OpenCloudOS-Kernel/mm/vmalloc.c

2784 lines
70 KiB
C
Raw Normal View History

/*
* linux/mm/vmalloc.c
*
* Copyright (C) 1993 Linus Torvalds
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
* Numa awareness, Christoph Lameter, SGI, June 2005
*/
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
sched/headers: Move task_struct::signal and task_struct::sighand types and accessors into <linux/sched/signal.h> task_struct::signal and task_struct::sighand are pointers, which would normally make it straightforward to not define those types in sched.h. That is not so, because the types are accompanied by a myriad of APIs (macros and inline functions) that dereference them. Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>. With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore, trying to put accessors into sched.h as a test fails the following way: ./include/linux/sched.h: In function ‘test_signal_types’: ./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’ ^ This reduces the size and complexity of sched.h significantly. Update all headers and .c code that relied on getting the signal handling functionality from <linux/sched.h> to include <linux/sched/signal.h>. The list of affected files in the preparatory patch was partly generated by grepping for the APIs, and partly by doing coverage build testing, both all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of cross-architecture builds. Nevertheless some (trivial) build breakage is still expected related to rare Kconfig combinations and in-flight patches to various kernel code, but most of it should be handled by this patch. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-02 15:35:14 +08:00
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
2008-04-28 17:12:40 +08:00
#include <linux/seq_file.h>
infrastructure to debug (dynamic) objects We can see an ever repeating problem pattern with objects of any kind in the kernel: 1) freeing of active objects 2) reinitialization of active objects Both problems can be hard to debug because the crash happens at a point where we have no chance to decode the root cause anymore. One problem spot are kernel timers, where the detection of the problem often happens in interrupt context and usually causes the machine to panic. While working on a timer related bug report I had to hack specialized code into the timer subsystem to get a reasonable hint for the root cause. This debug hack was fine for temporary use, but far from a mergeable solution due to the intrusiveness into the timer code. The code further lacked the ability to detect and report the root cause instantly and keep the system operational. Keeping the system operational is important to get hold of the debug information without special debugging aids like serial consoles and special knowledge of the bug reporter. The problems described above are not restricted to timers, but timers tend to expose it usually in a full system crash. Other objects are less explosive, but the symptoms caused by such mistakes can be even harder to debug. Instead of creating specialized debugging code for the timer subsystem a generic infrastructure is created which allows developers to verify their code and provides an easy to enable debug facility for users in case of trouble. The debugobjects core code keeps track of operations on static and dynamic objects by inserting them into a hashed list and sanity checking them on object operations and provides additional checks whenever kernel memory is freed. The tracked object operations are: - initializing an object - adding an object to a subsystem list - deleting an object from a subsystem list Each operation is sanity checked before the operation is executed and the subsystem specific code can provide a fixup function which allows to prevent the damage of the operation. When the sanity check triggers a warning message and a stack trace is printed. The list of operations can be extended if the need arises. For now it's limited to the requirements of the first user (timers). The core code enqueues the objects into hash buckets. The hash index is generated from the address of the object to simplify the lookup for the check on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a global lock. The debug code can be compiled in without being active. The runtime overhead is minimal and could be optimized by asm alternatives. A kernel command line option enables the debugging code. Thanks to Ingo Molnar for review, suggestions and cleanup patches. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Greg KH <greg@kroah.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 15:55:01 +08:00
#include <linux/debugobjects.h>
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
#include <linux/kallsyms.h>
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
#include <linux/list.h>
#include <linux/notifier.h>
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/pfn.h>
#include <linux/kmemleak.h>
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/llist.h>
mm: change __get_vm_area_node() to use fls_long() ioremap() and its related interfaces are used to create I/O mappings to memory-mapped I/O devices. The mapping sizes of the traditional I/O devices are relatively small. Non-volatile memory (NVM), however, has many GB and is going to have TB soon. It is not very efficient to create large I/O mappings with 4KB. This patchset extends the ioremap() interfaces to transparently create I/O mappings with huge pages whenever possible. ioremap() continues to use 4KB mappings when a huge page does not fit into a requested range. There is no change necessary to the drivers using ioremap(). A requested physical address must be aligned by a huge page size (1GB or 2MB on x86) for using huge page mapping, though. The kernel huge I/O mapping will improve performance of NVM and other devices with large memory, and reduce the time to create their mappings as well. On x86, MTRRs can override PAT memory types with a 4KB granularity. When using a huge page, MTRRs can override the memory type of the huge page, which may lead a performance penalty. The processor can also behave in an undefined manner if a huge page is mapped to a memory range that MTRRs have mapped with multiple different memory types. Therefore, the mapping code falls back to use a smaller page size toward 4KB when a mapping range is covered by non-WB type of MTRRs. The WB type of MTRRs has no affect on the PAT memory types. The patchset introduces HAVE_ARCH_HUGE_VMAP, which indicates that the arch supports huge KVA mappings for ioremap(). User may specify a new kernel option "nohugeiomap" to disable the huge I/O mapping capability of ioremap() when necessary. Patch 1-4 change common files to support huge I/O mappings. There is no change in the functinalities unless HAVE_ARCH_HUGE_VMAP is defined on the architecture of the system. Patch 5-6 implement the HAVE_ARCH_HUGE_VMAP funcs on x86, and set HAVE_ARCH_HUGE_VMAP on x86. This patch (of 6): __get_vm_area_node() takes unsigned long size, which is a 64-bit value on a 64-bit kernel. However, fls(size) simply ignores the upper 32-bit. Change to use fls_long() to handle the size properly. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Robert Elliott <Elliott@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 06:47:17 +08:00
#include <linux/bitops.h>
#include <linux/uaccess.h>
#include <asm/tlbflush.h>
#include <asm/shmparam.h>
#include "internal.h"
struct vfree_deferred {
struct llist_head list;
struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
static void __vunmap(const void *, int);
static void free_work(struct work_struct *w)
{
struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
struct llist_node *llnode = llist_del_all(&p->list);
while (llnode) {
void *p = llnode;
llnode = llist_next(llnode);
__vunmap(p, 1);
}
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*** Page table manipulation functions ***/
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
} while (pte++, addr += PAGE_SIZE, addr != end);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_clear_huge(pmd))
continue;
if (pmd_none_or_clear_bad(pmd))
continue;
vunmap_pte_range(pmd, addr, next);
} while (pmd++, addr = next, addr != end);
}
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_clear_huge(pud))
continue;
if (pud_none_or_clear_bad(pud))
continue;
vunmap_pmd_range(pud, addr, next);
} while (pud++, addr = next, addr != end);
}
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_clear_huge(p4d))
continue;
if (p4d_none_or_clear_bad(p4d))
continue;
vunmap_pud_range(p4d, addr, next);
} while (p4d++, addr = next, addr != end);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static void vunmap_page_range(unsigned long addr, unsigned long end)
{
pgd_t *pgd;
unsigned long next;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
vunmap_p4d_range(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pte_t *pte;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* nr is a running index into the array which helps higher level
* callers keep track of where we're up to.
*/
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:21 +08:00
pte = pte_alloc_kernel(pmd, addr);
if (!pte)
return -ENOMEM;
do {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct page *page = pages[*nr];
if (WARN_ON(!pte_none(*pte)))
return -EBUSY;
if (WARN_ON(!page))
return -ENOMEM;
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
(*nr)++;
} while (pte++, addr += PAGE_SIZE, addr != end);
return 0;
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_alloc(&init_mm, pud, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return 0;
}
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pud_t *pud;
unsigned long next;
pud = pud_alloc(&init_mm, p4d, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
return -ENOMEM;
} while (pud++, addr = next, addr != end);
return 0;
}
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_alloc(&init_mm, pgd, addr);
if (!p4d)
return -ENOMEM;
do {
next = p4d_addr_end(addr, end);
if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
return -ENOMEM;
} while (p4d++, addr = next, addr != end);
return 0;
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
* will have pfns corresponding to the "pages" array.
*
* Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
*/
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
pgprot_t prot, struct page **pages)
{
pgd_t *pgd;
unsigned long next;
unsigned long addr = start;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int err = 0;
int nr = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
if (err)
return err;
} while (pgd++, addr = next, addr != end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return nr;
}
static int vmap_page_range(unsigned long start, unsigned long end,
pgprot_t prot, struct page **pages)
{
int ret;
ret = vmap_page_range_noflush(start, end, prot, pages);
flush_cache_vmap(start, end);
return ret;
}
int is_vmalloc_or_module_addr(const void *x)
{
/*
* ARM, x86-64 and sparc64 put modules in a special place,
* and fall back on vmalloc() if that fails. Others
* just put it in the vmalloc space.
*/
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
unsigned long addr = (unsigned long)x;
if (addr >= MODULES_VADDR && addr < MODULES_END)
return 1;
#endif
return is_vmalloc_addr(x);
}
/*
* Walk a vmap address to the struct page it maps.
*/
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
unsigned long addr = (unsigned long) vmalloc_addr;
struct page *page = NULL;
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
/*
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
* architectures that do not vmalloc module space
*/
VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
if (pgd_none(*pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
return NULL;
pud = pud_offset(p4d, addr);
mm/vmalloc.c: huge-vmap: fail gracefully on unexpected huge vmap mappings Existing code that uses vmalloc_to_page() may assume that any address for which is_vmalloc_addr() returns true may be passed into vmalloc_to_page() to retrieve the associated struct page. This is not un unreasonable assumption to make, but on architectures that have CONFIG_HAVE_ARCH_HUGE_VMAP=y, it no longer holds, and we need to ensure that vmalloc_to_page() does not go off into the weeds trying to dereference huge PUDs or PMDs as table entries. Given that vmalloc() and vmap() themselves never create huge mappings or deal with compound pages at all, there is no correct answer in this case, so return NULL instead, and issue a warning. When reading /proc/kcore on arm64, you will hit an oops as soon as you hit the huge mappings used for the various segments that make up the mapping of vmlinux. With this patch applied, you will no longer hit the oops, but the kcore contents willl be incorrect (these regions will be zeroed out) We are fixing this for kcore specifically, so it avoids vread() for those regions. At least one other problematic user exists, i.e., /dev/kmem, but that is currently broken on arm64 for other reasons. Link: http://lkml.kernel.org/r/20170609082226.26152-1-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Laura Abbott <labbott@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-24 06:08:41 +08:00
/*
* Don't dereference bad PUD or PMD (below) entries. This will also
* identify huge mappings, which we may encounter on architectures
* that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
* identified as vmalloc addresses by is_vmalloc_addr(), but are
* not [unambiguously] associated with a struct page, so there is
* no correct value to return for them.
*/
WARN_ON_ONCE(pud_bad(*pud));
if (pud_none(*pud) || pud_bad(*pud))
return NULL;
pmd = pmd_offset(pud, addr);
mm/vmalloc.c: huge-vmap: fail gracefully on unexpected huge vmap mappings Existing code that uses vmalloc_to_page() may assume that any address for which is_vmalloc_addr() returns true may be passed into vmalloc_to_page() to retrieve the associated struct page. This is not un unreasonable assumption to make, but on architectures that have CONFIG_HAVE_ARCH_HUGE_VMAP=y, it no longer holds, and we need to ensure that vmalloc_to_page() does not go off into the weeds trying to dereference huge PUDs or PMDs as table entries. Given that vmalloc() and vmap() themselves never create huge mappings or deal with compound pages at all, there is no correct answer in this case, so return NULL instead, and issue a warning. When reading /proc/kcore on arm64, you will hit an oops as soon as you hit the huge mappings used for the various segments that make up the mapping of vmlinux. With this patch applied, you will no longer hit the oops, but the kcore contents willl be incorrect (these regions will be zeroed out) We are fixing this for kcore specifically, so it avoids vread() for those regions. At least one other problematic user exists, i.e., /dev/kmem, but that is currently broken on arm64 for other reasons. Link: http://lkml.kernel.org/r/20170609082226.26152-1-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Laura Abbott <labbott@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-24 06:08:41 +08:00
WARN_ON_ONCE(pmd_bad(*pmd));
if (pmd_none(*pmd) || pmd_bad(*pmd))
return NULL;
ptep = pte_offset_map(pmd, addr);
pte = *ptep;
if (pte_present(pte))
page = pte_page(pte);
pte_unmap(ptep);
return page;
}
EXPORT_SYMBOL(vmalloc_to_page);
/*
* Map a vmalloc()-space virtual address to the physical page frame number.
*/
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
{
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*** Global kva allocator ***/
vmalloc: show lazy-purged vma info in vmallocinfo When ioremap a 67112960 bytes vm_area with the vmallocinfo: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap we get the result: 0xf1000000-0xf5001000 67112960 devm_ioremap+0x38/0x7c phys=40000000 ioremap For the align for ioremap must be less than '1 << IOREMAP_MAX_ORDER': if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); So it makes idiot like me a litte puzzled why this was a jump the vm_area from 0xec800000-0xecbe1000 to 0xf1000000-0xf5001000, and leaving 0xed000000-0xf1000000 as a big hole. This patch is to show all of vm_area, including vmas which are freeing but still in the vmap_area_list, to make it more clear about why we will get 0xf1000000-0xf5001000 in the above case. And we will get a vmallocinfo like: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap [..] 0xece7c000-0xece7e000 8192 unpurged vm_area 0xece7e000-0xece83000 20480 vm_map_ram 0xf0099000-0xf00aa000 69632 vm_map_ram after this patch. Link: http://lkml.kernel.org/r/1496649682-20710-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zijun_hu <zijun_hu@htc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:09 +08:00
#define VM_LAZY_FREE 0x02
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
#define VM_VM_AREA 0x04
static DEFINE_SPINLOCK(vmap_area_lock);
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
static LLIST_HEAD(vmap_purge_list);
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
static struct rb_root vmap_area_root = RB_ROOT;
/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;
static unsigned long vmap_area_pcpu_hole;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static struct vmap_area *__find_vmap_area(unsigned long addr)
{
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct rb_node *n = vmap_area_root.rb_node;
while (n) {
struct vmap_area *va;
va = rb_entry(n, struct vmap_area, rb_node);
if (addr < va->va_start)
n = n->rb_left;
else if (addr >= va->va_end)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
n = n->rb_right;
else
return va;
}
return NULL;
}
static void __insert_vmap_area(struct vmap_area *va)
{
struct rb_node **p = &vmap_area_root.rb_node;
struct rb_node *parent = NULL;
struct rb_node *tmp;
while (*p) {
struct vmap_area *tmp_va;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
parent = *p;
tmp_va = rb_entry(parent, struct vmap_area, rb_node);
if (va->va_start < tmp_va->va_end)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
p = &(*p)->rb_left;
else if (va->va_end > tmp_va->va_start)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&va->rb_node, parent, p);
rb_insert_color(&va->rb_node, &vmap_area_root);
/* address-sort this list */
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
tmp = rb_prev(&va->rb_node);
if (tmp) {
struct vmap_area *prev;
prev = rb_entry(tmp, struct vmap_area, rb_node);
list_add_rcu(&va->list, &prev->list);
} else
list_add_rcu(&va->list, &vmap_area_list);
}
static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* Allocate a region of KVA of the specified size and alignment, within the
* vstart and vend.
*/
static struct vmap_area *alloc_vmap_area(unsigned long size,
unsigned long align,
unsigned long vstart, unsigned long vend,
int node, gfp_t gfp_mask)
{
struct vmap_area *va;
struct rb_node *n;
unsigned long addr;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int purged = 0;
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
struct vmap_area *first;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
BUG_ON(!size);
BUG_ON(offset_in_page(size));
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
BUG_ON(!is_power_of_2(align));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
might_sleep();
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
va = kmalloc_node(sizeof(struct vmap_area),
gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!va))
return ERR_PTR(-ENOMEM);
/*
* Only scan the relevant parts containing pointers to other objects
* to avoid false negatives.
*/
kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
retry:
spin_lock(&vmap_area_lock);
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
/*
* Invalidate cache if we have more permissive parameters.
