf(&sg[i], va, PAGE_SIZE);
}
sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
memset(crypt_iv, 0x00, ivsize);
skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&comp.comp);
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (do_crypt(true, req, &comp))
wait_for_completion(&comp.comp);
kvfree(sg);
r = dm_integrity_failed(ic);
if (r) {
*error = "Unable to encrypt journal";
goto bad;
}
DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
crypto_free_skcipher(ic->journal_crypt);
ic->journal_crypt = NULL;
} else {
unsigned crypt_len = roundup(ivsize, blocksize);
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!req) {
*error = "Could not allocate crypt request";
r = -ENOMEM;
goto bad;
}
crypt_iv = kmalloc(ivsize, GFP_KERNEL);
if (!crypt_iv) {
*error = "Could not allocate iv";
r = -ENOMEM;
goto bad;
}
crypt_data = kmalloc(crypt_len, GFP_KERNEL);
if (!crypt_data) {
*error = "Unable to allocate crypt data";
r = -ENOMEM;
goto bad;
}
ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
if (!ic->journal_scatterlist) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
if (!ic->journal_io_scatterlist) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
treewide: kvmalloc() -> kvmalloc_array() The kvmalloc() function has a 2-factor argument form, kvmalloc_array(). This patch replaces cases of: kvmalloc(a * b, gfp) with: kvmalloc_array(a * b, gfp) as well as handling cases of: kvmalloc(a * b * c, gfp) with: kvmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvmalloc( - sizeof(char) * COUNT + COUNT , ...) | kvmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvmalloc + kvmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvmalloc(C1 * C2 * C3, ...) | kvmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvmalloc(sizeof(THING) * C2, ...) | kvmalloc(sizeof(TYPE) * C2, ...) | kvmalloc(C1 * C2 * C3, ...) | kvmalloc(C1 * C2, ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvmalloc + kvmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kvmalloc + kvmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:32 +08:00
ic->sk_requests = kvmalloc_array(ic->journal_sections,
sizeof(struct skcipher_request *),
GFP_KERNEL | __GFP_ZERO);
if (!ic->sk_requests) {
*error = "Unable to allocate sk requests";
r = -ENOMEM;
goto bad;
}
for (i = 0; i < ic->journal_sections; i++) {
struct scatterlist sg;
struct skcipher_request *section_req;
__u32 section_le = cpu_to_le32(i);
memset(crypt_iv, 0x00, ivsize);
memset(crypt_data, 0x00, crypt_len);
memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
sg_init_one(&sg, crypt_data, crypt_len);
skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK The new lockdep support for completions causeed the stack usage in dm-integrity to explode, in case of write_journal from 504 bytes to 1120 (using arm gcc-7.1.1): drivers/md/dm-integrity.c: In function 'write_journal': drivers/md/dm-integrity.c:827:1: error: the frame size of 1120 bytes is larger than 1024 bytes [-Werror=frame-larger-than=] The problem is that not only the size of 'struct completion' grows significantly, but we end up having multiple copies of it on the stack when we assign it from a local variable after the initial declaration. COMPLETION_INITIALIZER_ONSTACK() is the right thing to use when we want to declare and initialize a completion on the stack. However, this driver doesn't do that and instead initializes the completion just before it is used. In this case, init_completion() does the same thing more efficiently, and drops the stack usage for the function above down to 496 bytes. While the other functions in this file are not bad enough to cause a warning, they benefit equally from the change, so I do the change across the entire file. In the one place where we reuse a completion, I picked the cheaper reinit_completion() over init_completion(). Fixes: cd8084f91c02 ("locking/lockdep: Apply crossrelease to completions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-08-15 23:11:59 +08:00
init_completion(&comp.comp);
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (do_crypt(true, req, &comp))
wait_for_completion(&comp.comp);
r = dm_integrity_failed(ic);
if (r) {
*error = "Unable to generate iv";
goto bad;
}
section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!section_req) {
*error = "Unable to allocate crypt request";
r = -ENOMEM;
goto bad;
}
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
section_req->iv = kmalloc_array(ivsize, 2,
GFP_KERNEL);
if (!section_req->iv) {
skcipher_request_free(section_req);
*error = "Unable to allocate iv";
r = -ENOMEM;
goto bad;
}
memcpy(section_req->iv + ivsize, crypt_data, ivsize);
section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
ic->sk_requests[i] = section_req;
DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
}
}
}
for (i = 0; i < N_COMMIT_IDS; i++) {
unsigned j;
retest_commit_id:
for (j = 0; j < i; j++) {
if (ic->commit_ids[j] == ic->commit_ids[i]) {
ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
goto retest_commit_id;
}
}
DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
}
journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
if (journal_tree_size > ULONG_MAX) {
*error = "Journal doesn't fit into memory";
r = -ENOMEM;
goto bad;
}
ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
if (!ic->journal_tree) {
*error = "Could not allocate memory for journal tree";
r = -ENOMEM;
}
bad:
kfree(crypt_data);
kfree(crypt_iv);
skcipher_request_free(req);
