OpenCloudOS-Kernel/drivers/gpu/drm/i915/gvt/execlist.c

922 lines
26 KiB
C
Raw Normal View History

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Zhiyuan Lv <zhiyuan.lv@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
* Ping Gao <ping.a.gao@intel.com>
* Tina Zhang <tina.zhang@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
#define _EL_OFFSET_STATUS 0x234
#define _EL_OFFSET_STATUS_BUF 0x370
#define _EL_OFFSET_STATUS_PTR 0x3A0
#define execlist_ring_mmio(gvt, ring_id, offset) \
(gvt->dev_priv->engine[ring_id]->mmio_base + (offset))
#define valid_context(ctx) ((ctx)->valid)
#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
((a)->lrca == (b)->lrca))
static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask);
static int context_switch_events[] = {
[RCS] = RCS_AS_CONTEXT_SWITCH,
[BCS] = BCS_AS_CONTEXT_SWITCH,
[VCS] = VCS_AS_CONTEXT_SWITCH,
[VCS2] = VCS2_AS_CONTEXT_SWITCH,
[VECS] = VECS_AS_CONTEXT_SWITCH,
};
static int ring_id_to_context_switch_event(int ring_id)
{
if (WARN_ON(ring_id < RCS ||
ring_id >= ARRAY_SIZE(context_switch_events)))
return -EINVAL;
return context_switch_events[ring_id];
}
static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist)
{
gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n",
execlist->running_slot ?
execlist->running_slot->index : -1,
execlist->running_context ?
execlist->running_context->context_id : 0,
execlist->pending_slot ?
execlist->pending_slot->index : -1);
execlist->running_slot = execlist->pending_slot;
execlist->pending_slot = NULL;
execlist->running_context = execlist->running_context ?
&execlist->running_slot->ctx[0] : NULL;
gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n",
execlist->running_slot ?
execlist->running_slot->index : -1,
execlist->running_context ?
execlist->running_context->context_id : 0,
execlist->pending_slot ?
execlist->pending_slot->index : -1);
}
static void emulate_execlist_status(struct intel_vgpu_execlist *execlist)
{
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
struct execlist_ctx_descriptor_format *desc = execlist->running_context;
struct intel_vgpu *vgpu = execlist->vgpu;
struct execlist_status_format status;
int ring_id = execlist->ring_id;
u32 status_reg = execlist_ring_mmio(vgpu->gvt,
ring_id, _EL_OFFSET_STATUS);
status.ldw = vgpu_vreg(vgpu, status_reg);
status.udw = vgpu_vreg(vgpu, status_reg + 4);
if (running) {
status.current_execlist_pointer = !!running->index;
status.execlist_write_pointer = !!!running->index;
status.execlist_0_active = status.execlist_0_valid =
!!!(running->index);
status.execlist_1_active = status.execlist_1_valid =
!!(running->index);
} else {
status.context_id = 0;
status.execlist_0_active = status.execlist_0_valid = 0;
status.execlist_1_active = status.execlist_1_valid = 0;
}
status.context_id = desc ? desc->context_id : 0;
status.execlist_queue_full = !!(pending);
vgpu_vreg(vgpu, status_reg) = status.ldw;
vgpu_vreg(vgpu, status_reg + 4) = status.udw;
gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n",
vgpu->id, status_reg, status.ldw, status.udw);
}
static void emulate_csb_update(struct intel_vgpu_execlist *execlist,
struct execlist_context_status_format *status,
bool trigger_interrupt_later)
{
struct intel_vgpu *vgpu = execlist->vgpu;
int ring_id = execlist->ring_id;
struct execlist_context_status_pointer_format ctx_status_ptr;
u32 write_pointer;
u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset;
ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
_EL_OFFSET_STATUS_PTR);
ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
_EL_OFFSET_STATUS_BUF);
ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
write_pointer = ctx_status_ptr.write_ptr;
if (write_pointer == 0x7)
write_pointer = 0;
else {
++write_pointer;