* cached_hole_size notes the largest hole noticed _below_
* the vmap_area cached in free_vmap_cache: if size fits
* into that hole, we want to scan from vstart to reuse
* the hole instead of allocating above free_vmap_cache.
* Note that __free_vmap_area may update free_vmap_cache
* without updating cached_hole_size or cached_align.
*/
if (!free_vmap_cache ||
size < cached_hole_size ||
vstart < cached_vstart ||
align < cached_align) {
nocache:
cached_hole_size = 0;
free_vmap_cache = NULL;
}
/* record if we encounter less permissive parameters */
cached_vstart = vstart;
cached_align = align;
/* find starting point for our search */
if (free_vmap_cache) {
first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
mm/vmalloc: remove guard page from between vmap blocks The vmap allocator is used to, among other things, allocate per-cpu vmap blocks, where each vmap block is naturally aligned to its own size. Obviously, leaving a guard page after each vmap area forbids packing vmap blocks efficiently and can make the kernel run out of possible vmap blocks long before overall vmap space is exhausted. The new interface to map a user-supplied page array into linear vmalloc space (vm_map_ram) insists on allocating from a vmap block (instead of falling back to a custom area) when the area size is below a certain threshold. With heavy users of this interface (e.g. XFS) and limited vmalloc space on 32-bit, vmap block exhaustion is a real problem. Remove the guard page from the core vmap allocator. vmalloc and the old vmap interface enforce a guard page on their own at a higher level. Note that without this patch, we had accidental guard pages after those vm_map_ram areas that happened to be at the end of a vmap block, but not between every area. This patch removes this accidental guard page only. If we want guard pages after every vm_map_ram area, this should be done separately. And just like with vmalloc and the old interface on a different level, not in the core allocator. Mel pointed out: "If necessary, the guard page could be reintroduced as a debugging-only option (CONFIG_DEBUG_PAGEALLOC?). Otherwise it seems reasonable." Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Dave Chinner <david@fromorbit.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:11:43 +08:00
addr = ALIGN(first->va_end, align);
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
if (addr < vstart)
goto nocache;
if (addr + size < addr)
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
goto overflow;
} else {
addr = ALIGN(vstart, align);
if (addr + size < addr)
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
goto overflow;
n = vmap_area_root.rb_node;
first = NULL;
while (n) {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vmap_area *tmp;
tmp = rb_entry(n, struct vmap_area, rb_node);
if (tmp->va_end >= addr) {
first = tmp;
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
if (tmp->va_start <= addr)
break;
n = n->rb_left;
} else
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
n = n->rb_right;
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
if (!first)
goto found;
}
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
/* from the starting point, walk areas until a suitable hole is found */
mm/vmalloc: remove guard page from between vmap blocks The vmap allocator is used to, among other things, allocate per-cpu vmap blocks, where each vmap block is naturally aligned to its own size. Obviously, leaving a guard page after each vmap area forbids packing vmap blocks efficiently and can make the kernel run out of possible vmap blocks long before overall vmap space is exhausted. The new interface to map a user-supplied page array into linear vmalloc space (vm_map_ram) insists on allocating from a vmap block (instead of falling back to a custom area) when the area size is below a certain threshold. With heavy users of this interface (e.g. XFS) and limited vmalloc space on 32-bit, vmap block exhaustion is a real problem. Remove the guard page from the core vmap allocator. vmalloc and the old vmap interface enforce a guard page on their own at a higher level. Note that without this patch, we had accidental guard pages after those vm_map_ram areas that happened to be at the end of a vmap block, but not between every area. This patch removes this accidental guard page only. If we want guard pages after every vm_map_ram area, this should be done separately. And just like with vmalloc and the old interface on a different level, not in the core allocator. Mel pointed out: "If necessary, the guard page could be reintroduced as a debugging-only option (CONFIG_DEBUG_PAGEALLOC?). Otherwise it seems reasonable." Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Dave Chinner <david@fromorbit.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:11:43 +08:00
while (addr + size > first->va_start && addr + size <= vend) {
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
if (addr + cached_hole_size < first->va_start)
cached_hole_size = first->va_start - addr;
mm/vmalloc: remove guard page from between vmap blocks The vmap allocator is used to, among other things, allocate per-cpu vmap blocks, where each vmap block is naturally aligned to its own size. Obviously, leaving a guard page after each vmap area forbids packing vmap blocks efficiently and can make the kernel run out of possible vmap blocks long before overall vmap space is exhausted. The new interface to map a user-supplied page array into linear vmalloc space (vm_map_ram) insists on allocating from a vmap block (instead of falling back to a custom area) when the area size is below a certain threshold. With heavy users of this interface (e.g. XFS) and limited vmalloc space on 32-bit, vmap block exhaustion is a real problem. Remove the guard page from the core vmap allocator. vmalloc and the old vmap interface enforce a guard page on their own at a higher level. Note that without this patch, we had accidental guard pages after those vm_map_ram areas that happened to be at the end of a vmap block, but not between every area. This patch removes this accidental guard page only. If we want guard pages after every vm_map_ram area, this should be done separately. And just like with vmalloc and the old interface on a different level, not in the core allocator. Mel pointed out: "If necessary, the guard page could be reintroduced as a debugging-only option (CONFIG_DEBUG_PAGEALLOC?). Otherwise it seems reasonable." Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Dave Chinner <david@fromorbit.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:11:43 +08:00
addr = ALIGN(first->va_end, align);
if (addr + size < addr)
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
goto overflow;
if (list_is_last(&first->list, &vmap_area_list))
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
goto found;
first = list_next_entry(first, list);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
found:
if (addr + size > vend)
goto overflow;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
va->va_start = addr;
va->va_end = addr + size;
va->flags = 0;
__insert_vmap_area(va);
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
free_vmap_cache = &va->rb_node;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_unlock(&vmap_area_lock);
BUG_ON(!IS_ALIGNED(va->va_start, align));
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
BUG_ON(va->va_start < vstart);
BUG_ON(va->va_end > vend);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return va;
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
overflow:
spin_unlock(&vmap_area_lock);
if (!purged) {
purge_vmap_area_lazy();
purged = 1;
goto retry;
}
if (gfpflags_allow_blocking(gfp_mask)) {
unsigned long freed = 0;
blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
if (freed > 0) {
purged = 0;
goto retry;
}
}
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
size);
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
kfree(va);
return ERR_PTR(-EBUSY);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
int register_vmap_purge_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static void __free_vmap_area(struct vmap_area *va)
{
BUG_ON(RB_EMPTY_NODE(&va->rb_node));
mm: vmap area cache Provide a free area cache for the vmalloc virtual address allocator, based on the algorithm used by the user virtual memory allocator. This reduces the number of rbtree operations and linear traversals over the vmap extents in order to find a free area, by starting off at the last point that a free area was found. The free area cache is reset if areas are freed behind it, or if we are searching for a smaller area or alignment than last time. So allocation patterns are not changed (verified by corner-case and random test cases in userspace testing). This solves a regression caused by lazy vunmap TLB purging introduced in db64fe02 (mm: rewrite vmap layer). That patch will leave extents in the vmap allocator after they are vunmapped, and until a significant number accumulate that can be flushed in a single batch. So in a workload that vmalloc/vfree frequently, a chain of extents will build up from VMALLOC_START address, which have to be iterated over each time (giving an O(n) type of behaviour). After this patch, the search will start from where it left off, giving closer to an amortized O(1). This is verified to solve regressions reported Steven in GFS2, and Avi in KVM. Hugh's update: : I tried out the recent mmotm, and on one machine was fortunate to hit : the BUG_ON(first->va_start < addr) which seems to have been stalling : your vmap area cache patch ever since May. : I can get you addresses etc, I did dump a few out; but once I stared : at them, it was easier just to look at the code: and I cannot see how : you would be so sure that first->va_start < addr, once you've done : that addr = ALIGN(max(...), align) above, if align is over 0x1000 : (align was 0x8000 or 0x4000 in the cases I hit: ioremaps like Steve). : I originally got around it by just changing the : if (first->va_start < addr) { : to : while (first->va_start < addr) { : without thinking about it any further; but that seemed unsatisfactory, : why would we want to loop here when we've got another very similar : loop just below it? : I am never going to admit how long I've spent trying to grasp your : "while (n)" rbtree loop just above this, the one with the peculiar : if (!first && tmp->va_start < addr + size) : in. That's unfamiliar to me, I'm guessing it's designed to save a : subsequent rb_next() in a few circumstances (at risk of then setting : a wrong cached_hole_size?); but they did appear few to me, and I didn't : feel I could sign off something with that in when I don't grasp it, : and it seems responsible for extra code and mistaken BUG_ON below it. : I've reverted to the familiar rbtree loop that find_vma() does (but : with va_end >= addr as you had, to respect the additional guard page): : and then (given that cached_hole_size starts out 0) I don't see the : need for any complications below it. If you do want to keep that loop : as you had it, please add a comment to explain what it's trying to do, : and where addr is relative to first when you emerge from it. : Aren't your tests "size <= cached_hole_size" and : "addr + size > first->va_start" forgetting the guard page we want : before the next area? I've changed those. : I have not changed your many "addr + size - 1 < addr" overflow tests, : but have since come to wonder, shouldn't they be "addr + size < addr" : tests - won't the vend checks go wrong if addr + size is 0? : I have added a few comments - Wolfgang Wander's 2.6.13 description of : 1363c3cd8603a913a27e2995dccbd70d5312d8e6 Avoiding mmap fragmentation : helped me a lot, perhaps a pointer to that would be good too. And I found : it easier to understand when I renamed cached_start slightly and moved the : overflow label down. : This patch would go after your mm-vmap-area-cache.patch in mmotm. : Trivially, nobody is going to get that BUG_ON with this patch, and it : appears to work fine on my machines; but I have not given it anything like : the testing you did on your original, and may have broken all the : performance you were aiming for. Please take a look and test it out : integrate with yours if you're satisfied - thanks. [akpm@linux-foundation.org: add locking comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-and-tested-by: Steven Whitehouse <swhiteho@redhat.com> Reported-and-tested-by: Avi Kivity <avi@redhat.com> Tested-by: "Barry J. Marson" <bmarson@redhat.com> Cc: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:30:36 +08:00
if (free_vmap_cache) {
if (va->va_end < cached_vstart) {
free_vmap_cache = NULL;
} else {
struct vmap_area *cache;
cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
if (va->va_start <= cache->va_start) {
free_vmap_cache = rb_prev(&va->rb_node);
/*
* We don't try to update cached_hole_size or
* cached_align, but it won't go very wrong.
*/
}
}
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
rb_erase(&va->rb_node, &vmap_area_root);
RB_CLEAR_NODE(&va->rb_node);
list_del_rcu(&va->list);
/*
* Track the highest possible candidate for pcpu area
* allocation. Areas outside of vmalloc area can be returned
* here too, consider only end addresses which fall inside
* vmalloc area proper.
*/
if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
kfree_rcu(va, rcu_head);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/*
* Free a region of KVA allocated by alloc_vmap_area
*/
static void free_vmap_area(struct vmap_area *va)
{
spin_lock(&vmap_area_lock);
__free_vmap_area(va);
spin_unlock(&vmap_area_lock);
}
/*
* Clear the pagetable entries of a given vmap_area
*/
static void unmap_vmap_area(struct vmap_area *va)
{
vunmap_page_range(va->va_start, va->va_end);
}
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
/*
* Unmap page tables and force a TLB flush immediately if pagealloc
* debugging is enabled. This catches use after free bugs similarly to
* those in linear kernel virtual address space after a page has been
* freed.
*
* All the lazy freeing logic is still retained, in order to minimise
* intrusiveness of this debugging feature.
*
* This is going to be *slow* (linear kernel virtual address debugging
* doesn't do a broadcast TLB flush so it is a lot faster).
*/
if (debug_pagealloc_enabled()) {
vunmap_page_range(start, end);
flush_tlb_kernel_range(start, end);
}
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* lazy_max_pages is the maximum amount of virtual address space we gather up
* before attempting to purge with a TLB flush.
*
* There is a tradeoff here: a larger number will cover more kernel page tables
* and take slightly longer to purge, but it will linearly reduce the number of
* global TLB flushes that must be performed. It would seem natural to scale
* this number up linearly with the number of CPUs (because vmapping activity
* could also scale linearly with the number of CPUs), however it is likely
* that in practice, workloads might be constrained in other ways that mean
* vmap activity will not scale linearly with CPUs. Also, I want to be
* conservative and not introduce a big latency on huge systems, so go with
* a less aggressive log scale. It will still be an improvement over the old
* code, and it will be simple to change the scale factor if we find that it
* becomes a problem on bigger systems.
*/
static unsigned long lazy_max_pages(void)
{
unsigned int log;
log = fls(num_online_cpus());
return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}
static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
/*
* Serialize vmap purging. There is no actual criticial section protected
* by this look, but we want to avoid concurrent calls for performance
* reasons and to make the pcpu_get_vm_areas more deterministic.
*/
static DEFINE_MUTEX(vmap_purge_lock);
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);
/*
* called before a call to iounmap() if the caller wants vm_area_struct's
* immediately freed.
*/
void set_iounmap_nonlazy(void)
{
atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* Purges all lazily-freed vmap areas.
*/
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
{
struct llist_node *valist;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vmap_area *va;
mm: fix lazy vmap purging (use-after-free error) I just got this new warning from kmemcheck: WARNING: kmemcheck: Caught 32-bit read from freed memory (c7806a60) a06a80c7ecde70c1a04080c700000000a06709c1000000000000000000000000 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ^ Pid: 0, comm: swapper Not tainted (2.6.29-rc4 #230) EIP: 0060:[<c1096df7>] EFLAGS: 00000286 CPU: 0 EIP is at __purge_vmap_area_lazy+0x117/0x140 EAX: 00070f43 EBX: c7806a40 ECX: c1677080 EDX: 00027b66 ESI: 00002001 EDI: c170df0c EBP: c170df00 ESP: c178830c DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 CR0: 80050033 CR2: c7806b14 CR3: 01775000 CR4: 00000690 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: 00004000 DR7: 00000000 [<c1096f3e>] free_unmap_vmap_area_noflush+0x6e/0x70 [<c1096f6a>] remove_vm_area+0x2a/0x70 [<c1097025>] __vunmap+0x45/0xe0 [<c10970de>] vunmap+0x1e/0x30 [<c1008ba5>] text_poke+0x95/0x150 [<c1008ca9>] alternatives_smp_unlock+0x49/0x60 [<c171ef47>] alternative_instructions+0x11b/0x124 [<c171f991>] check_bugs+0xbd/0xdc [<c17148c5>] start_kernel+0x2ed/0x360 [<c171409e>] __init_begin+0x9e/0xa9 [<ffffffff>] 0xffffffff It happened here: $ addr2line -e vmlinux -i c1096df7 mm/vmalloc.c:540 Code: list_for_each_entry(va, &valist, purge_list) __free_vmap_area(va); It's this instruction: mov 0x20(%ebx),%edx Which corresponds to a dereference of va->purge_list.next: (gdb) p ((struct vmap_area *) 0)->purge_list.next Cannot access memory at address 0x20 It seems that we should use "safe" list traversal here, as the element is freed inside the loop. Please verify that this is the right fix. Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Ingo Molnar <mingo@elte.hu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: <stable@kernel.org> [2.6.28.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-28 06:03:04 +08:00
struct vmap_area *n_va;
bool do_free = false;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
lockdep_assert_held(&vmap_purge_lock);
valist = llist_del_all(&vmap_purge_list);
llist_for_each_entry(va, valist, purge_list) {
if (va->va_start < start)
start = va->va_start;
if (va->va_end > end)
end = va->va_end;
do_free = true;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
if (!do_free)
return false;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
flush_tlb_kernel_range(start, end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_lock(&vmap_area_lock);
llist_for_each_entry_safe(va, n_va, valist, purge_list) {
int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
__free_vmap_area(va);
atomic_sub(nr, &vmap_lazy_nr);
cond_resched_lock(&vmap_area_lock);
}
spin_unlock(&vmap_area_lock);
return true;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/*
* Kick off a purge of the outstanding lazy areas. Don't bother if somebody
* is already purging.