return r;
}
/*
* Construct a integrity mapping
*
* Arguments:
* device
* offset from the start of the device
* tag size
* D - direct writes, J - journal writes, R - recovery mode
* number of optional arguments
* optional arguments:
* journal_sectors
* interleave_sectors
* buffer_sectors
* journal_watermark
* commit_time
* meta_device
* block_size
* internal_hash
* journal_crypt
* journal_mac
* recalculate
*/
static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
struct dm_integrity_c *ic;
char dummy;
int r;
unsigned extra_args;
struct dm_arg_set as;
static const struct dm_arg _args[] = {
{0, 9, "Invalid number of feature args"},
};
unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
bool recalculate;
bool should_write_sb;
__u64 threshold;
unsigned long long start;
#define DIRECT_ARGUMENTS 4
if (argc <= DIRECT_ARGUMENTS) {
ti->error = "Invalid argument count";
return -EINVAL;
}
ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
if (!ic) {
ti->error = "Cannot allocate integrity context";
return -ENOMEM;
}
ti->private = ic;
ti->per_io_data_size = sizeof(struct dm_integrity_io);
ic->in_progress = RB_ROOT;
INIT_LIST_HEAD(&ic->wait_list);
init_waitqueue_head(&ic->endio_wait);
bio_list_init(&ic->flush_bio_list);
init_waitqueue_head(&ic->copy_to_journal_wait);
init_completion(&ic->crypto_backoff);
atomic64_set(&ic->number_of_mismatches, 0);
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
if (r) {
ti->error = "Device lookup failed";
goto bad;
}
if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
ti->error = "Invalid starting offset";
r = -EINVAL;
goto bad;
}
ic->start = start;
if (strcmp(argv[2], "-")) {
if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
ti->error = "Invalid tag size";
r = -EINVAL;
goto bad;
}
}
if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
ic->mode = argv[3][0];
else {
ti->error = "Invalid mode (expecting J, D, R)";
r = -EINVAL;
goto bad;
}
journal_sectors = 0;
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
buffer_sectors = DEFAULT_BUFFER_SECTORS;
journal_watermark = DEFAULT_JOURNAL_WATERMARK;
sync_msec = DEFAULT_SYNC_MSEC;
recalculate = false;
ic->sectors_per_block = 1;
as.argc = argc - DIRECT_ARGUMENTS;
as.argv = argv + DIRECT_ARGUMENTS;
r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
if (r)
goto bad;
while (extra_args--) {
const char *opt_string;
unsigned val;
opt_string = dm_shift_arg(&as);
if (!opt_string) {
r = -EINVAL;
ti->error = "Not enough feature arguments";
goto bad;
}
if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
journal_sectors = val ? val : 1;
else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
interleave_sectors = val;
else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
buffer_sectors = val;
else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
journal_watermark = val;
else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
sync_msec = val;
else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
if (ic->meta_dev) {
dm_put_device(ti, ic->meta_dev);
ic->meta_dev = NULL;
}
r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
if (r) {
ti->error = "Device lookup failed";
goto bad;
}
} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
if (val < 1 << SECTOR_SHIFT ||
val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
(val & (val -1))) {
r = -EINVAL;
ti->error = "Invalid block_size argument";
goto bad;
}
ic->sectors_per_block = val >> SECTOR_SHIFT;
} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
"Invalid internal_hash argument");
if (r)
goto bad;
} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
"Invalid journal_crypt argument");
if (r)
goto bad;
} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
"Invalid journal_mac argument");
if (r)
goto bad;
} else if (!strcmp(opt_string, "recalculate")) {
recalculate = true;
} else {
r = -EINVAL;
ti->error = "Invalid argument";
goto bad;
}
}
ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
if (!ic->meta_dev)
ic->meta_device_sectors = ic->data_device_sectors;
else
ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
if (!journal_sectors) {
journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
}
if (!buffer_sectors)
buffer_sectors = 1;
ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
"Invalid internal hash", "Error setting internal hash key");
if (r)
goto bad;
r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
"Invalid journal mac", "Error setting journal mac key");
if (r)
goto bad;
if (!ic->tag_size) {
if (!ic->internal_hash) {
ti->error = "Unknown tag size";
r = -EINVAL;
goto bad;
}
ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
}
if (ic->tag_size > MAX_TAG_SIZE) {
ti->error = "Too big tag size";
r = -EINVAL;
goto bad;
}
if (!(ic->tag_size & (ic->tag_size - 1)))
ic->log2_tag_size = __ffs(ic->tag_size);
else
ic->log2_tag_size = -1;
ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
ic->autocommit_msec = sync_msec;
timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
ic->io = dm_io_client_create();
if (IS_ERR(ic->io)) {
r = PTR_ERR(ic->io);
ic->io = NULL;
ti->error = "Cannot allocate dm io";
goto bad;
}
r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
if (r) {
ti->error = "Cannot allocate mempool";
goto bad;
}
ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
if (!ic->metadata_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
/*
* If this workqueue were percpu, it would cause bio reordering
* and reduced performance.