write_pointer %= 0x6;
}
offset = ctx_status_buf_reg + write_pointer * 8;
vgpu_vreg(vgpu, offset) = status->ldw;
vgpu_vreg(vgpu, offset + 4) = status->udw;
ctx_status_ptr.write_ptr = write_pointer;
vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n",
vgpu->id, write_pointer, offset, status->ldw, status->udw);
if (trigger_interrupt_later)
return;
intel_vgpu_trigger_virtual_event(vgpu,
ring_id_to_context_switch_event(execlist->ring_id));
}
static int emulate_execlist_ctx_schedule_out(
struct intel_vgpu_execlist *execlist,
struct execlist_ctx_descriptor_format *ctx)
{
struct intel_vgpu *vgpu = execlist->vgpu;
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0];
struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1];
struct execlist_context_status_format status;
memset(&status, 0, sizeof(status));
gvt_dbg_el("schedule out context id %x\n", ctx->context_id);
if (WARN_ON(!same_context(ctx, execlist->running_context))) {
gvt_vgpu_err("schedule out context is not running context,"
"ctx id %x running ctx id %x\n",
ctx->context_id,
execlist->running_context->context_id);
return -EINVAL;
}
/* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */
if (valid_context(ctx1) && same_context(ctx0, ctx)) {
gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n");
execlist->running_context = ctx1;
emulate_execlist_status(execlist);
status.context_complete = status.element_switch = 1;
status.context_id = ctx->context_id;
emulate_csb_update(execlist, &status, false);
/*
* ctx1 is not valid, ctx == ctx0
* ctx1 is valid, ctx1 == ctx
* --> last element is finished
* emulate:
* active-to-idle if there is *no* pending execlist
* context-complete if there *is* pending execlist
*/
} else if ((!valid_context(ctx1) && same_context(ctx0, ctx))
|| (valid_context(ctx1) && same_context(ctx1, ctx))) {
gvt_dbg_el("need to switch virtual execlist slot\n");
switch_virtual_execlist_slot(execlist);
emulate_execlist_status(execlist);
status.context_complete = status.active_to_idle = 1;
status.context_id = ctx->context_id;
if (!pending) {
emulate_csb_update(execlist, &status, false);
} else {
emulate_csb_update(execlist, &status, true);
memset(&status, 0, sizeof(status));
status.idle_to_active = 1;
status.context_id = 0;
emulate_csb_update(execlist, &status, false);
}
} else {
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static struct intel_vgpu_execlist_slot *get_next_execlist_slot(
struct intel_vgpu_execlist *execlist)
{
struct intel_vgpu *vgpu = execlist->vgpu;
int ring_id = execlist->ring_id;
u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
_EL_OFFSET_STATUS);
struct execlist_status_format status;
status.ldw = vgpu_vreg(vgpu, status_reg);
status.udw = vgpu_vreg(vgpu, status_reg + 4);
if (status.execlist_queue_full) {
gvt_vgpu_err("virtual execlist slots are full\n");
return NULL;
}
return &execlist->slot[status.execlist_write_pointer];
}
static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist,
struct execlist_ctx_descriptor_format ctx[2])
{
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
struct intel_vgpu_execlist_slot *slot =
get_next_execlist_slot(execlist);
struct execlist_ctx_descriptor_format *ctx0, *ctx1;
struct execlist_context_status_format status;
struct intel_vgpu *vgpu = execlist->vgpu;
gvt_dbg_el("emulate schedule-in\n");
if (!slot) {
gvt_vgpu_err("no available execlist slot\n");
return -EINVAL;
}
memset(&status, 0, sizeof(status));
memset(slot->ctx, 0, sizeof(slot->ctx));
slot->ctx[0] = ctx[0];
slot->ctx[1] = ctx[1];
gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n",
slot->index, ctx[0].context_id,
ctx[1].context_id);
/*
* no running execlist, make this write bundle as running execlist
* -> idle-to-active
*/
if (!running) {