*/
static void try_purge_vmap_area_lazy(void)
{
if (mutex_trylock(&vmap_purge_lock)) {
__purge_vmap_area_lazy(ULONG_MAX, 0);
mutex_unlock(&vmap_purge_lock);
}
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
/*
* Kick off a purge of the outstanding lazy areas.
*/
static void purge_vmap_area_lazy(void)
{
mutex_lock(&vmap_purge_lock);
purge_fragmented_blocks_allcpus();
__purge_vmap_area_lazy(ULONG_MAX, 0);
mutex_unlock(&vmap_purge_lock);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/*
vmalloc: eagerly clear ptes on vunmap On stock 2.6.37-rc4, running: # mount lilith:/export /mnt/lilith # find /mnt/lilith/ -type f -print0 | xargs -0 file crashes the machine fairly quickly under Xen. Often it results in oops messages, but the couple of times I tried just now, it just hung quietly and made Xen print some rude messages: (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp 3000000000000000) for mfn 1d7058 (pfn 18fa7) (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp 1000000000000000) for mfn 1d2e04 (pfn 1d1fb) (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04 Which means the domain tried to map a pagetable page RW, which would allow it to map arbitrary memory, so Xen stopped it. This is because vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had finished with them, and those pages got recycled as pagetable pages while still having these RW aliases. Removing those mappings immediately removes the Xen-visible aliases, and so it has no problem with those pages being reused as pagetable pages. Deferring the TLB flush doesn't upset Xen because it can flush the TLB itself as needed to maintain its invariants. When unmapping a region in the vmalloc space, clear the ptes immediately. There's no point in deferring this because there's no amortization benefit. The TLBs are left dirty, and they are flushed lazily to amortize the cost of the IPIs. This specific motivation for this patch is an oops-causing regression since 2.6.36 when using NFS under Xen, triggered by the NFS client's use of vm_map_ram() introduced in 56e4ebf877b60 ("NFS: readdir with vmapped pages") . XFS also uses vm_map_ram() and could cause similar problems. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Bryan Schumaker <bjschuma@netapp.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Alex Elder <aelder@sgi.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-03 06:31:18 +08:00
* Free a vmap area, caller ensuring that the area has been unmapped
* and flush_cache_vunmap had been called for the correct range
* previously.
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
*/
vmalloc: eagerly clear ptes on vunmap On stock 2.6.37-rc4, running: # mount lilith:/export /mnt/lilith # find /mnt/lilith/ -type f -print0 | xargs -0 file crashes the machine fairly quickly under Xen. Often it results in oops messages, but the couple of times I tried just now, it just hung quietly and made Xen print some rude messages: (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp 3000000000000000) for mfn 1d7058 (pfn 18fa7) (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp 1000000000000000) for mfn 1d2e04 (pfn 1d1fb) (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04 Which means the domain tried to map a pagetable page RW, which would allow it to map arbitrary memory, so Xen stopped it. This is because vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had finished with them, and those pages got recycled as pagetable pages while still having these RW aliases. Removing those mappings immediately removes the Xen-visible aliases, and so it has no problem with those pages being reused as pagetable pages. Deferring the TLB flush doesn't upset Xen because it can flush the TLB itself as needed to maintain its invariants. When unmapping a region in the vmalloc space, clear the ptes immediately. There's no point in deferring this because there's no amortization benefit. The TLBs are left dirty, and they are flushed lazily to amortize the cost of the IPIs. This specific motivation for this patch is an oops-causing regression since 2.6.36 when using NFS under Xen, triggered by the NFS client's use of vm_map_ram() introduced in 56e4ebf877b60 ("NFS: readdir with vmapped pages") . XFS also uses vm_map_ram() and could cause similar problems. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Bryan Schumaker <bjschuma@netapp.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Alex Elder <aelder@sgi.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-03 06:31:18 +08:00
static void free_vmap_area_noflush(struct vmap_area *va)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
{
int nr_lazy;
nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
&vmap_lazy_nr);
/* After this point, we may free va at any time */
llist_add(&va->purge_list, &vmap_purge_list);
if (unlikely(nr_lazy > lazy_max_pages()))
try_purge_vmap_area_lazy();
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/*
* Free and unmap a vmap area
*/
static void free_unmap_vmap_area(struct vmap_area *va)
{
flush_cache_vunmap(va->va_start, va->va_end);
unmap_vmap_area(va);
free_vmap_area_noflush(va);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static struct vmap_area *find_vmap_area(unsigned long addr)
{
struct vmap_area *va;
spin_lock(&vmap_area_lock);
va = __find_vmap_area(addr);
spin_unlock(&vmap_area_lock);
return va;
}
/*** Per cpu kva allocator ***/
/*
* vmap space is limited especially on 32 bit architectures. Ensure there is
* room for at least 16 percpu vmap blocks per CPU.
*/
/*
* If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
* to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
* instead (we just need a rough idea)
*/
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE (128UL*1024*1024)
#else
#define VMALLOC_SPACE (128UL*1024*1024*1024)
#endif
#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
#define VMAP_BBMAP_BITS \
VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
static bool vmap_initialized __read_mostly = false;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vmap_block_queue {
spinlock_t lock;
struct list_head free;
};
struct vmap_block {
spinlock_t lock;
struct vmap_area *va;
unsigned long free, dirty;
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
unsigned long dirty_min, dirty_max; /*< dirty range */
struct list_head free_list;
struct rcu_head rcu_head;
struct list_head purge;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
};
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
/*
* Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
* in the free path. Could get rid of this if we change the API to return a
* "cookie" from alloc, to be passed to free. But no big deal yet.
*/
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
/*
* We should probably have a fallback mechanism to allocate virtual memory
* out of partially filled vmap blocks. However vmap block sizing should be
* fairly reasonable according to the vmalloc size, so it shouldn't be a
* big problem.
*/
static unsigned long addr_to_vb_idx(unsigned long addr)
{
addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
addr /= VMAP_BLOCK_SIZE;
return addr;
}
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
unsigned long addr;
addr = va_start + (pages_off << PAGE_SHIFT);
BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
return (void *)addr;
}
/**
* new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
* block. Of course pages number can't exceed VMAP_BBMAP_BITS
* @order: how many 2^order pages should be occupied in newly allocated block
* @gfp_mask: flags for the page level allocator
*
* Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
*/
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
struct vmap_area *va;
unsigned long vb_idx;
int node, err;
void *vaddr;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
node = numa_node_id();
vb = kmalloc_node(sizeof(struct vmap_block),
gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!vb))
return ERR_PTR(-ENOMEM);
va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
VMALLOC_START, VMALLOC_END,
node, gfp_mask);
if (IS_ERR(va)) {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
kfree(vb);
return ERR_CAST(va);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
err = radix_tree_preload(gfp_mask);
if (unlikely(err)) {
kfree(vb);
free_vmap_area(va);
return ERR_PTR(err);
}
vaddr = vmap_block_vaddr(va->va_start, 0);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_lock_init(&vb->lock);
vb->va = va;
/* At least something should be left free */
BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
vb->free = VMAP_BBMAP_BITS - (1UL << order);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vb->dirty = 0;
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
vb->dirty_min = VMAP_BBMAP_BITS;
vb->dirty_max = 0;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
INIT_LIST_HEAD(&vb->free_list);
vb_idx = addr_to_vb_idx(va->va_start);
spin_lock(&vmap_block_tree_lock);
err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
spin_unlock(&vmap_block_tree_lock);
BUG_ON(err);
radix_tree_preload_end();
vbq = &get_cpu_var(vmap_block_queue);
spin_lock(&vbq->lock);
mm/vmalloc: fix possible exhaustion of vmalloc space caused by vm_map_ram allocator Recently I came across high fragmentation of vm_map_ram allocator: vmap_block has free space, but still new blocks continue to appear. Further investigation showed that certain mapping/unmapping sequences can exhaust vmalloc space. On small 32bit systems that's not a big problem, cause purging will be called soon on a first allocation failure (alloc_vmap_area), but on 64bit machines, e.g. x86_64 has 45 bits of vmalloc space, that can be a disaster. 1) I came up with a simple allocation sequence, which exhausts virtual space very quickly: while (iters) { /* Map/unmap big chunk */ vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL); vm_unmap_ram(vaddr, 16); /* Map/unmap small chunks. * * -1 for hole, which should be left at the end of each block * to keep it partially used, with some free space available */ for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) { vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL); vm_unmap_ram(vaddr, 8); } } The idea behind is simple: 1. We have to map a big chunk, e.g. 16 pages. 2. Then we have to occupy the remaining space with smaller chunks, i.e. 8 pages. At the end small hole should remain to keep block in free list, but do not let big chunk to occupy remaining space. 3. Goto 1 - allocation request of 16 pages can't be completed (only 8 slots are left free in the block in the #2 step), new block will be allocated, all further requests will lay into newly allocated block. To have some measurement numbers for all further tests I setup ftrace and enabled 4 basic calls in a function profile: echo vm_map_ram > /sys/kernel/debug/tracing/set_ftrace_filter; echo alloc_vmap_area >> /sys/kernel/debug/tracing/set_ftrace_filter; echo vm_unmap_ram >> /sys/kernel/debug/tracing/set_ftrace_filter; echo free_vmap_block >> /sys/kernel/debug/tracing/set_ftrace_filter; So for this scenario I got these results: BEFORE (all new blocks are put to the head of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 126000 30683.30 us 0.243 us 30819.36 us vm_unmap_ram 126000 22003.24 us 0.174 us 340.886 us alloc_vmap_area 1000 4132.065 us 4.132 us 0.903 us AFTER (all new blocks are put to the tail of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 126000 28713.13 us 0.227 us 24944.70 us vm_unmap_ram 126000 20403.96 us 0.161 us 1429.872 us alloc_vmap_area 993 3916.795 us 3.944 us 29.370 us free_vmap_block 992 654.157 us 0.659 us 1.273 us SUMMARY: The most interesting numbers in those tables are numbers of block allocations and deallocations: alloc_vmap_area and free_vmap_block calls, which show that before the change blocks were not freed, and virtual space and physical memory (vmap_block structure allocations, etc) were consumed. Average time which were spent in vm_map_ram/vm_unmap_ram became slightly better. That can be explained with a reasonable amount of blocks in a free list, which we need to iterate to find a suitable free block. 2) Another scenario is a random allocation: while (iters) { /* Randomly take number from a range [1..32/64] */ nr = rand(1, VMAP_MAX_ALLOC); vaddr = vm_map_ram(pages, nr, -1, PAGE_KERNEL); vm_unmap_ram(vaddr, nr); } I chose mersenne twister PRNG to generate persistent random state to guarantee that both runs have the same random sequence. For each vm_map_ram call random number from [1..32/64] was taken to represent amount of pages which I do map. I did 10'000 vm_map_ram calls and got these two tables: BEFORE (all new blocks are put to the head of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 10000 10170.01 us 1.017 us 993.609 us vm_unmap_ram 10000 5321.823 us 0.532 us 59.789 us alloc_vmap_area 420 2150.239 us 5.119 us 3.307 us free_vmap_block 37 159.587 us 4.313 us 134.344 us AFTER (all new blocks are put to the tail of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 10000 7745.637 us 0.774 us 395.229 us vm_unmap_ram 10000 5460.573 us 0.546 us 67.187 us alloc_vmap_area 414 2201.650 us 5.317 us 5.591 us free_vmap_block 412 574.421 us 1.394 us 15.138 us SUMMARY: 'BEFORE' table shows, that 420 blocks were allocated and only 37 were freed. Remained 383 blocks are still in a free list, consuming virtual space and physical memory. 'AFTER' table shows, that 414 blocks were allocated and 412 were really freed. 2 blocks remained in a free list. So fragmentation was dramatically reduced. Why? Because when we put newly allocated block to the head, all further requests will occupy new block, regardless remained space in other blocks. In this scenario all requests come randomly. Eventually remained free space will be less than requested size, free list will be iterated and it is possible that nothing will be found there - finally new block will be created. So exhaustion in random scenario happens for the maximum possible allocation size: 32 pages for 32-bit system and 64 pages for 64-bit system. Also average cost of vm_map_ram was reduced from 1.017 us to 0.774 us. Again this can be explained by iteration through smaller list of free blocks. 3) Next simple scenario is a sequential allocation, when the allocation order is increased for each block. This scenario forces allocator to reach maximum amount of partially free blocks in a free list: while (iters) { /* Populate free list with blocks with remaining space */ for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) { nr = VMAP_BBMAP_BITS / (1 << order); /* Leave a hole */ nr -= 1; for (i = 0; i < nr; i++) { vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL); vm_unmap_ram(vaddr, (1 << order)); } /* Completely occupy blocks from a free list */ for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) { vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL); vm_unmap_ram(vaddr, (1 << order)); } } Results which I got: BEFORE (all new blocks are put to the head of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 2032000 399545.2 us 0.196 us 467123.7 us vm_unmap_ram 2032000 363225.7 us 0.178 us 111405.9 us alloc_vmap_area 7001 30627.76 us 4.374 us 495.755 us free_vmap_block 6993 7011.685 us 1.002 us 159.090 us AFTER (all new blocks are put to the tail of a free list) # cat /sys/kernel/debug/tracing/trace_stat/function0 Function Hit Time Avg s^2 -------- --- ---- --- --- vm_map_ram 2032000 394259.7 us 0.194 us 589395.9 us vm_unmap_ram 2032000 292500.7 us 0.143 us 94181.08 us alloc_vmap_area 7000 31103.11 us 4.443 us 703.225 us free_vmap_block 7000 6750.844 us 0.964 us 119.112 us SUMMARY: No surprises here, almost all numbers are the same. Fixing this fragmentation problem I also did some improvements in a allocation logic of a new vmap block: occupy block immediately and get rid of extra search in a free list. Also I replaced dirty bitmap with min/max dirty range values to make the logic simpler and slightly faster, since two longs comparison costs less, than loop thru bitmap. This patchset raises several questions: Q: Think the problem you comments is already known so that I wrote comments about it as "it could consume lots of address space through fragmentation". Could you tell me about your situation and reason why it should be avoided? Gioh Kim A: Indeed, there was a commit 364376383 which adds explicit comment about fragmentation. But fragmentation which is described in this comment caused by mixing of long-lived and short-lived objects, when a whole block is pinned in memory because some page slots are still in use. But here I am talking about blocks which are free, nobody uses them, and allocator keeps them alive forever, continuously allocating new blocks. Q: I think that if you put newly allocated block to the tail of a free list, below example would results in enormous performance degradation. new block: 1MB (256 pages) while (iters--) { vm_map_ram(3 or something else not dividable for 256) * 85 vm_unmap_ram(3) * 85 } On every iteration, it needs newly allocated block and it is put to the tail of a free list so finding it consumes large amount of time. Joonsoo Kim A: Second patch in current patchset gets rid of extra search in a free list, so new block will be immediately occupied.. Also, the scenario above is impossible, cause vm_map_ram allocates virtual range in orders, i.e. 2^n. I.e. passing 3 to vm_map_ram you will allocate 4 slots in a block and 256 slots (capacity of a block) of course dividable on 4, so block will be completely occupied. But there is a worst case which we can achieve: each free block has a hole equal to order size. The maximum size of allocation is 64 pages for 64-bit system (if you try to map more, original alloc_vmap_area will be called). So the maximum order is 6. That means that worst case, before allocator makes a decision to allocate a new block, is to iterate 7 blocks: HEAD 1st block - has 1 page slot free (order 0) 2nd block - has 2 page slots free (order 1) 3rd block - has 4 page slots free (order 2) 4th block - has 8 page slots free (order 3) 5th block - has 16 page slots free (order 4) 6th block - has 32 page slots free (order 5) 7th block - has 64 page slots free (order 6) TAIL So the worst scenario on 64-bit system is that each CPU queue can have 7 blocks in a free list. This can happen only and only if you allocate blocks increasing the order. (as I did in the function written in the comment of the first patch) This is weird and rare case, but still it is possible. Afterwards you will get 7 blocks in a list. All further requests should be placed in a newly allocated block or some free slots should be found in a free list. Seems it does not look dramatically awful. This patch (of 3): If