*/
ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
if (!ic->wait_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
if (!ic->commit_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->commit_work, integrity_commit);
if (ic->mode == 'J') {
ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
if (!ic->writer_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->writer_work, integrity_writer);
}
ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
if (!ic->sb) {
r = -ENOMEM;
ti->error = "Cannot allocate superblock area";
goto bad;
}
r = sync_rw_sb(ic, REQ_OP_READ, 0);
if (r) {
ti->error = "Error reading superblock";
goto bad;
}
should_write_sb = false;
if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
if (ic->mode != 'R') {
if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
r = -EINVAL;
ti->error = "The device is not initialized";
goto bad;
}
}
r = initialize_superblock(ic, journal_sectors, interleave_sectors);
if (r) {
ti->error = "Could not initialize superblock";
goto bad;
}
if (ic->mode != 'R')
should_write_sb = true;
}
if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
r = -EINVAL;
ti->error = "Unknown version";
goto bad;
}
if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
r = -EINVAL;
ti->error = "Tag size doesn't match the information in superblock";
goto bad;
}
if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
r = -EINVAL;
ti->error = "Block size doesn't match the information in superblock";
goto bad;
}
if (!le32_to_cpu(ic->sb->journal_sections)) {
r = -EINVAL;
ti->error = "Corrupted superblock, journal_sections is 0";
goto bad;
}
/* make sure that ti->max_io_len doesn't overflow */
if (!ic->meta_dev) {
if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
r = -EINVAL;
ti->error = "Invalid interleave_sectors in the superblock";
goto bad;
}
} else {
if (ic->sb->log2_interleave_sectors) {
r = -EINVAL;
ti->error = "Invalid interleave_sectors in the superblock";
goto bad;
}
}
ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
/* test for overflow */
r = -EINVAL;
ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
goto bad;
}
if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
r = -EINVAL;
ti->error = "Journal mac mismatch";
goto bad;
}
try_smaller_buffer:
r = calculate_device_limits(ic);
if (r) {
if (ic->meta_dev) {
if (ic->log2_buffer_sectors > 3) {
ic->log2_buffer_sectors--;
goto try_smaller_buffer;
}
}
ti->error = "The device is too small";
goto bad;
}
if (!ic->meta_dev)
ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
if (ti->len > ic->provided_data_sectors) {
r = -EINVAL;
ti->error = "Not enough provided sectors for requested mapping size";
goto bad;
}
threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
threshold += 50;
do_div(threshold, 100);
ic->free_sectors_threshold = threshold;
DEBUG_print("initialized:\n");
DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
DEBUG_print(" journal_entries %u\n", ic->journal_entries);
DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
DEBUG_print(" data_device_sectors 0x%llx\n", (unsigned long long)ic->data_device_sectors);
DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
(unsigned long long)ic->provided_data_sectors);
DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
if (!ic->internal_hash) {
r = -EINVAL;
ti->error = "Recalculate is only valid with internal hash";
goto bad;
}
ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
if (!ic->recalc_wq ) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->recalc_work, integrity_recalc);
ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
if (!ic->recalc_buffer) {
ti->error = "Cannot allocate buffer for recalculating";
r = -ENOMEM;
goto bad;
}
ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
ic->tag_size, GFP_KERNEL);