gvt_dbg_el("no current running execlist\n");
execlist->running_slot = slot;
execlist->pending_slot = NULL;
execlist->running_context = &slot->ctx[0];
gvt_dbg_el("running slot index %d running context %x\n",
execlist->running_slot->index,
execlist->running_context->context_id);
emulate_execlist_status(execlist);
status.idle_to_active = 1;
status.context_id = 0;
emulate_csb_update(execlist, &status, false);
return 0;
}
ctx0 = &running->ctx[0];
ctx1 = &running->ctx[1];
gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n",
running->index, ctx0->context_id, ctx1->context_id);
/*
* already has an running execlist
* a. running ctx1 is valid,
* ctx0 is finished, and running ctx1 == new execlist ctx[0]
* b. running ctx1 is not valid,
* ctx0 == new execlist ctx[0]
* ----> lite-restore + preempted
*/
if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) &&
/* condition a */
(!same_context(ctx0, execlist->running_context))) ||
(!valid_context(ctx1) &&
same_context(ctx0, &slot->ctx[0]))) { /* condition b */
gvt_dbg_el("need to switch virtual execlist slot\n");
execlist->pending_slot = slot;
switch_virtual_execlist_slot(execlist);
emulate_execlist_status(execlist);
status.lite_restore = status.preempted = 1;
status.context_id = ctx[0].context_id;
emulate_csb_update(execlist, &status, false);
} else {
gvt_dbg_el("emulate as pending slot\n");
/*
* otherwise
* --> emulate pending execlist exist + but no preemption case
*/
execlist->pending_slot = slot;
emulate_execlist_status(execlist);
}
return 0;
}
static void free_workload(struct intel_vgpu_workload *workload)
{
intel_vgpu_unpin_mm(workload->shadow_mm);
intel_gvt_mm_unreference(workload->shadow_mm);
kmem_cache_free(workload->vgpu->workloads, workload);
}
#define get_desc_from_elsp_dwords(ed, i) \
((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2]))
static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
const int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
struct intel_shadow_bb_entry *entry_obj;
/* pin the gem object to ggtt */
list_for_each_entry(entry_obj, &workload->shadow_bb, list) {
struct i915_vma *vma;
vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0);
if (IS_ERR(vma)) {
return PTR_ERR(vma);
}
/* FIXME: we are not tracking our pinned VMA leaving it
* up to the core to fix up the stray pin_count upon
* free.
*/
/* update the relocate gma with shadow batch buffer*/
entry_obj->bb_start_cmd_va[1] = i915_ggtt_offset(vma);
if (gmadr_bytes == 8)
entry_obj->bb_start_cmd_va[2] = 0;
}
return 0;
}
static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct intel_vgpu_workload *workload = container_of(wa_ctx,
struct intel_vgpu_workload,
wa_ctx);
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
struct drm_i915_gem_object *ctx_obj =
shadow_ctx->engine[ring_id].state->obj;
struct execlist_ring_context *shadow_ring_context;
struct page *page;
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
shadow_ring_context = kmap_atomic(page);
shadow_ring_context->bb_per_ctx_ptr.val =
(shadow_ring_context->bb_per_ctx_ptr.val &
(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
shadow_ring_context->rcs_indirect_ctx.val =
(shadow_ring_context->rcs_indirect_ctx.val &
(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
kunmap_atomic(shadow_ring_context);
return 0;
}
static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct i915_vma *vma;
unsigned char *per_ctx_va =
(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
wa_ctx->indirect_ctx.size;
if (wa_ctx->indirect_ctx.size == 0)
return 0;
vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
0, CACHELINE_BYTES, 0);
if (IS_ERR(vma)) {
return PTR_ERR(vma);
}
/* FIXME: we are not tracking our pinned VMA leaving it
* up to the core to fix up the stray pin_count upon
* free.