suitable block can't be found, new block is allocated and put into a head of a free list, so on next iteration this new block will be found first. That's bad, because old blocks in a free list will not get a chance to be fully used, thus fragmentation will grow. Let's consider this simple example: #1 We have one block in a free list which is partially used, and where only one page is free: HEAD |xxxxxxxxx-| TAIL ^ free space for 1 page, order 0 #2 New allocation request of order 1 (2 pages) comes, new block is allocated since we do not have free space to complete this request. New block is put into a head of a free list: HEAD |----------|xxxxxxxxx-| TAIL #3 Two pages were occupied in a new found block: HEAD |xx--------|xxxxxxxxx-| TAIL ^ two pages mapped here #4 New allocation request of order 0 (1 page) comes. Block, which was created on #2 step, is located at the beginning of a free list, so it will be found first: HEAD |xxX-------|xxxxxxxxx-| TAIL ^ ^ page mapped here, but better to use this hole It is obvious, that it is better to complete request of #4 step using the old block, where free space is left, because in other case fragmentation will be highly increased. But fragmentation is not only the case. The worst thing is that I can easily create scenario, when the whole vmalloc space is exhausted by blocks, which are not used, but already dirty and have several free pages. Let's consider this function which execution should be pinned to one CPU: static void exhaust_virtual_space(struct page *pages[16], int iters) { /* Firstly we have to map a big chunk, e.g. 16 pages. * Then we have to occupy the remaining space with smaller * chunks, i.e. 8 pages. At the end small hole should remain. * So at the end of our allocation sequence block looks like * this: * XX big chunk * |XXxxxxxxx-| x small chunk * - hole, which is enough for a small chunk, * but is not enough for a big chunk */ while (iters--) { int i; void *vaddr; /* Map/unmap big chunk */ vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL); vm_unmap_ram(vaddr, 16); /* Map/unmap small chunks. * * -1 for hole, which should be left at the end of each block * to keep it partially used, with some free space available */ for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) { vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL); vm_unmap_ram(vaddr, 8); } } } On every iteration new block (1MB of vm area in my case) will be allocated and then will be occupied, without attempt to resolve small allocation request using previously allocated blocks in a free list. In case of random allocation (size should be randomly taken from the range [1..64] in 64-bit case or [1..32] in 32-bit case) situation is the same: new blocks continue to appear if maximum possible allocation size (32 or 64) passed to the allocator, because all remaining blocks in a free list do not have enough free space to complete this allocation request. In summary if new blocks are put into the head of a free list eventually virtual space will be exhausted. In current patch I simply put newly allocated block to the tail of a free list, thus reduce fragmentation, giving a chance to resolve allocation request using older blocks with possible holes left. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:48 +08:00
list_add_tail_rcu(&vb->free_list, &vbq->free);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_unlock(&vbq->lock);
put_cpu_var(vmap_block_queue);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return vaddr;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
static void free_vmap_block(struct vmap_block *vb)
{
struct vmap_block *tmp;
unsigned long vb_idx;
vb_idx = addr_to_vb_idx(vb->va->va_start);
spin_lock(&vmap_block_tree_lock);
tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
spin_unlock(&vmap_block_tree_lock);
BUG_ON(tmp != vb);
vmalloc: eagerly clear ptes on vunmap On stock 2.6.37-rc4, running: # mount lilith:/export /mnt/lilith # find /mnt/lilith/ -type f -print0 | xargs -0 file crashes the machine fairly quickly under Xen. Often it results in oops messages, but the couple of times I tried just now, it just hung quietly and made Xen print some rude messages: (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp 3000000000000000) for mfn 1d7058 (pfn 18fa7) (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp 1000000000000000) for mfn 1d2e04 (pfn 1d1fb) (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04 Which means the domain tried to map a pagetable page RW, which would allow it to map arbitrary memory, so Xen stopped it. This is because vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had finished with them, and those pages got recycled as pagetable pages while still having these RW aliases. Removing those mappings immediately removes the Xen-visible aliases, and so it has no problem with those pages being reused as pagetable pages. Deferring the TLB flush doesn't upset Xen because it can flush the TLB itself as needed to maintain its invariants. When unmapping a region in the vmalloc space, clear the ptes immediately. There's no point in deferring this because there's no amortization benefit. The TLBs are left dirty, and they are flushed lazily to amortize the cost of the IPIs. This specific motivation for this patch is an oops-causing regression since 2.6.36 when using NFS under Xen, triggered by the NFS client's use of vm_map_ram() introduced in 56e4ebf877b60 ("NFS: readdir with vmapped pages") . XFS also uses vm_map_ram() and could cause similar problems. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Bryan Schumaker <bjschuma@netapp.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Alex Elder <aelder@sgi.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-03 06:31:18 +08:00
free_vmap_area_noflush(vb->va);
kfree_rcu(vb, rcu_head);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
static void purge_fragmented_blocks(int cpu)
{
LIST_HEAD(purge);
struct vmap_block *vb;
struct vmap_block *n_vb;
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
rcu_read_lock();
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
continue;
spin_lock(&vb->lock);
if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
vb->free = 0; /* prevent further allocs after releasing lock */
vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
vb->dirty_min = 0;
vb->dirty_max = VMAP_BBMAP_BITS;
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
spin_unlock(&vb->lock);
list_add_tail(&vb->purge, &purge);
} else
spin_unlock(&vb->lock);
}
rcu_read_unlock();
list_for_each_entry_safe(vb, n_vb, &purge, purge) {
list_del(&vb->purge);
free_vmap_block(vb);
}
}
static void purge_fragmented_blocks_allcpus(void)
{
int cpu;
for_each_possible_cpu(cpu)
purge_fragmented_blocks(cpu);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
void *vaddr = NULL;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned int order;
BUG_ON(offset_in_page(size));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
if (WARN_ON(size == 0)) {
/*
* Allocating 0 bytes isn't what caller wants since
* get_order(0) returns funny result. Just warn and terminate
* early.
*/
return NULL;
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
order = get_order(size);
rcu_read_lock();
vbq = &get_cpu_var(vmap_block_queue);
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
unsigned long pages_off;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_lock(&vb->lock);
if (vb->free < (1UL << order)) {
spin_unlock(&vb->lock);
continue;
}
pages_off = VMAP_BBMAP_BITS - vb->free;
vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
vb->free -= 1UL << order;
if (vb->free == 0) {
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
}
spin_unlock(&vb->lock);
break;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
put_cpu_var(vmap_block_queue);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
rcu_read_unlock();
/* Allocate new block if nothing was found */
if (!vaddr)
vaddr = new_vmap_block(order, gfp_mask);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return vaddr;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
static void vb_free(const void *addr, unsigned long size)
{
unsigned long offset;
unsigned long vb_idx;
unsigned int order;
struct vmap_block *vb;
BUG_ON(offset_in_page(size));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
order = get_order(size);
offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
offset >>= PAGE_SHIFT;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vb_idx = addr_to_vb_idx((unsigned long)addr);
rcu_read_lock();
vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
rcu_read_unlock();
BUG_ON(!vb);
vmalloc: eagerly clear ptes on vunmap On stock 2.6.37-rc4, running: # mount lilith:/export /mnt/lilith # find /mnt/lilith/ -type f -print0 | xargs -0 file crashes the machine fairly quickly under Xen. Often it results in oops messages, but the couple of times I tried just now, it just hung quietly and made Xen print some rude messages: (XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp 3000000000000000) for mfn 1d7058 (pfn 18fa7) (XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms (XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp 1000000000000000) for mfn 1d2e04 (pfn 1d1fb) (XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04 Which means the domain tried to map a pagetable page RW, which would allow it to map arbitrary memory, so Xen stopped it. This is because vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had finished with them, and those pages got recycled as pagetable pages while still having these RW aliases. Removing those mappings immediately removes the Xen-visible aliases, and so it has no problem with those pages being reused as pagetable pages. Deferring the TLB flush doesn't upset Xen because it can flush the TLB itself as needed to maintain its invariants. When unmapping a region in the vmalloc space, clear the ptes immediately. There's no point in deferring this because there's no amortization benefit. The TLBs are left dirty, and they are flushed lazily to amortize the cost of the IPIs. This specific motivation for this patch is an oops-causing regression since 2.6.36 when using NFS under Xen, triggered by the NFS client's use of vm_map_ram() introduced in 56e4ebf877b60 ("NFS: readdir with vmapped pages") . XFS also uses vm_map_ram() and could cause similar problems. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Bryan Schumaker <bjschuma@netapp.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Alex Elder <aelder@sgi.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-03 06:31:18 +08:00
vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_lock(&vb->lock);
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
/* Expand dirty range */
vb->dirty_min = min(vb->dirty_min, offset);
vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vb->dirty += 1UL << order;
if (vb->dirty == VMAP_BBMAP_BITS) {
BUG_ON(vb->free);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
spin_unlock(&vb->lock);
free_vmap_block(vb);
} else
spin_unlock(&vb->lock);
}
/**
* vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
*
* The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
* to amortize TLB flushing overheads. What this means is that any page you
* have now, may, in a former life, have been mapped into kernel virtual
* address by the vmap layer and so there might be some CPUs with TLB entries
* still referencing that page (additional to the regular 1:1 kernel mapping).
*
* vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
* be sure that none of the pages we have control over will have any aliases
* from the vmap layer.
*/
void vm_unmap_aliases(void)
{
unsigned long start = ULONG_MAX, end = 0;
int cpu;
int flush = 0;
if (unlikely(!vmap_initialized))
return;
might_sleep();
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
for_each_possible_cpu(cpu) {
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
struct vmap_block *vb;
rcu_read_lock();
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
spin_lock(&vb->lock);
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
if (vb->dirty) {
unsigned long va_start = vb->va->va_start;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned long s, e;
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
s = va_start + (vb->dirty_min << PAGE_SHIFT);
e = va_start + (vb->dirty_max << PAGE_SHIFT);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
start = min(s, start);
end = max(e, end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
mm/vmalloc: get rid of dirty bitmap inside vmap_block structure In original implementation of vm_map_ram made by Nick Piggin there were two bitmaps: alloc_map and dirty_map. None of them were used as supposed to be: finding a suitable free hole for next allocation in block. vm_map_ram allocates space sequentially in block and on free call marks pages as dirty, so freed space can't be reused anymore. Actually it would be very interesting to know the real meaning of those bitmaps, maybe implementation was incomplete, etc. But long time ago Zhang Yanfei removed alloc_map by these two commits: mm/vmalloc.c: remove dead code in vb_alloc 3fcd76e8028e0be37b02a2002b4f56755daeda06 mm/vmalloc.c: remove alloc_map from vmap_block b8e748b6c32999f221ea4786557b8e7e6c4e4e7a In this patch I replaced dirty_map with two range variables: dirty min and max. These variables store minimum and maximum position of dirty space in a block, since we need only to know the dirty range, not exact position of dirty pages. Why it was made? Several reasons: at first glance it seems that vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for finding free hole, but it is not true. To avoid complexity seems it is better to use something simple, like min or max range values. Secondly, code also becomes simpler, without iteration over bitmap, just comparing values in min and max macros. Thirdly, bitmap occupies up to 1024 bits (4MB is a max size of a block). Here I replaced the whole bitmap with two longs. Finally vm_unmap_aliases should be slightly faster and the whole vmap_block structure occupies less memory. Signed-off-by: Roman Pen <r.peniaev@gmail.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Christoph Lameter <cl@linux.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:13:55 +08:00
flush = 1;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
spin_unlock(&vb->lock);
}
rcu_read_unlock();
}
mutex_lock(&vmap_purge_lock);
purge_fragmented_blocks_allcpus();
if (!__purge_vmap_area_lazy(start, end) && flush)
flush_tlb_kernel_range(start, end);
mutex_unlock(&vmap_purge_lock);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
/**
* vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
* @mem: the pointer returned by vm_map_ram
* @count: the count passed to that vm_map_ram call (cannot unmap partial)
*/
void vm_unmap_ram(const void *mem, unsigned int count)
{
unsigned long size = (unsigned long)count << PAGE_SHIFT;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned long addr = (unsigned long)mem;
struct vmap_area *va;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
might_sleep();
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
BUG_ON(!addr);
BUG_ON(addr < VMALLOC_START);
BUG_ON(addr > VMALLOC_END);
BUG_ON(!PAGE_ALIGNED(addr));
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
debug_check_no_locks_freed(mem, size);
vmap_debug_free_range(addr, addr+size);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
if (likely(count <= VMAP_MAX_ALLOC)) {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vb_free(mem, size);
return;
}
va = find_vmap_area(addr);
BUG_ON(!va);
free_unmap_vmap_area(va);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
EXPORT_SYMBOL(vm_unmap_ram);
/**
* vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
* @pages: an array of pointers to the pages to be mapped
* @count: number of pages
* @node: prefer to allocate data structures on this node
* @prot: memory protection to use. PAGE_KERNEL for regular RAM
*
mm/vmalloc.c: enhance vm_map_ram() comment vm_map_ram() has a fragmentation problem when it cannot purge a chunk(ie, 4M address space) if there is a pinning object in that addresss space. So it could consume all VMALLOC address space easily. We can fix the fragmentation problem by using vmap instead of vm_map_ram() but vmap() is known to be slow compared to vm_map_ram(). Minchan said vm_map_ram is 5 times faster than vmap in his tests. So I thought we should fix fragment problem of vm_map_ram because our proprietary GPU driver has used it heavily. On second thought, it's not an easy because we should reuse freed space for solving the problem and it could make more IPI and bitmap operation for searching hole. It could mitigate API's goal which is very fast mapping. And even fragmentation problem wouldn't show in 64 bit machine. Another option is that the user should separate long-life and short-life object and use vmap for long-life but vm_map_ram for short-life. If we inform the user about the characteristic of vm_map_ram the user can choose one according to the page lifetime. Let's add some notice messages to user. [akpm@linux-foundation.org: tweak comment text] Signed-off-by: Gioh Kim <gioh.kim@lge.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:37:37 +08:00
* If you use this function for less than VMAP_MAX_ALLOC pages, it could be
* faster than vmap so it's good. But if you mix long-life and short-life
* objects with vm_map_ram(), it could consume lots of address space through
* fragmentation (especially on a 32bit machine). You could see failures in
* the end. Please use this function for short-lived objects.
*
* Returns: a pointer to the address that has been mapped, or %NULL on failure
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
*/
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
unsigned long size = (unsigned long)count << PAGE_SHIFT;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
unsigned long addr;
void *mem;
if (likely(count <= VMAP_MAX_ALLOC)) {
mem = vb_alloc(size, GFP_KERNEL);
if (IS_ERR(mem))
return NULL;
addr = (unsigned long)mem;
} else {
struct vmap_area *va;
va = alloc_vmap_area(size, PAGE_SIZE,
VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
if (IS_ERR(va))
return NULL;
addr = va->va_start;
mem = (void *)addr;
}
if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
vm_unmap_ram(mem, count);
return NULL;
}
return mem;
}
EXPORT_SYMBOL(vm_map_ram);
static struct vm_struct *vmlist __initdata;
/**
* vm_area_add_early - add vmap area early during boot
* @vm: vm_struct to add
*
* This function is used to add fixed kernel vm area to vmlist before
* vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
* should contain proper values and the other fields should be zero.