if (!ic->recalc_tags) {
ti->error = "Cannot allocate tags for recalculating";
r = -ENOMEM;
goto bad;
}
}
ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
if (IS_ERR(ic->bufio)) {
r = PTR_ERR(ic->bufio);
ti->error = "Cannot initialize dm-bufio";
ic->bufio = NULL;
goto bad;
}
dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
if (ic->mode != 'R') {
r = create_journal(ic, &ti->error);
if (r)
goto bad;
}
if (should_write_sb) {
int r;
init_journal(ic, 0, ic->journal_sections, 0);
r = dm_integrity_failed(ic);
if (unlikely(r)) {
ti->error = "Error initializing journal";
goto bad;
}
r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
if (r) {
ti->error = "Error initializing superblock";
goto bad;
}
ic->just_formatted = true;
}
if (!ic->meta_dev) {
r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
if (r)
goto bad;
}
if (!ic->internal_hash)
dm_integrity_set(ti, ic);
ti->num_flush_bios = 1;
ti->flush_supported = true;
return 0;
bad:
dm_integrity_dtr(ti);
return r;
}
static void dm_integrity_dtr(struct dm_target *ti)
{
struct dm_integrity_c *ic = ti->private;
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
BUG_ON(!list_empty(&ic->wait_list));
if (ic->metadata_wq)
destroy_workqueue(ic->metadata_wq);
if (ic->wait_wq)
destroy_workqueue(ic->wait_wq);
if (ic->commit_wq)
destroy_workqueue(ic->commit_wq);
if (ic->writer_wq)
destroy_workqueue(ic->writer_wq);
if (ic->recalc_wq)
destroy_workqueue(ic->recalc_wq);
vfree(ic->recalc_buffer);
kvfree(ic->recalc_tags);
if (ic->bufio)
dm_bufio_client_destroy(ic->bufio);
mempool_exit(&ic->journal_io_mempool);
if (ic->io)
dm_io_client_destroy(ic->io);
if (ic->dev)
dm_put_device(ti, ic->dev);
if (ic->meta_dev)
dm_put_device(ti, ic->meta_dev);
dm_integrity_free_page_list(ic, ic->journal);
dm_integrity_free_page_list(ic, ic->journal_io);
dm_integrity_free_page_list(ic, ic->journal_xor);
if (ic->journal_scatterlist)
dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
if (ic->journal_io_scatterlist)
dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
if (ic->sk_requests) {
unsigned i;
for (i = 0; i < ic->journal_sections; i++) {
struct skcipher_request *req = ic->sk_requests[i];
if (req) {
kzfree(req->iv);
skcipher_request_free(req);
}
}
kvfree(ic->sk_requests);
}
kvfree(ic->journal_tree);
if (ic->sb)
free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
if (ic->internal_hash)
crypto_free_shash(ic->internal_hash);
free_alg(&ic->internal_hash_alg);
if (ic->journal_crypt)
crypto_free_skcipher(ic->journal_crypt);
free_alg(&ic->journal_crypt_alg);
if (ic->journal_mac)
crypto_free_shash(ic->journal_mac);
free_alg(&ic->journal_mac_alg);
kfree(ic);
}
static struct target_type integrity_target = {
.name = "integrity",
.version = {1, 2, 0},
.module = THIS_MODULE,
.features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
.ctr = dm_integrity_ctr,
.dtr = dm_integrity_dtr,
.map = dm_integrity_map,
.postsuspend = dm_integrity_postsuspend,
.resume = dm_integrity_resume,
.status = dm_integrity_status,
.iterate_devices = dm_integrity_iterate_devices,
.io_hints = dm_integrity_io_hints,
};
static int __init dm_integrity_init(void)
{
int r;
journal_io_cache = kmem_cache_create("integrity_journal_io",
sizeof(struct journal_io), 0, 0, NULL);
if (!journal_io_cache) {
DMERR("can't allocate journal io cache");
return -ENOMEM;
}
r = dm_register_target(&integrity_target);
if (r < 0)
DMERR("register failed %d", r);
return r;
}
static void __exit dm_integrity_exit(void)
{
dm_unregister_target(&integrity_target);
kmem_cache_destroy(journal_io_cache);
}
module_init(dm_integrity_init);
module_exit(dm_integrity_exit);
MODULE_AUTHOR("Milan Broz");
MODULE_AUTHOR("Mikulas Patocka");
MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
MODULE_LICENSE("GPL");