*/
wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
memset(per_ctx_va, 0, CACHELINE_BYTES);
update_wa_ctx_2_shadow_ctx(wa_ctx);
return 0;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
/* release all the shadow batch buffer */
if (!list_empty(&workload->shadow_bb)) {
struct intel_shadow_bb_entry *entry_obj =
list_first_entry(&workload->shadow_bb,
struct intel_shadow_bb_entry,
list);
struct intel_shadow_bb_entry *temp;
list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
list) {
i915_gem_object_unpin_map(entry_obj->obj);
i915_gem_object_put(entry_obj->obj);
list_del(&entry_obj->list);
kfree(entry_obj);
}
}
}
static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct execlist_ctx_descriptor_format ctx[2];
int ring_id = workload->ring_id;
int ret;
ret = intel_vgpu_pin_mm(workload->shadow_mm);
if (ret) {
gvt_vgpu_err("fail to vgpu pin mm\n");
goto out;
}
ret = intel_vgpu_sync_oos_pages(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to vgpu sync oos pages\n");
goto err_unpin_mm;
}
ret = intel_vgpu_flush_post_shadow(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to flush post shadow\n");
goto err_unpin_mm;
}
ret = prepare_shadow_batch_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
goto err_unpin_mm;
}
ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
goto err_shadow_batch;
}
if (!workload->emulate_schedule_in)
return 0;
ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
ret = emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
if (!ret)
goto out;
else
gvt_vgpu_err("fail to emulate execlist schedule in\n");
release_shadow_wa_ctx(&workload->wa_ctx);
err_shadow_batch:
release_shadow_batch_buffer(workload);
err_unpin_mm:
intel_vgpu_unpin_mm(workload->shadow_mm);
out:
return ret;
}
static int complete_execlist_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
int ring_id = workload->ring_id;
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
struct intel_vgpu_workload *next_workload;
struct list_head *next = workload_q_head(vgpu, ring_id)->next;
bool lite_restore = false;
int ret;
gvt_dbg_el("complete workload %p status %d\n", workload,
workload->status);
if (!workload->status) {
release_shadow_batch_buffer(workload);
release_shadow_wa_ctx(&workload->wa_ctx);
}
if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
/* if workload->status is not successful means HW GPU
* has occurred GPU hang or something wrong with i915/GVT,
* and GVT won't inject context switch interrupt to guest.
* So this error is a vGPU hang actually to the guest.
* According to this we should emunlate a vGPU hang. If
* there are pending workloads which are already submitted
* from guest, we should clean them up like HW GPU does.
*
* if it is in middle of engine resetting, the pending
* workloads won't be submitted to HW GPU and will be
* cleaned up during the resetting process later, so doing
* the workload clean up here doesn't have any impact.
**/
clean_workloads(vgpu, ENGINE_MASK(ring_id));
goto out;
}
if (!list_empty(workload_q_head(vgpu, ring_id))) {
struct execlist_ctx_descriptor_format *this_desc, *next_desc;
next_workload = container_of(next,
struct intel_vgpu_workload, list);
this_desc = &workload->ctx_desc;
next_desc = &next_workload->ctx_desc;
lite_restore = same_context(this_desc, next_desc);
}
if (lite_restore) {
gvt_dbg_el("next context == current - no schedule-out\n");
free_workload(workload);
return 0;
}
ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc);
if (ret)
goto err;
out:
free_workload(workload);
return 0;
err:
free_workload(workload);
return ret;
}
#define RING_CTX_OFF(x) \
offsetof(struct execlist_ring_context, x)
static void read_guest_pdps(struct intel_vgpu *vgpu,
u64 ring_context_gpa, u32 pdp[8])
{
u64 gpa;
int i;
gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