*
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
*/
void __init vm_area_add_early(struct vm_struct *vm)
{
struct vm_struct *tmp, **p;
BUG_ON(vmap_initialized);
for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
if (tmp->addr >= vm->addr) {
BUG_ON(tmp->addr < vm->addr + vm->size);
break;
} else
BUG_ON(tmp->addr + tmp->size > vm->addr);
}
vm->next = *p;
*p = vm;
}
/**
* vm_area_register_early - register vmap area early during boot
* @vm: vm_struct to register
* @align: requested alignment
*
* This function is used to register kernel vm area before
* vmalloc_init() is called. @vm->size and @vm->flags should contain
* proper values on entry and other fields should be zero. On return,
* vm->addr contains the allocated address.
*
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
*/
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
{
static size_t vm_init_off __initdata;
unsigned long addr;
addr = ALIGN(VMALLOC_START + vm_init_off, align);
vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
vm->addr = (void *)addr;
vm_area_add_early(vm);
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
void __init vmalloc_init(void)
{
struct vmap_area *va;
struct vm_struct *tmp;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int i;
for_each_possible_cpu(i) {
struct vmap_block_queue *vbq;
struct vfree_deferred *p;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vbq = &per_cpu(vmap_block_queue, i);
spin_lock_init(&vbq->lock);
INIT_LIST_HEAD(&vbq->free);
p = &per_cpu(vfree_deferred, i);
init_llist_head(&p->list);
INIT_WORK(&p->wq, free_work);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/* Import existing vmlist entries. */
for (tmp = vmlist; tmp; tmp = tmp->next) {
va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
va->flags = VM_VM_AREA;
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
va->vm = tmp;
__insert_vmap_area(va);
}
vmap_area_pcpu_hole = VMALLOC_END;
vmap_initialized = true;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
/**
* map_kernel_range_noflush - map kernel VM area with the specified pages
* @addr: start of the VM area to map
* @size: size of the VM area to map
* @prot: page protection flags to use
* @pages: pages to map
*
* Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
* specify should have been allocated using get_vm_area() and its
* friends.
*
* NOTE:
* This function does NOT do any cache flushing. The caller is
* responsible for calling flush_cache_vmap() on to-be-mapped areas
* before calling this function.
*
* RETURNS:
* The number of pages mapped on success, -errno on failure.
*/
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
pgprot_t prot, struct page **pages)
{
return vmap_page_range_noflush(addr, addr + size, prot, pages);
}
/**
* unmap_kernel_range_noflush - unmap kernel VM area
* @addr: start of the VM area to unmap
* @size: size of the VM area to unmap
*
* Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
* specify should have been allocated using get_vm_area() and its
* friends.
*
* NOTE:
* This function does NOT do any cache flushing. The caller is
* responsible for calling flush_cache_vunmap() on to-be-mapped areas
* before calling this function and flush_tlb_kernel_range() after.
*/
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
vunmap_page_range(addr, addr + size);
}
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
/**
* unmap_kernel_range - unmap kernel VM area and flush cache and TLB
* @addr: start of the VM area to unmap
* @size: size of the VM area to unmap
*
* Similar to unmap_kernel_range_noflush() but flushes vcache before
* the unmapping and tlb after.
*/
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
unsigned long end = addr + size;
flush_cache_vunmap(addr, end);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
vunmap_page_range(addr, end);
flush_tlb_kernel_range(addr, end);
}
EXPORT_SYMBOL_GPL(unmap_kernel_range);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
{
unsigned long addr = (unsigned long)area->addr;
unsigned long end = addr + get_vm_area_size(area);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int err;
err = vmap_page_range(addr, end, prot, pages);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return err > 0 ? 0 : err;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
}
EXPORT_SYMBOL_GPL(map_vm_area);
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
unsigned long flags, const void *caller)
{
spin_lock(&vmap_area_lock);
vm->flags = flags;
vm->addr = (void *)va->va_start;
vm->size = va->va_end - va->va_start;
vm->caller = caller;
va->vm = vm;
va->flags |= VM_VM_AREA;
spin_unlock(&vmap_area_lock);
}
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
{
2013-04-30 06:07:35 +08:00
/*
* Before removing VM_UNINITIALIZED,
2013-04-30 06:07:35 +08:00
* we should make sure that vm has proper values.
* Pair with smp_rmb() in show_numa_info().
*/
smp_wmb();
vm->flags &= ~VM_UNINITIALIZED;
}
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
static struct vm_struct *__get_vm_area_node(unsigned long size,
unsigned long align, unsigned long flags, unsigned long start,
unsigned long end, int node, gfp_t gfp_mask, const void *caller)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
{
struct vmap_area *va;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vm_struct *area;
BUG_ON(in_interrupt());
size = PAGE_ALIGN(size);
if (unlikely(!size))
return NULL;
if (flags & VM_IOREMAP)
align = 1ul << clamp_t(int, get_count_order_long(size),
PAGE_SHIFT, IOREMAP_MAX_ORDER);
area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!area))
return NULL;
mm: vmalloc: add flag preventing guard hole allocation For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't have a guard hole. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:03 +08:00
if (!(flags & VM_NO_GUARD))
size += PAGE_SIZE;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
if (IS_ERR(va)) {
kfree(area);
return NULL;
}
setup_vmalloc_vm(area, va, flags, caller);
return area;
}
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
unsigned long start, unsigned long end)
{
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
GFP_KERNEL, __builtin_return_address(0));
}
EXPORT_SYMBOL_GPL(__get_vm_area);
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
unsigned long start, unsigned long end,
const void *caller)
{
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
GFP_KERNEL, caller);
}
/**
* get_vm_area - reserve a contiguous kernel virtual area
* @size: size of the area
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
*
* Search an area of @size in the kernel virtual mapping area,
* and reserved it for out purposes. Returns the area descriptor
* on success or %NULL on failure.
*/
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
NUMA_NO_NODE, GFP_KERNEL,
__builtin_return_address(0));
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
}
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
const void *caller)
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
{
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
NUMA_NO_NODE, GFP_KERNEL, caller);
}
/**
* find_vm_area - find a continuous kernel virtual area
* @addr: base address
*
* Search for the kernel VM area starting at @addr, and return it.
* It is up to the caller to do all required locking to keep the returned
* pointer valid.
*/
struct vm_struct *find_vm_area(const void *addr)
{
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vmap_area *va;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
va = find_vmap_area((unsigned long)addr);
if (va && va->flags & VM_VM_AREA)
return va->vm;
return NULL;
}
/**
* remove_vm_area - find and remove a continuous kernel virtual area
* @addr: base address
*
* Search for the kernel VM area starting at @addr, and remove it.
* This function returns the found VM area, but using it is NOT safe
* on SMP machines, except for its size or flags.
*/
struct vm_struct *remove_vm_area(const void *addr)
{
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
struct vmap_area *va;
might_sleep();
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
va = find_vmap_area((unsigned long)addr);
if (va && va->flags & VM_VM_AREA) {
struct vm_struct *vm = va->vm;
spin_lock(&vmap_area_lock);
va->vm = NULL;
va->flags &= ~VM_VM_AREA;
vmalloc: show lazy-purged vma info in vmallocinfo When ioremap a 67112960 bytes vm_area with the vmallocinfo: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap we get the result: 0xf1000000-0xf5001000 67112960 devm_ioremap+0x38/0x7c phys=40000000 ioremap For the align for ioremap must be less than '1 << IOREMAP_MAX_ORDER': if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); So it makes idiot like me a litte puzzled why this was a jump the vm_area from 0xec800000-0xecbe1000 to 0xf1000000-0xf5001000, and leaving 0xed000000-0xf1000000 as a big hole. This patch is to show all of vm_area, including vmas which are freeing but still in the vmap_area_list, to make it more clear about why we will get 0xf1000000-0xf5001000 in the above case. And we will get a vmallocinfo like: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap [..] 0xece7c000-0xece7e000 8192 unpurged vm_area 0xece7e000-0xece83000 20480 vm_map_ram 0xf0099000-0xf00aa000 69632 vm_map_ram after this patch. Link: http://lkml.kernel.org/r/1496649682-20710-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zijun_hu <zijun_hu@htc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:09 +08:00
va->flags |= VM_LAZY_FREE;
spin_unlock(&vmap_area_lock);
vmap_debug_free_range(va->va_start, va->va_end);
kasan_free_shadow(vm);
free_unmap_vmap_area(va);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return vm;
}
return NULL;
}
static void __vunmap(const void *addr, int deallocate_pages)
{
struct vm_struct *area;
if (!addr)
return;
if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
addr))
return;
area = remove_vm_area(addr);
if (unlikely(!area)) {
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
addr);
return;
}
debug_check_no_locks_freed(addr, get_vm_area_size(area));
debug_check_no_obj_freed(addr, get_vm_area_size(area));
if (deallocate_pages) {
int i;
for (i = 0; i < area->nr_pages; i++) {
struct page *page = area->pages[i];
BUG_ON(!page);
mm: charge/uncharge kmemcg from generic page allocator paths Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:24:24 +08:00
__free_pages(page, 0);
}
kvfree(area->pages);
}
kfree(area);
return;
}
static inline void __vfree_deferred(const void *addr)
{
/*
* Use raw_cpu_ptr() because this can be called from preemptible
* context. Preemption is absolutely fine here, because the llist_add()
* implementation is lockless, so it works even if we are adding to
* nother cpu's list. schedule_work() should be fine with this too.
*/
struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
if (llist_add((struct llist_node *)addr, &p->list))
schedule_work(&p->wq);
}
/**
* vfree_atomic - release memory allocated by vmalloc()
* @addr: memory base address
*
* This one is just like vfree() but can be called in any atomic context
* except NMIs.
*/
void vfree_atomic(const void *addr)
{
BUG_ON(in_nmi());
kmemleak_free(addr);
if (!addr)
return;
__vfree_deferred(addr);
}
/**
* vfree - release memory allocated by vmalloc()
* @addr: memory base address
*
* Free the virtually continuous memory area starting at @addr, as
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
* NULL, no operation is performed.
*
* Must not be called in NMI context (strictly speaking, only if we don't
* have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
* conventions for vfree() arch-depenedent would be a really bad idea)
*
* NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
*/
void vfree(const void *addr)
{
BUG_ON(in_nmi());
kmemleak_free(addr);
if (!addr)
return;
if (unlikely(in_interrupt()))
__vfree_deferred(addr);
else
__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);
/**
* vunmap - release virtual mapping obtained by vmap()
* @addr: memory base address
*
* Free the virtually contiguous memory area starting at @addr,
* which was created from the page array passed to vmap().
*
* Must not be called in interrupt context.
*/
void vunmap(const void *addr)
{
BUG_ON(in_interrupt());
might_sleep();
if (addr)
__vunmap(addr, 0);
}
EXPORT_SYMBOL(vunmap);
/**
* vmap - map an array of pages into virtually contiguous space
* @pages: array of page pointers
* @count: number of pages to map
* @flags: vm_area->flags
* @prot: page protection for the mapping
*
* Maps @count pages from @pages into contiguous kernel virtual
* space.
*/
void *vmap(struct page **pages, unsigned int count,
unsigned long flags, pgprot_t prot)
{
struct vm_struct *area;
unsigned long size; /* In bytes */
might_sleep();
if (count > totalram_pages)
return NULL;
size = (unsigned long)count << PAGE_SHIFT;
area = get_vm_area_caller(size, flags, __builtin_return_address(0));
if (!area)
return NULL;
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
if (map_vm_area(area, prot, pages)) {
vunmap(area->addr);
return NULL;
}
return area->addr;
}
EXPORT_SYMBOL(vmap);
mm, vmalloc: fix vmalloc users tracking properly Commit 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") has pulled asm/pgtable.h include dependency to linux/vmalloc.h and that turned out to be a bad idea for some architectures. E.g. m68k fails with In file included from arch/m68k/include/asm/pgtable_mm.h:145:0, from arch/m68k/include/asm/pgtable.h:4, from include/linux/vmalloc.h:9, from arch/m68k/kernel/module.c:9: arch/m68k/include/asm/mcf_pgtable.h: In function 'nocache_page': >> arch/m68k/include/asm/mcf_pgtable.h:339:43: error: 'init_mm' undeclared (first use in this function) #define pgd_offset_k(address) pgd_offset(&init_mm, address) as spotted by kernel build bot. nios2 fails for other reason In file included from include/asm-generic/io.h:767:0, from arch/nios2/include/asm/io.h:61, from include/linux/io.h:25, from arch/nios2/include/asm/pgtable.h:18, from include/linux/mm.h:70, from include/linux/pid_namespace.h:6, from include/linux/ptrace.h:9, from arch/nios2/include/uapi/asm/elf.h:23, from arch/nios2/include/asm/elf.h:22, from include/linux/elf.h:4, from include/linux/module.h:15, from init/main.c:16: include/linux/vmalloc.h: In function '__vmalloc_node_flags': include/linux/vmalloc.h:99:40: error: 'PAGE_KERNEL' undeclared (first use in this function); did you mean 'GFP_KERNEL'? which is due to the newly added #include <asm/pgtable.h>, which on nios2 includes <linux/io.h> and thus <asm/io.h> and <asm-generic/io.h> which again includes <linux/vmalloc.h>. Tweaking that around just turns out a bigger headache than necessary. This patch reverts 1f5307b1e094 and reimplements the original fix in a different way. __vmalloc_node_flags can stay static inline which will cover vmalloc* functions. We only have one external user (kvmalloc_node) and we can export __vmalloc_node_flags_caller and provide the caller directly. This is much simpler and it doesn't really need any games with header files. [akpm@linux-foundation.org: coding-style fixes] [mhocko@kernel.org: revert old comment] Link: http://lkml.kernel.org/r/20170509211054.GB16325@dhcp22.suse.cz Fixes: 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") Link: http://lkml.kernel.org/r/20170509153702.GR6481@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-13 06:46:41 +08:00
static void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, pgprot_t prot,
int node, const void *caller);
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, int node)
{
struct page **pages;
unsigned int nr_pages, array_size, i;
const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
const gfp_t alloc_mask = gfp_mask | __GFP_HIGHMEM | __GFP_NOWARN;
nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
array_size = (nr_pages * sizeof(struct page *));
area->nr_pages = nr_pages;
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) {
pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
PAGE_KERNEL, node, area->caller);
} else {
pages = kmalloc_node(array_size, nested_gfp, node);
}
area->pages = pages;
if (!area->pages) {
remove_vm_area(area->addr);
kfree(area);
return NULL;
}
for (i = 0; i < area->nr_pages; i++) {
struct page *page;
if (fatal_signal_pending(current)) {
area->nr_pages = i;
goto fail_no_warn;
}
if (node == NUMA_NO_NODE)
page = alloc_page(alloc_mask);
else
page = alloc_pages_node(node, alloc_mask, 0);
if (unlikely(!page)) {
/* Successfully allocated i pages, free them in __vunmap() */
area->nr_pages = i;
goto fail;
}
area->pages[i] = page;
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
if (gfpflags_allow_blocking(gfp_mask))
cond_resched();
}
if (map_vm_area(area, prot, pages))
goto fail;
return area->addr;
fail:
warn_alloc(gfp_mask, NULL,
"vmalloc: allocation failure, allocated %ld of %ld bytes",
mm: print vmalloc() state after allocation failures I was tracking down a page allocation failure that ended up in vmalloc(). Since vmalloc() uses 0-order pages, if somebody asks for an insane amount of memory, we'll still get a warning with "order:0" in it. That's not very useful. During recovery, vmalloc() also nicely frees all of the memory that it got up to the point of the failure. That is wonderful, but it also quickly hides any issues. We have a much different sitation if vmalloc() repeatedly fails 10GB in to: vmalloc(100 * 1<<30); versus repeatedly failing 4096 bytes in to a: vmalloc(8192); This patch will print out messages that look like this: [ 68.123503] vmalloc: allocation failure, allocated 6680576 of 13426688 bytes [ 68.124218] bash: page allocation failure: order:0, mode:0xd2 [ 68.124811] Pid: 3770, comm: bash Not tainted 2.6.39-rc3-00082-g85f2e68-dirty #333 [ 68.125579] Call Trace: [ 68.125853] [<ffffffff810f6da6>] warn_alloc_failed+0x146/0x170 [ 68.126464] [<ffffffff8107e05c>] ? printk+0x6c/0x70 [ 68.126791] [<ffffffff8112b5d4>] ? alloc_pages_current+0x94/0xe0 [ 68.127661] [<ffffffff8111ed37>] __vmalloc_node_range+0x237/0x290 ... The 'order' variable is added for clarity when calling warn_alloc_failed() to avoid having an unexplained '0' as an argument. The 'tmp_mask' is because adding an open-coded '| __GFP_NOWARN' would take us over 80 columns for the alloc_pages_node() call. If we are going to add a line, it might as well be one that makes the sucker easier to read. As a side issue, I also noticed that ctl_ioctl() does vmalloc() based solely on an unverified value passed in from userspace. Granted, it's under CAP_SYS_ADMIN, but it still frightens me a bit. Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:12:18 +08:00
(area->nr_pages*PAGE_SIZE), area->size);
fail_no_warn:
vfree(area->addr);
return NULL;
}
/**
* __vmalloc_node_range - allocate virtually contiguous memory
* @size: allocation size
* @align: desired alignment
* @start: vm area range start
* @end: vm area range end
* @gfp_mask: flags for the page level allocator
* @prot: protection mask for the allocated pages
mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into __vmalloc_node_range(). Add new parameter 'vm_flags' to __vmalloc_node_range() function. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:07 +08:00
* @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
* @node: node to use for allocation or NUMA_NO_NODE
* @caller: caller's return address
*
* Allocate enough pages to cover @size from the page level
* allocator with @gfp_mask flags. Map them into contiguous
* kernel virtual space, using a pagetable protection of @prot.