for (i = 0; i < 8; i++)
intel_gvt_hypervisor_read_gpa(vgpu,
gpa + i * 8, &pdp[7 - i], 4);
}
static int prepare_mm(struct intel_vgpu_workload *workload)
{
struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
struct intel_vgpu_mm *mm;
struct intel_vgpu *vgpu = workload->vgpu;
int page_table_level;
u32 pdp[8];
if (desc->addressing_mode == 1) { /* legacy 32-bit */
page_table_level = 3;
} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
page_table_level = 4;
} else {
gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
return -EINVAL;
}
read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
if (mm) {
intel_gvt_mm_reference(mm);
} else {
mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
pdp, page_table_level, 0);
if (IS_ERR(mm)) {
gvt_vgpu_err("fail to create mm object.\n");
return PTR_ERR(mm);
}
}
workload->shadow_mm = mm;
return 0;
}
#define get_last_workload(q) \
(list_empty(q) ? NULL : container_of(q->prev, \
struct intel_vgpu_workload, list))
static int submit_context(struct intel_vgpu *vgpu, int ring_id,
struct execlist_ctx_descriptor_format *desc,
bool emulate_schedule_in)
{
struct list_head *q = workload_q_head(vgpu, ring_id);
struct intel_vgpu_workload *last_workload = get_last_workload(q);
struct intel_vgpu_workload *workload = NULL;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
u64 ring_context_gpa;
u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
int ret;
ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((desc->lrca + 1) << GTT_PAGE_SHIFT));
if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
return -EINVAL;
}
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_header.val), &head, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_tail.val), &tail, 4);
head &= RB_HEAD_OFF_MASK;
tail &= RB_TAIL_OFF_MASK;
if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
gvt_dbg_el("ctx head %x real head %lx\n", head,
last_workload->rb_tail);
/*
* cannot use guest context head pointer here,
* as it might not be updated at this time
*/
head = last_workload->rb_tail;
}
gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL);
if (!workload)
return -ENOMEM;
/* record some ring buffer register values for scan and shadow */
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_start.val), &start, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
INIT_LIST_HEAD(&workload->list);
INIT_LIST_HEAD(&workload->shadow_bb);
init_waitqueue_head(&workload->shadow_ctx_status_wq);
atomic_set(&workload->shadow_ctx_active, 0);
workload->vgpu = vgpu;
workload->ring_id = ring_id;
workload->ctx_desc = *desc;
workload->ring_context_gpa = ring_context_gpa;
workload->rb_head = head;
workload->rb_tail = tail;
workload->rb_start = start;
workload->rb_ctl = ctl;
workload->prepare = prepare_execlist_workload;
workload->complete = complete_execlist_workload;
workload->status = -EINPROGRESS;
workload->emulate_schedule_in = emulate_schedule_in;
workload->shadowed = false;
if (ring_id == RCS) {
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
workload->wa_ctx.indirect_ctx.guest_gma =
indirect_ctx & INDIRECT_CTX_ADDR_MASK;
workload->wa_ctx.indirect_ctx.size =
(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
CACHELINE_BYTES;
workload->wa_ctx.per_ctx.guest_gma =
per_ctx & PER_CTX_ADDR_MASK;
workload->wa_ctx.per_ctx.valid = per_ctx & 1;
}
if (emulate_schedule_in)
workload->elsp_dwords = vgpu->execlist[ring_id].elsp_dwords;
gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
workload, ring_id, head, tail, start, ctl);
gvt_dbg_el("workload %p emulate schedule_in %d\n", workload,
emulate_schedule_in);
ret = prepare_mm(workload);
if (ret) {
kmem_cache_free(vgpu->workloads, workload);
return ret;
}
/* Only scan and shadow the first workload in the queue
* as there is only one pre-allocated buf-obj for shadow.
*/
if (list_empty(workload_q_head(vgpu, ring_id))) {
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
intel_gvt_scan_and_shadow_workload(workload);
mutex_unlock(&dev_priv->drm.struct_mutex);
intel_runtime_pm_put(dev_priv);
}
queue_workload(workload);
return 0;
}
int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id)
{
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
struct execlist_ctx_descriptor_format *desc[2];
int i, ret;
desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0);
desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1);
if (!desc[0]->valid) {
gvt_vgpu_err("invalid elsp submission, desc0 is invalid\n");
goto inv_desc;
}
for (i = 0; i < ARRAY_SIZE(desc); i++) {
if (!desc[i]->valid)
continue;
if (!desc[i]->privilege_access) {
gvt_vgpu_err("unexpected GGTT elsp submission\n");
goto inv_desc;
}
}
/* submit workload */
for (i = 0; i < ARRAY_SIZE(desc); i++) {
if (!desc[i]->valid)
continue;
ret = submit_context(vgpu, ring_id, desc[i], i == 0);
if (ret) {
gvt_vgpu_err("failed to submit desc %d\n", i);
return ret;
}
}
return 0;
inv_desc:
gvt_vgpu_err("descriptors content: desc0 %08x %08x desc1 %08x %08x\n",
desc[0]->udw, desc[0]->ldw, desc[1]->udw, desc[1]->ldw);
return -EINVAL;
}
static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id)
{
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
struct execlist_context_status_pointer_format ctx_status_ptr;
u32 ctx_status_ptr_reg;
memset(execlist, 0, sizeof(*execlist));
execlist->vgpu = vgpu;
execlist->ring_id = ring_id;
execlist->slot[0].index = 0;
execlist->slot[1].index = 1;
ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
_EL_OFFSET_STATUS_PTR);
ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
ctx_status_ptr.read_ptr = 0;
ctx_status_ptr.write_ptr = 0x7;
vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
}
static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct intel_engine_cs *engine;
struct intel_vgpu_workload *pos, *n;
unsigned int tmp;
/* free the unsubmited workloads in the queues. */
for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
list_for_each_entry_safe(pos, n,
&vgpu->workload_q_head[engine->id], list) {
list_del_init(&pos->list);
free_workload(pos);
}
clear_bit(engine->id, vgpu->shadow_ctx_desc_updated);
}
}
void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu)
{
enum intel_engine_id i;
struct intel_engine_cs *engine;
clean_workloads(vgpu, ALL_ENGINES);
kmem_cache_destroy(vgpu->workloads);
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
kfree(vgpu->reserve_ring_buffer_va[i]);
vgpu->reserve_ring_buffer_va[i] = NULL;
vgpu->reserve_ring_buffer_size[i] = 0;
}
}
#define RESERVE_RING_BUFFER_SIZE ((1 * PAGE_SIZE)/8)
int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
{
enum intel_engine_id i;
struct intel_engine_cs *engine;
/* each ring has a virtual execlist engine */
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
init_vgpu_execlist(vgpu, i);
INIT_LIST_HEAD(&vgpu->workload_q_head[i]);
}
vgpu->workloads = kmem_cache_create("gvt-g_vgpu_workload",
sizeof(struct intel_vgpu_workload), 0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!vgpu->workloads)
return -ENOMEM;
/* each ring has a shadow ring buffer until vgpu destroyed */
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
vgpu->reserve_ring_buffer_va[i] =
kmalloc(RESERVE_RING_BUFFER_SIZE, GFP_KERNEL);
if (!vgpu->reserve_ring_buffer_va[i]) {
gvt_vgpu_err("fail to alloc reserve ring buffer\n");
goto out;
}
vgpu->reserve_ring_buffer_size[i] = RESERVE_RING_BUFFER_SIZE;
}
return 0;
out:
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
if (vgpu->reserve_ring_buffer_size[i]) {
kfree(vgpu->reserve_ring_buffer_va[i]);
vgpu->reserve_ring_buffer_va[i] = NULL;
vgpu->reserve_ring_buffer_size[i] = 0;
}
}
return -ENOMEM;
}
void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu,
unsigned long engine_mask)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct intel_engine_cs *engine;
unsigned int tmp;
clean_workloads(vgpu, engine_mask);
for_each_engine_masked(engine, dev_priv, engine_mask, tmp)
init_vgpu_execlist(vgpu, engine->id);
}