*/
void *__vmalloc_node_range(unsigned long size, unsigned long align,
unsigned long start, unsigned long end, gfp_t gfp_mask,
mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into __vmalloc_node_range(). Add new parameter 'vm_flags' to __vmalloc_node_range() function. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:07 +08:00
pgprot_t prot, unsigned long vm_flags, int node,
const void *caller)
{
struct vm_struct *area;
void *addr;
unsigned long real_size = size;
size = PAGE_ALIGN(size);
if (!size || (size >> PAGE_SHIFT) > totalram_pages)
goto fail;
mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into __vmalloc_node_range(). Add new parameter 'vm_flags' to __vmalloc_node_range() function. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:07 +08:00
area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
vm_flags, start, end, node, gfp_mask, caller);
if (!area)
goto fail;
addr = __vmalloc_area_node(area, gfp_mask, prot, node);
if (!addr)
return NULL;
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
* flag. It means that vm_struct is not fully initialized.
* Now, it is fully initialized, so remove this flag here.
*/
clear_vm_uninitialized_flag(area);
kmemleak_vmalloc(area, size, gfp_mask);
return addr;
fail:
warn_alloc(gfp_mask, NULL,
"vmalloc: allocation failure: %lu bytes", real_size);
return NULL;
}
/**
* __vmalloc_node - allocate virtually contiguous memory
* @size: allocation size
* @align: desired alignment
* @gfp_mask: flags for the page level allocator
* @prot: protection mask for the allocated pages
* @node: node to use for allocation or NUMA_NO_NODE
* @caller: caller's return address
*
* Allocate enough pages to cover @size from the page level
* allocator with @gfp_mask flags. Map them into contiguous
* kernel virtual space, using a pagetable protection of @prot.
mm: introduce kv[mz]alloc helpers Patch series "kvmalloc", v5. There are many open coded kmalloc with vmalloc fallback instances in the tree. Most of them are not careful enough or simply do not care about the underlying semantic of the kmalloc/page allocator which means that a) some vmalloc fallbacks are basically unreachable because the kmalloc part will keep retrying until it succeeds b) the page allocator can invoke a really disruptive steps like the OOM killer to move forward which doesn't sound appropriate when we consider that the vmalloc fallback is available. As it can be seen implementing kvmalloc requires quite an intimate knowledge if the page allocator and the memory reclaim internals which strongly suggests that a helper should be implemented in the memory subsystem proper. Most callers, I could find, have been converted to use the helper instead. This is patch 6. There are some more relying on __GFP_REPEAT in the networking stack which I have converted as well and Eric Dumazet was not opposed [2] to convert them as well. [1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com This patch (of 9): Using kmalloc with the vmalloc fallback for larger allocations is a common pattern in the kernel code. Yet we do not have any common helper for that and so users have invented their own helpers. Some of them are really creative when doing so. Let's just add kv[mz]alloc and make sure it is implemented properly. This implementation makes sure to not make a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also to not warn about allocation failures. This also rules out the OOM killer as the vmalloc is a more approapriate fallback than a disruptive user visible action. This patch also changes some existing users and removes helpers which are specific for them. In some cases this is not possible (e.g. ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and require GFP_NO{FS,IO} context which is not vmalloc compatible in general (note that the page table allocation is GFP_KERNEL). Those need to be fixed separately. While we are at it, document that __vmalloc{_node} about unsupported gfp mask because there seems to be a lot of confusion out there. kvmalloc_node will warn about GFP_KERNEL incompatible (which are not superset) flags to catch new abusers. Existing ones would have to die slowly. [sfr@canb.auug.org.au: f2fs fixup] Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part] Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:57:09 +08:00
*
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic __GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:36:45 +08:00
* Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
mm: introduce kv[mz]alloc helpers Patch series "kvmalloc", v5. There are many open coded kmalloc with vmalloc fallback instances in the tree. Most of them are not careful enough or simply do not care about the underlying semantic of the kmalloc/page allocator which means that a) some vmalloc fallbacks are basically unreachable because the kmalloc part will keep retrying until it succeeds b) the page allocator can invoke a really disruptive steps like the OOM killer to move forward which doesn't sound appropriate when we consider that the vmalloc fallback is available. As it can be seen implementing kvmalloc requires quite an intimate knowledge if the page allocator and the memory reclaim internals which strongly suggests that a helper should be implemented in the memory subsystem proper. Most callers, I could find, have been converted to use the helper instead. This is patch 6. There are some more relying on __GFP_REPEAT in the networking stack which I have converted as well and Eric Dumazet was not opposed [2] to convert them as well. [1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com This patch (of 9): Using kmalloc with the vmalloc fallback for larger allocations is a common pattern in the kernel code. Yet we do not have any common helper for that and so users have invented their own helpers. Some of them are really creative when doing so. Let's just add kv[mz]alloc and make sure it is implemented properly. This implementation makes sure to not make a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also to not warn about allocation failures. This also rules out the OOM killer as the vmalloc is a more approapriate fallback than a disruptive user visible action. This patch also changes some existing users and removes helpers which are specific for them. In some cases this is not possible (e.g. ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and require GFP_NO{FS,IO} context which is not vmalloc compatible in general (note that the page table allocation is GFP_KERNEL). Those need to be fixed separately. While we are at it, document that __vmalloc{_node} about unsupported gfp mask because there seems to be a lot of confusion out there. kvmalloc_node will warn about GFP_KERNEL incompatible (which are not superset) flags to catch new abusers. Existing ones would have to die slowly. [sfr@canb.auug.org.au: f2fs fixup] Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part] Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:57:09 +08:00
* and __GFP_NOFAIL are not supported
*
* Any use of gfp flags outside of GFP_KERNEL should be consulted
* with mm people.
*
*/
mm, vmalloc: fix vmalloc users tracking properly Commit 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") has pulled asm/pgtable.h include dependency to linux/vmalloc.h and that turned out to be a bad idea for some architectures. E.g. m68k fails with In file included from arch/m68k/include/asm/pgtable_mm.h:145:0, from arch/m68k/include/asm/pgtable.h:4, from include/linux/vmalloc.h:9, from arch/m68k/kernel/module.c:9: arch/m68k/include/asm/mcf_pgtable.h: In function 'nocache_page': >> arch/m68k/include/asm/mcf_pgtable.h:339:43: error: 'init_mm' undeclared (first use in this function) #define pgd_offset_k(address) pgd_offset(&init_mm, address) as spotted by kernel build bot. nios2 fails for other reason In file included from include/asm-generic/io.h:767:0, from arch/nios2/include/asm/io.h:61, from include/linux/io.h:25, from arch/nios2/include/asm/pgtable.h:18, from include/linux/mm.h:70, from include/linux/pid_namespace.h:6, from include/linux/ptrace.h:9, from arch/nios2/include/uapi/asm/elf.h:23, from arch/nios2/include/asm/elf.h:22, from include/linux/elf.h:4, from include/linux/module.h:15, from init/main.c:16: include/linux/vmalloc.h: In function '__vmalloc_node_flags': include/linux/vmalloc.h:99:40: error: 'PAGE_KERNEL' undeclared (first use in this function); did you mean 'GFP_KERNEL'? which is due to the newly added #include <asm/pgtable.h>, which on nios2 includes <linux/io.h> and thus <asm/io.h> and <asm-generic/io.h> which again includes <linux/vmalloc.h>. Tweaking that around just turns out a bigger headache than necessary. This patch reverts 1f5307b1e094 and reimplements the original fix in a different way. __vmalloc_node_flags can stay static inline which will cover vmalloc* functions. We only have one external user (kvmalloc_node) and we can export __vmalloc_node_flags_caller and provide the caller directly. This is much simpler and it doesn't really need any games with header files. [akpm@linux-foundation.org: coding-style fixes] [mhocko@kernel.org: revert old comment] Link: http://lkml.kernel.org/r/20170509211054.GB16325@dhcp22.suse.cz Fixes: 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") Link: http://lkml.kernel.org/r/20170509153702.GR6481@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-13 06:46:41 +08:00
static void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, pgprot_t prot,
int node, const void *caller)
{
return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
mm: vmalloc: pass additional vm_flags to __vmalloc_node_range() For instrumenting global variables KASan will shadow memory backing memory for modules. So on module loading we will need to allocate memory for shadow and map it at address in shadow that corresponds to the address allocated in module_alloc(). __vmalloc_node_range() could be used for this purpose, except it puts a guard hole after allocated area. Guard hole in shadow memory should be a problem because at some future point we might need to have a shadow memory at address occupied by guard hole. So we could fail to allocate shadow for module_alloc(). Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into __vmalloc_node_range(). Add new parameter 'vm_flags' to __vmalloc_node_range() function. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:07 +08:00
gfp_mask, prot, 0, node, caller);
}
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
__builtin_return_address(0));
}
EXPORT_SYMBOL(__vmalloc);
mm, vmalloc: fix vmalloc users tracking properly Commit 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") has pulled asm/pgtable.h include dependency to linux/vmalloc.h and that turned out to be a bad idea for some architectures. E.g. m68k fails with In file included from arch/m68k/include/asm/pgtable_mm.h:145:0, from arch/m68k/include/asm/pgtable.h:4, from include/linux/vmalloc.h:9, from arch/m68k/kernel/module.c:9: arch/m68k/include/asm/mcf_pgtable.h: In function 'nocache_page': >> arch/m68k/include/asm/mcf_pgtable.h:339:43: error: 'init_mm' undeclared (first use in this function) #define pgd_offset_k(address) pgd_offset(&init_mm, address) as spotted by kernel build bot. nios2 fails for other reason In file included from include/asm-generic/io.h:767:0, from arch/nios2/include/asm/io.h:61, from include/linux/io.h:25, from arch/nios2/include/asm/pgtable.h:18, from include/linux/mm.h:70, from include/linux/pid_namespace.h:6, from include/linux/ptrace.h:9, from arch/nios2/include/uapi/asm/elf.h:23, from arch/nios2/include/asm/elf.h:22, from include/linux/elf.h:4, from include/linux/module.h:15, from init/main.c:16: include/linux/vmalloc.h: In function '__vmalloc_node_flags': include/linux/vmalloc.h:99:40: error: 'PAGE_KERNEL' undeclared (first use in this function); did you mean 'GFP_KERNEL'? which is due to the newly added #include <asm/pgtable.h>, which on nios2 includes <linux/io.h> and thus <asm/io.h> and <asm-generic/io.h> which again includes <linux/vmalloc.h>. Tweaking that around just turns out a bigger headache than necessary. This patch reverts 1f5307b1e094 and reimplements the original fix in a different way. __vmalloc_node_flags can stay static inline which will cover vmalloc* functions. We only have one external user (kvmalloc_node) and we can export __vmalloc_node_flags_caller and provide the caller directly. This is much simpler and it doesn't really need any games with header files. [akpm@linux-foundation.org: coding-style fixes] [mhocko@kernel.org: revert old comment] Link: http://lkml.kernel.org/r/20170509211054.GB16325@dhcp22.suse.cz Fixes: 1f5307b1e094 ("mm, vmalloc: properly track vmalloc users") Link: http://lkml.kernel.org/r/20170509153702.GR6481@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-13 06:46:41 +08:00
static inline void *__vmalloc_node_flags(unsigned long size,
int node, gfp_t flags)
{
return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
node, __builtin_return_address(0));
}
void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
void *caller)
{
return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}
/**
* vmalloc - allocate virtually contiguous memory
* @size: allocation size
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc(unsigned long size)
{
return __vmalloc_node_flags(size, NUMA_NO_NODE,
GFP_KERNEL);
}
EXPORT_SYMBOL(vmalloc);
/**
* vzalloc - allocate virtually contiguous memory with zero fill
* @size: allocation size
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vzalloc(unsigned long size)
{
return __vmalloc_node_flags(size, NUMA_NO_NODE,
GFP_KERNEL | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);
/**
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
* @size: allocation size
*
* The resulting memory area is zeroed so it can be mapped to userspace
* without leaking data.
*/
void *vmalloc_user(unsigned long size)
{
struct vm_struct *area;
void *ret;
ret = __vmalloc_node(size, SHMLBA,
GFP_KERNEL | __GFP_ZERO,
PAGE_KERNEL, NUMA_NO_NODE,
__builtin_return_address(0));
if (ret) {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
area = find_vm_area(ret);
area->flags |= VM_USERMAP;
}
return ret;
}
EXPORT_SYMBOL(vmalloc_user);
/**
* vmalloc_node - allocate memory on a specific node
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_node(unsigned long size, int node)
{
return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
node, __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_node);
/**
* vzalloc_node - allocate memory on a specific node with zero fill
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc_node() instead.
*/
void *vzalloc_node(unsigned long size, int node)
{
return __vmalloc_node_flags(size, node,
GFP_KERNEL | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc_node);
[PATCH] DocBook: changes and extensions to the kernel documentation I have recompiled Linux kernel 2.6.11.5 documentation for me and our university students again. The documentation could be extended for more sources which are equipped by structured comments for recent 2.6 kernels. I have tried to proceed with that task. I have done that more times from 2.6.0 time and it gets boring to do same changes again and again. Linux kernel compiles after changes for i386 and ARM targets. I have added references to some more files into kernel-api book, I have added some section names as well. So please, check that changes do not break something and that categories are not too much skewed. I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved by kernel convention. Most of the other changes are modifications in the comments to make kernel-doc happy, accept some parameters description and do not bail out on errors. Changed <pid> to @pid in the description, moved some #ifdef before comments to correct function to comments bindings, etc. You can see result of the modified documentation build at http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz Some more sources are ready to be included into kernel-doc generated documentation. Sources has been added into kernel-api for now. Some more section names added and probably some more chaos introduced as result of quick cleanup work. Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz> Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 23:59:25 +08:00
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif
/**
* vmalloc_exec - allocate virtually contiguous, executable memory
* @size: allocation size
*
* Kernel-internal function to allocate enough pages to cover @size
* the page level allocator and map them into contiguous and
* executable kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_exec(unsigned long size)
{
return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
NUMA_NO_NODE, __builtin_return_address(0));
}
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into contiguous kernel virtual space.
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
NUMA_NO_NODE, __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*/
void *vmalloc_32_user(unsigned long size)
{
struct vm_struct *area;
void *ret;
ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
NUMA_NO_NODE, __builtin_return_address(0));
if (ret) {
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
area = find_vm_area(ret);
area->flags |= VM_USERMAP;
}
return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);
/*
* small helper routine , copy contents to buf from addr.
* If the page is not present, fill zero.
*/
static int aligned_vread(char *buf, char *addr, unsigned long count)
{
struct page *p;
int copied = 0;
while (count) {
unsigned long offset, length;
offset = offset_in_page(addr);
length = PAGE_SIZE - offset;
if (length > count)
length = count;
p = vmalloc_to_page(addr);
/*
* To do safe access to this _mapped_ area, we need
* lock. But adding lock here means that we need to add
* overhead of vmalloc()/vfree() calles for this _debug_
* interface, rarely used. Instead of that, we'll use
* kmap() and get small overhead in this access function.
*/
if (p) {
/*
* we can expect USER0 is not used (see vread/vwrite's
* function description)
*/
void *map = kmap_atomic(p);
memcpy(buf, map + offset, length);
kunmap_atomic(map);
} else
memset(buf, 0, length);
addr += length;
buf += length;
copied += length;
count -= length;
}
return copied;
}
static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
struct page *p;
int copied = 0;
while (count) {
unsigned long offset, length;
offset = offset_in_page(addr);
length = PAGE_SIZE - offset;
if (length > count)
length = count;
p = vmalloc_to_page(addr);
/*
* To do safe access to this _mapped_ area, we need
* lock. But adding lock here means that we need to add
* overhead of vmalloc()/vfree() calles for this _debug_
* interface, rarely used. Instead of that, we'll use
* kmap() and get small overhead in this access function.
*/
if (p) {
/*
* we can expect USER0 is not used (see vread/vwrite's
* function description)
*/
void *map = kmap_atomic(p);
memcpy(map + offset, buf, length);
kunmap_atomic(map);
}
addr += length;
buf += length;
copied += length;
count -= length;
}
return copied;
}
/**
* vread() - read vmalloc area in a safe way.
* @buf: buffer for reading data
* @addr: vm address.
* @count: number of bytes to be read.
*
* Returns # of bytes which addr and buf should be increased.
* (same number to @count). Returns 0 if [addr...addr+count) doesn't
* includes any intersect with alive vmalloc area.
*
* This function checks that addr is a valid vmalloc'ed area, and
* copy data from that area to a given buffer. If the given memory range
* of [addr...addr+count) includes some valid address, data is copied to
* proper area of @buf. If there are memory holes, they'll be zero-filled.
* IOREMAP area is treated as memory hole and no copy is done.
*
* If [addr...addr+count) doesn't includes any intersects with alive
* vm_struct area, returns 0. @buf should be kernel's buffer.
*
* Note: In usual ops, vread() is never necessary because the caller
* should know vmalloc() area is valid and can use memcpy().
* This is for routines which have to access vmalloc area without
* any informaion, as /dev/kmem.
*
*/
long vread(char *buf, char *addr, unsigned long count)
{
struct vmap_area *va;
struct vm_struct *vm;
char *vaddr, *buf_start = buf;
unsigned long buflen = count;
unsigned long n;
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
spin_lock(&vmap_area_lock);
list_for_each_entry(va, &vmap_area_list, list) {
if (!count)
break;
if (!(va->flags & VM_VM_AREA))
continue;
vm = va->vm;
vaddr = (char *) vm->addr;
if (addr >= vaddr + get_vm_area_size(vm))
continue;
while (addr < vaddr) {
if (count == 0)
goto finished;
*buf = '\0';
buf++;
addr++;
count--;
}
n = vaddr + get_vm_area_size(vm) - addr;
if (n > count)
n = count;
if (!(vm->flags & VM_IOREMAP))
aligned_vread(buf, addr, n);
else /* IOREMAP area is treated as memory hole */
memset(buf, 0, n);
buf += n;
addr += n;
count -= n;
}
finished:
spin_unlock(&vmap_area_lock);
if (buf == buf_start)
return 0;
/* zero-fill memory holes */
if (buf != buf_start + buflen)
memset(buf, 0, buflen - (buf - buf_start));
return buflen;
}
/**
* vwrite() - write vmalloc area in a safe way.
* @buf: buffer for source data
* @addr: vm address.
* @count: number of bytes to be read.
*
* Returns # of bytes which addr and buf should be incresed.
* (same number to @count).
* If [addr...addr+count) doesn't includes any intersect with valid
* vmalloc area, returns 0.
*
* This function checks that addr is a valid vmalloc'ed area, and
* copy data from a buffer to the given addr. If specified range of
* [addr...addr+count) includes some valid address, data is copied from
* proper area of @buf. If there are memory holes, no copy to hole.
* IOREMAP area is treated as memory hole and no copy is done.
*
* If [addr...addr+count) doesn't includes any intersects with alive
* vm_struct area, returns 0. @buf should be kernel's buffer.
*
* Note: In usual ops, vwrite() is never necessary because the caller
* should know vmalloc() area is valid and can use memcpy().
* This is for routines which have to access vmalloc area without
* any informaion, as /dev/kmem.
*/
long vwrite(char *buf, char *addr, unsigned long count)
{
struct vmap_area *va;
struct vm_struct *vm;
char *vaddr;
unsigned long n, buflen;
int copied = 0;
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
buflen = count;
spin_lock(&vmap_area_lock);
list_for_each_entry(va, &vmap_area_list, list) {
if (!count)
break;
if (!(va->flags & VM_VM_AREA))
continue;
vm = va->vm;
vaddr = (char *) vm->addr;
if (addr >= vaddr + get_vm_area_size(vm))
continue;
while (addr < vaddr) {
if (count == 0)
goto finished;
buf++;
addr++;
count--;
}
n = vaddr + get_vm_area_size(vm) - addr;
if (n > count)
n = count;
if (!(vm->flags & VM_IOREMAP)) {
aligned_vwrite(buf, addr, n);
copied++;
}
buf += n;
addr += n;
count -= n;
}
finished:
spin_unlock(&vmap_area_lock);
if (!copied)
return 0;
return buflen;
}
/**
* remap_vmalloc_range_partial - map vmalloc pages to userspace
* @vma: vma to cover
* @uaddr: target user address to start at
* @kaddr: virtual address of vmalloc kernel memory
* @size: size of map area
*
* Returns: 0 for success, -Exxx on failure
*
* This function checks that @kaddr is a valid vmalloc'ed area,
* and that it is big enough to cover the range starting at
* @uaddr in @vma. Will return failure if that criteria isn't
* met.
*
* Similar to remap_pfn_range() (see mm/memory.c)
*/
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
void *kaddr, unsigned long size)
{
struct vm_struct *area;
size = PAGE_ALIGN(size);
if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
return -EINVAL;
area = find_vm_area(kaddr);
if (!area)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return -EINVAL;
if (!(area->flags & VM_USERMAP))
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return -EINVAL;
if (kaddr + size > area->addr + area->size)
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return -EINVAL;
do {
struct page *page = vmalloc_to_page(kaddr);
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
int ret;
ret = vm_insert_page(vma, uaddr, page);
if (ret)
return ret;
uaddr += PAGE_SIZE;
kaddr += PAGE_SIZE;
size -= PAGE_SIZE;
} while (size > 0);
mm: kill vma flag VM_RESERVED and mm->reserved_vm counter A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA, currently it lost original meaning but still has some effects: | effect | alternative flags -+------------------------+--------------------------------------------- 1| account as reserved_vm | VM_IO 2| skip in core dump | VM_IO, VM_DONTDUMP 3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP 4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP This patch removes reserved_vm counter from mm_struct. Seems like nobody cares about it, it does not exported into userspace directly, it only reduces total_vm showed in proc. Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP. remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP. remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP. [akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:29:02 +08:00
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
mm: rewrite vmap layer Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and provide a fast, scalable percpu frontend for small vmaps (requires a slightly different API, though). The biggest problem with vmap is actually vunmap. Presently this requires a global kernel TLB flush, which on most architectures is a broadcast IPI to all CPUs to flush the cache. This is all done under a global lock. As the number of CPUs increases, so will the number of vunmaps a scaled workload will want to perform, and so will the cost of a global TLB flush. This gives terrible quadratic scalability characteristics. Another problem is that the entire vmap subsystem works under a single lock. It is a rwlock, but it is actually taken for write in all the fast paths, and the read locking would likely never be run concurrently anyway, so it's just pointless. This is a rewrite of vmap subsystem to solve those problems. The existing vmalloc API is implemented on top of the rewritten subsystem. The TLB flushing problem is solved by using lazy TLB unmapping. vmap addresses do not have to be flushed immediately when they are vunmapped, because the kernel will not reuse them again (would be a use-after-free) until they are reallocated. So the addresses aren't allocated again until a subsequent TLB flush. A single TLB flush then can flush multiple vunmaps from each CPU. XEN and PAT and such do not like deferred TLB flushing because they can't always handle multiple aliasing virtual addresses to a physical address. They now call vm_unmap_aliases() in order to flush any deferred mappings. That call is very expensive (well, actually not a lot more expensive than a single vunmap under the old scheme), however it should be OK if not called too often. The virtual memory extent information is stored in an rbtree rather than a linked list to improve the algorithmic scalability. There is a per-CPU allocator for small vmaps, which amortizes or avoids global locking. To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces must be used in place of vmap and vunmap. Vmalloc does not use these interfaces at the moment, so it will not be quite so scalable (although it will use lazy TLB flushing). As a quick test of performance, I ran a test that loops in the kernel, linearly mapping then touching then unmapping 4 pages. Different numbers of tests were run in parallel on an 4 core, 2 socket opteron. Results are in nanoseconds per map+touch+unmap. threads vanilla vmap rewrite 1 14700 2900 2 33600 3000 4 49500 2800 8 70631 2900 So with a 8 cores, the rewritten version is already 25x faster. In a slightly more realistic test (although with an older and less scalable version of the patch), I ripped the not-very-good vunmap batching code out of XFS, and implemented the large buffer mapping with vm_map_ram and vm_unmap_ram... along with a couple of other tricks, I was able to speed up a large directory workload by 20x on a 64 CPU system. I believe vmap/vunmap is actually sped up a lot more than 20x on such a system, but I'm running into other locks now. vmap is pretty well blown off the profiles. Before: 1352059 total 0.1401 798784 _write_lock 8320.6667 <- vmlist_lock 529313 default_idle 1181.5022 15242 smp_call_function 15.8771 <- vmap tlb flushing 2472 __get_vm_area_node 1.9312 <- vmap 1762 remove_vm_area 4.5885 <- vunmap 316 map_vm_area 0.2297 <- vmap 312 kfree 0.1950 300 _spin_lock 3.1250 252 sn_send_IPI_phys 0.4375 <- tlb flushing 238 vmap 0.8264 <- vmap 216 find_lock_page 0.5192 196 find_next_bit 0.3603 136 sn2_send_IPI 0.2024 130 pio_phys_write_mmr 2.0312 118 unmap_kernel_range 0.1229 After: 78406 total 0.0081 40053 default_idle 89.4040 33576 ia64_spinlock_contention 349.7500 1650 _spin_lock 17.1875 319 __reg_op 0.5538 281 _atomic_dec_and_lock 1.0977 153 mutex_unlock 1.5938 123 iget_locked 0.1671 117 xfs_dir_lookup 0.1662 117 dput 0.1406 114 xfs_iget_core 0.0268 92 xfs_da_hashname 0.1917 75 d_alloc 0.0670 68 vmap_page_range 0.0462 <- vmap 58 kmem_cache_alloc 0.0604 57 memset 0.0540 52 rb_next 0.1625 50 __copy_user 0.0208 49 bitmap_find_free_region 0.2188 <- vmap 46 ia64_sn_udelay 0.1106 45 find_inode_fast 0.1406 42 memcmp 0.2188 42 finish_task_switch 0.1094 42 __d_lookup 0.0410 40 radix_tree_lookup_slot 0.1250 37 _spin_unlock_irqrestore 0.3854 36 xfs_bmapi 0.0050 36 kmem_cache_free 0.0256 35 xfs_vn_getattr 0.0322 34 radix_tree_lookup 0.1062 33 __link_path_walk 0.0035 31 xfs_da_do_buf 0.0091 30 _xfs_buf_find 0.0204 28 find_get_page 0.0875 27 xfs_iread 0.0241 27 __strncpy_from_user 0.2812 26 _xfs_buf_initialize 0.0406 24 _xfs_buf_lookup_pages 0.0179 24 vunmap_page_range 0.0250 <- vunmap 23 find_lock_page 0.0799 22 vm_map_ram 0.0087 <- vmap 20 kfree 0.0125 19 put_page 0.0330 18 __kmalloc 0.0176 17 xfs_da_node_lookup_int 0.0086 17 _read_lock 0.0885 17 page_waitqueue 0.0664 vmap has gone from being the top 5 on the profiles and flushing the crap out of all TLBs, to using less than 1% of kernel time. [akpm@linux-foundation.org: cleanups, section fix] [akpm@linux-foundation.org: fix build on alpha] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Krzysztof Helt <krzysztof.h1@poczta.fm> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:27:03 +08:00
return 0;
}
EXPORT_SYMBOL(remap_vmalloc_range_partial);
/**
* remap_vmalloc_range - map vmalloc pages to userspace
* @vma: vma to cover (map full range of vma)
* @addr: vmalloc memory
* @pgoff: number of pages into addr before first page to map
*
* Returns: 0 for success, -Exxx on failure
*
* This function checks that addr is a valid vmalloc'ed area, and
* that it is big enough to cover the vma. Will return failure if
* that criteria isn't met.
*
* Similar to remap_pfn_range() (see mm/memory.c)
*/
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
unsigned long pgoff)
{
return remap_vmalloc_range_partial(vma, vma->vm_start,
addr + (pgoff << PAGE_SHIFT),
vma->vm_end - vma->vm_start);
}
EXPORT_SYMBOL(remap_vmalloc_range);
/*
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
* have one.
*/
void __weak vmalloc_sync_all(void)
{
}
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
{
pte_t ***p = data;
if (p) {
*(*p) = pte;
(*p)++;
}
return 0;
}
/**
* alloc_vm_area - allocate a range of kernel address space
* @size: size of the area
* @ptes: returns the PTEs for the address space
*
* Returns: NULL on failure, vm_struct on success
*
* This function reserves a range of kernel address space, and
* allocates pagetables to map that range. No actual mappings
* are created.
*
* If @ptes is non-NULL, pointers to the PTEs (in init_mm)
* allocated for the VM area are returned.
*/
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
{
struct vm_struct *area;
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
area = get_vm_area_caller(size, VM_IOREMAP,
__builtin_return_address(0));
if (area == NULL)
return NULL;
/*
* This ensures that page tables are constructed for this region
* of kernel virtual address space and mapped into init_mm.
*/
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
size, f, ptes ? &ptes : NULL)) {
free_vm_area(area);
return NULL;
}
return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);
void free_vm_area(struct vm_struct *area)
{
struct vm_struct *ret;
ret = remove_vm_area(area->addr);
BUG_ON(ret != area);
kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2008-04-28 17:12:40 +08:00
#ifdef CONFIG_SMP
static struct vmap_area *node_to_va(struct rb_node *n)
{
return rb_entry_safe(n, struct vmap_area, rb_node);
}
/**
* pvm_find_next_prev - find the next and prev vmap_area surrounding @end
* @end: target address
* @pnext: out arg for the next vmap_area
* @pprev: out arg for the previous vmap_area
*
* Returns: %true if either or both of next and prev are found,
* %false if no vmap_area exists
*
* Find vmap_areas end addresses of which enclose @end. ie. if not
* NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
*/
static bool pvm_find_next_prev(unsigned long end,
struct vmap_area **pnext,
struct vmap_area **pprev)
{
struct rb_node *n = vmap_area_root.rb_node;
struct vmap_area *va = NULL;
while (n) {
va = rb_entry(n, struct vmap_area, rb_node);
if (end < va->va_end)
n = n->rb_left;
else if (end > va->va_end)
n = n->rb_right;
else
break;
}
if (!va)
return false;
if (va->va_end > end) {
*pnext = va;
*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
} else {
*pprev = va;
*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
}
return true;
}
/**
* pvm_determine_end - find the highest aligned address between two vmap_areas
* @pnext: in/out arg for the next vmap_area
* @pprev: in/out arg for the previous vmap_area
* @align: alignment
*
* Returns: determined end address
*
* Find the highest aligned address between *@pnext and *@pprev below
* VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
* down address is between the end addresses of the two vmap_areas.
*
* Please note that the address returned by this function may fall
* inside *@pnext vmap_area. The caller is responsible for checking
* that.
*/
static unsigned long pvm_determine_end(struct vmap_area **pnext,
struct vmap_area **pprev,
unsigned long align)
{
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
unsigned long addr;
if (*pnext)
addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
else
addr = vmalloc_end;
while (*pprev && (*pprev)->va_end > addr) {
*pnext = *pprev;
*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
}
return addr;
}
/**
* pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
* @offsets: array containing offset of each area
* @sizes: array containing size of each area
* @nr_vms: the number of areas to allocate
* @align: alignment, all entries in @offsets and @sizes must be aligned to this
*
* Returns: kmalloc'd vm_struct pointer array pointing to allocated
* vm_structs on success, %NULL on failure
*
* Percpu allocator wants to use congruent vm areas so that it can
* maintain the offsets among percpu areas. This function allocates
* congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
* be scattered pretty far, distance between two areas easily going up
* to gigabytes. To avoid interacting with regular vmallocs, these
* areas are allocated from top.
*
* Despite its complicated look, this allocator is rather simple. It
* does everything top-down and scans areas from the end looking for
* matching slot. While scanning, if any of the areas overlaps with
* existing vmap_area, the base address is pulled down to fit the
* area. Scanning is repeated till all the areas fit and then all
* necessary data structres are inserted and the result is returned.
*/
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
const size_t *sizes, int nr_vms,
size_t align)
{
const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
struct vmap_area **vas, *prev, *next;
struct vm_struct **vms;
int area, area2, last_area, term_area;
unsigned long base, start, end, last_end;
bool purged = false;
/* verify parameters and allocate data structures */
BUG_ON(offset_in_page(align) || !is_power_of_2(align));
for (last_area = 0, area = 0; area < nr_vms; area++) {
start = offsets[area];
end = start + sizes[area];
/* is everything aligned properly? */
BUG_ON(!IS_ALIGNED(offsets[area], align));
BUG_ON(!IS_ALIGNED(sizes[area], align));
/* detect the area with the highest address */
if (start > offsets[last_area])
last_area = area;
for (area2 = 0; area2 < nr_vms; area2++) {
unsigned long start2 = offsets[area2];
unsigned long end2 = start2 + sizes[area2];
if (area2 == area)
continue;
BUG_ON(start2 >= start && start2 < end);
BUG_ON(end2 <= end && end2 > start);
}
}
last_end = offsets[last_area] + sizes[last_area];
if (vmalloc_end - vmalloc_start < last_end) {
WARN_ON(true);
return NULL;
}
vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
if (!vas || !vms)
goto err_free2;
for (area = 0; area < nr_vms; area++) {
vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
if (!vas[area] || !vms[area])
goto err_free;
}
retry:
spin_lock(&vmap_area_lock);
/* start scanning - we scan from the top, begin with the last area */
area = term_area = last_area;
start = offsets[area];
end = start + sizes[area];
if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
base = vmalloc_end - last_end;
goto found;
}
base = pvm_determine_end(&next, &prev, align) - end;
while (true) {
BUG_ON(next && next->va_end <= base + end);
BUG_ON(prev && prev->va_end > base + end);
/*
* base might have underflowed, add last_end before
* comparing.
*/
if (base + last_end < vmalloc_start + last_end) {
spin_unlock(&vmap_area_lock);
if (!purged) {
purge_vmap_area_lazy();
purged = true;
goto retry;
}
goto err_free;
}
/*
* If next overlaps, move base downwards so that it's
* right below next and then recheck.
*/
if (next && next->va_start < base + end) {
base = pvm_determine_end(&next, &prev, align) - end;
term_area = area;
continue;
}
/*
* If prev overlaps, shift down next and prev and move
* base so that it's right below new next and then
* recheck.
*/
if (prev && prev->va_end > base + start) {
next = prev;
prev = node_to_va(rb_prev(&next->rb_node));
base = pvm_determine_end(&next, &prev, align) - end;
term_area = area;
continue;
}
/*
* This area fits, move on to the previous one. If
* the previous one is the terminal one, we're done.
*/
area = (area + nr_vms - 1) % nr_vms;
if (area == term_area)
break;
start = offsets[area];
end = start + sizes[area];
pvm_find_next_prev(base + end, &next, &prev);
}
found:
/* we've found a fitting base, insert all va's */
for (area = 0; area < nr_vms; area++) {
struct vmap_area *va = vas[area];
va->va_start = base + offsets[area];
va->va_end = va->va_start + sizes[area];
__insert_vmap_area(va);
}
vmap_area_pcpu_hole = base + offsets[last_area];
spin_unlock(&vmap_area_lock);
/* insert all vm's */
for (area = 0; area < nr_vms; area++)
setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
pcpu_get_vm_areas);
kfree(vas);
return vms;
err_free:
for (area = 0; area < nr_vms; area++) {
kfree(vas[area]);
kfree(vms[area]);
}
err_free2:
kfree(vas);
kfree(vms);
return NULL;
}
/**
* pcpu_free_vm_areas - free vmalloc areas for percpu allocator
* @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
* @nr_vms: the number of allocated areas
*
* Free vm_structs and the array allocated by pcpu_get_vm_areas().
*/
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
int i;
for (i = 0; i < nr_vms; i++)
free_vm_area(vms[i]);
kfree(vms);
}
#endif /* CONFIG_SMP */
2008-04-28 17:12:40 +08:00
#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2013-04-30 06:07:35 +08:00
__acquires(&vmap_area_lock)
2008-04-28 17:12:40 +08:00
{
2013-04-30 06:07:35 +08:00
spin_lock(&vmap_area_lock);
return seq_list_start(&vmap_area_list, *pos);
2008-04-28 17:12:40 +08:00
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &vmap_area_list, pos);
2008-04-28 17:12:40 +08:00
}
static void s_stop(struct seq_file *m, void *p)
2013-04-30 06:07:35 +08:00
__releases(&vmap_area_lock)
2008-04-28 17:12:40 +08:00
{
2013-04-30 06:07:35 +08:00
spin_unlock(&vmap_area_lock);
2008-04-28 17:12:40 +08:00
}
vmallocinfo: add NUMA information Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:38 +08:00
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
if (IS_ENABLED(CONFIG_NUMA)) {
vmallocinfo: add NUMA information Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:38 +08:00
unsigned int nr, *counters = m->private;
if (!counters)
return;
if (v->flags & VM_UNINITIALIZED)
return;
/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
smp_rmb();
vmallocinfo: add NUMA information Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:38 +08:00
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
for (nr = 0; nr < v->nr_pages; nr++)
counters[page_to_nid(v->pages[nr])]++;
for_each_node_state(nr, N_HIGH_MEMORY)
if (counters[nr])
seq_printf(m, " N%u=%u", nr, counters[nr]);
}
}
2008-04-28 17:12:40 +08:00
static int s_show(struct seq_file *m, void *p)
{
struct vmap_area *va;
2013-04-30 06:07:35 +08:00
struct vm_struct *v;
va = list_entry(p, struct vmap_area, list);
mm/vmalloc: fix show vmap_area information race with vmap_area tear down There is a race window between vmap_area tear down and show vmap_area information. A B remove_vm_area spin_lock(&vmap_area_lock); va->vm = NULL; va->flags &= ~VM_VM_AREA; spin_unlock(&vmap_area_lock); spin_lock(&vmap_area_lock); if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEZING)) return 0; if (!(va->flags & VM_VM_AREA)) { seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); return 0; } free_unmap_vmap_area(va); flush_cache_vunmap free_unmap_vmap_area_noflush unmap_vmap_area free_vmap_area_noflush va->flags |= VM_LAZY_FREE The assumption !VM_VM_AREA represents vm_map_ram allocation is introduced by d4033afdf828 ("mm, vmalloc: iterate vmap_area_list, instead of vmlist, in vmallocinfo()"). However, !VM_VM_AREA also represents vmap_area is being tear down in race window mentioned above. This patch fix it by don't dump any information for !VM_VM_AREA case and also remove (VM_LAZY_FREE | VM_LAZY_FREEING) check since they are not possible for !VM_VM_AREA case. Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:07:31 +08:00
/*
* s_show can encounter race with remove_vm_area, !VM_VM_AREA on
* behalf of vmap area is being tear down or vm_map_ram allocation.
*/
vmalloc: show lazy-purged vma info in vmallocinfo When ioremap a 67112960 bytes vm_area with the vmallocinfo: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap we get the result: 0xf1000000-0xf5001000 67112960 devm_ioremap+0x38/0x7c phys=40000000 ioremap For the align for ioremap must be less than '1 << IOREMAP_MAX_ORDER': if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); So it makes idiot like me a litte puzzled why this was a jump the vm_area from 0xec800000-0xecbe1000 to 0xf1000000-0xf5001000, and leaving 0xed000000-0xf1000000 as a big hole. This patch is to show all of vm_area, including vmas which are freeing but still in the vmap_area_list, to make it more clear about why we will get 0xf1000000-0xf5001000 in the above case. And we will get a vmallocinfo like: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap [..] 0xece7c000-0xece7e000 8192 unpurged vm_area 0xece7e000-0xece83000 20480 vm_map_ram 0xf0099000-0xf00aa000 69632 vm_map_ram after this patch. Link: http://lkml.kernel.org/r/1496649682-20710-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zijun_hu <zijun_hu@htc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:09 +08:00
if (!(va->flags & VM_VM_AREA)) {
seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
(void *)va->va_start, (void *)va->va_end,
va->va_end - va->va_start,
va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2013-04-30 06:07:35 +08:00
return 0;
vmalloc: show lazy-purged vma info in vmallocinfo When ioremap a 67112960 bytes vm_area with the vmallocinfo: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap we get the result: 0xf1000000-0xf5001000 67112960 devm_ioremap+0x38/0x7c phys=40000000 ioremap For the align for ioremap must be less than '1 << IOREMAP_MAX_ORDER': if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); So it makes idiot like me a litte puzzled why this was a jump the vm_area from 0xec800000-0xecbe1000 to 0xf1000000-0xf5001000, and leaving 0xed000000-0xf1000000 as a big hole. This patch is to show all of vm_area, including vmas which are freeing but still in the vmap_area_list, to make it more clear about why we will get 0xf1000000-0xf5001000 in the above case. And we will get a vmallocinfo like: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap [..] 0xece7c000-0xece7e000 8192 unpurged vm_area 0xece7e000-0xece83000 20480 vm_map_ram 0xf0099000-0xf00aa000 69632 vm_map_ram after this patch. Link: http://lkml.kernel.org/r/1496649682-20710-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zijun_hu <zijun_hu@htc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:48:09 +08:00
}
2013-04-30 06:07:35 +08:00
v = va->vm;
2008-04-28 17:12:40 +08:00
seq_printf(m, "0x%pK-0x%pK %7ld",
2008-04-28 17:12:40 +08:00
v->addr, v->addr + v->size, v->size);
if (v->caller)
seq_printf(m, " %pS", v->caller);
vmallocinfo: add caller information Add caller information so that /proc/vmallocinfo shows where the allocation request for a slice of vmalloc memory originated. Results in output like this: 0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20000801000-0xffffc20000806000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages 0xffffc20000c07000-0xffffc20000c0a000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c0a000-0xffffc20000c0c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c0c000-0xffffc20000c0f000 12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap 0xffffc20000c10000-0xffffc20000c15000 20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap 0xffffc20000c16000-0xffffc20000c18000 8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap 0xffffc20000c18000-0xffffc20000c1a000 8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap 0xffffc20000c1a000-0xffffc20000c1c000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1c000-0xffffc20000c1e000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c1e000-0xffffc20000c20000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c20000-0xffffc20000c22000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c22000-0xffffc20000c24000 8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap 0xffffc20000c24000-0xffffc20000c26000 8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap 0xffffc20000c26000-0xffffc20000c28000 8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap 0xffffc20000c28000-0xffffc20000c2d000 20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc 0xffffc20000c2d000-0xffffc20000c31000 16384 tcp_init+0xd5/0x31c pages=3 vmalloc 0xffffc20000c31000-0xffffc20000c34000 12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc 0xffffc20000c34000-0xffffc20000c36000 8192 init_vdso_vars+0xde/0x1f1 0xffffc20000c36000-0xffffc20000c38000 8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap 0xffffc20000c38000-0xffffc20000c3a000 8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap 0xffffc20000c3a000-0xffffc20000c3e000 16384 sys_swapon+0x509/0xa15 pages=3 vmalloc 0xffffc20000c40000-0xffffc20000c61000 135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap 0xffffc20000c61000-0xffffc20000c6a000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c6a000-0xffffc20000c73000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c73000-0xffffc20000c7c000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20000c7c000-0xffffc20000c7f000 12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc 0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap 0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc 0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages 0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages 0xffffc20002204000-0xffffc2000220d000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000220d000-0xffffc20002216000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002216000-0xffffc2000221f000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc2000221f000-0xffffc20002228000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002228000-0xffffc20002231000 36864 _xfs_buf_map_pages+0x8e/0xc0 vmap 0xffffc20002231000-0xffffc20002234000 12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc 0xffffc20002240000-0xffffc20002261000 135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap 0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages 0xffffffffa0000000-0xffffffffa0022000 139264 module_alloc+0x4f/0x55 pages=33 vmalloc 0xffffffffa0022000-0xffffffffa0029000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc 0xffffffffa002b000-0xffffffffa0034000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa0034000-0xffffffffa003d000 36864 module_alloc+0x4f/0x55 pages=8 vmalloc 0xffffffffa003d000-0xffffffffa0049000 49152 module_alloc+0x4f/0x55 pages=11 vmalloc 0xffffffffa0049000-0xffffffffa0050000 28672 module_alloc+0x4f/0x55 pages=6 vmalloc [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:42 +08:00
2008-04-28 17:12:40 +08:00
if (v->nr_pages)
seq_printf(m, " pages=%d", v->nr_pages);
if (v->phys_addr)
seq_printf(m, " phys=%pa", &v->phys_addr);
2008-04-28 17:12:40 +08:00
if (v->flags & VM_IOREMAP)
seq_puts(m, " ioremap");
2008-04-28 17:12:40 +08:00
if (v->flags & VM_ALLOC)
seq_puts(m, " vmalloc");
2008-04-28 17:12:40 +08:00
if (v->flags & VM_MAP)
seq_puts(m, " vmap");
2008-04-28 17:12:40 +08:00
if (v->flags & VM_USERMAP)
seq_puts(m, " user");
2008-04-28 17:12:40 +08:00
if (is_vmalloc_addr(v->pages))
seq_puts(m, " vpages");
2008-04-28 17:12:40 +08:00
vmallocinfo: add NUMA information Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 12:27:38 +08:00
show_numa_info(m, v);
2008-04-28 17:12:40 +08:00
seq_putc(m, '\n');
return 0;
}
static const struct seq_operations vmalloc_op = {
2008-04-28 17:12:40 +08:00
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
static int vmalloc_open(struct inode *inode, struct file *file)
{
if (IS_ENABLED(CONFIG_NUMA))
return seq_open_private(file, &vmalloc_op,
nr_node_ids * sizeof(unsigned int));
else
return seq_open(file, &vmalloc_op);
}
static const struct file_operations proc_vmalloc_operations = {
.open = vmalloc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static int __init proc_vmalloc_init(void)
{
proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
return 0;
}
module_init(proc_vmalloc_init);
2008-04-28 17:12:40 +08:00
#endif