OpenCloudOS-Kernel/drivers/of/address.c

1008 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) "OF: " fmt
#include <linux/device.h>
#include <linux/fwnode.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/logic_pio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string.h>
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-26 07:34:37 +08:00
#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
static struct of_bus *of_match_bus(struct device_node *np);
static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r);
/* Debug utility */
#ifdef DEBUG
static void of_dump_addr(const char *s, const __be32 *addr, int na)
{
pr_debug("%s", s);
while (na--)
pr_cont(" %08x", be32_to_cpu(*(addr++)));
pr_cont("\n");
}
#else
static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
#endif
/* Callbacks for bus specific translators */
struct of_bus {
const char *name;
const char *addresses;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
u64 (*map)(__be32 *addr, const __be32 *range,
int na, int ns, int pna);
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
int (*translate)(__be32 *addr, u64 offset, int na);
unsigned int (*get_flags)(const __be32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dev);
if (sizec)
*sizec = of_n_size_cells(dev);
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
int na, int ns, int pna)
{
u64 cp, s, da;
cp = of_read_number(range, na);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr, na);
pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
{
u64 a = of_read_number(addr, na);
memset(addr, 0, na * 4);
a += offset;
if (na > 1)
addr[na - 2] = cpu_to_be32(a >> 32);
addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
return 0;
}
static unsigned int of_bus_default_get_flags(const __be32 *addr)
{
return IORESOURCE_MEM;
}
#ifdef CONFIG_PCI
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
/*
* "pciex" is PCI Express
* "vci" is for the /chaos bridge on 1st-gen PCI powermacs
* "ht" is hypertransport
*/
return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static unsigned int of_bus_pci_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
break;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
break;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
int pna)
{
u64 cp, s, da;
unsigned int af, rf;
af = of_bus_pci_get_flags(addr);
rf = of_bus_pci_get_flags(range);
/* Check address type match */
if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
return OF_BAD_ADDR;
/* Read address values, skipping high cell */
cp = of_read_number(range + 1, na - 1);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr + 1, na - 1);
pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
{
return of_bus_default_translate(addr + 1, offset, na - 1);
}
const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
unsigned int *flags)
{
const __be32 *prop;
unsigned int psize;
struct device_node *parent;
struct of_bus *bus;
int onesize, i, na, ns;
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
return NULL;
bus = of_match_bus(parent);
if (strcmp(bus->name, "pci")) {
of_node_put(parent);
return NULL;
}
bus->count_cells(dev, &na, &ns);
of_node_put(parent);
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-26 07:34:37 +08:00
if (!OF_CHECK_ADDR_COUNT(na))
return NULL;
/* Get "reg" or "assigned-addresses" property */
prop = of_get_property(dev, bus->addresses, &psize);
if (prop == NULL)
return NULL;
psize /= 4;
onesize = na + ns;
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
u32 val = be32_to_cpu(prop[0]);
if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
if (size)
*size = of_read_number(prop + na, ns);
if (flags)
*flags = bus->get_flags(prop);
return prop;
}
}
return NULL;
}
EXPORT_SYMBOL(of_get_pci_address);
int of_pci_address_to_resource(struct device_node *dev, int bar,
struct resource *r)
{
const __be32 *addrp;
u64 size;
unsigned int flags;
addrp = of_get_pci_address(dev, bar, &size, &flags);
if (addrp == NULL)
return -EINVAL;
return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
}
EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
static int parser_init(struct of_pci_range_parser *parser,
struct device_node *node, const char *name)
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
{
const int na = 3, ns = 2;
int rlen;
parser->node = node;
parser->pna = of_n_addr_cells(node);
parser->np = parser->pna + na + ns;
parser->range = of_get_property(node, name, &rlen);
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
if (parser->range == NULL)
return -ENOENT;
parser->end = parser->range + rlen / sizeof(__be32);
return 0;
}
int of_pci_range_parser_init(struct of_pci_range_parser *parser,
struct device_node *node)
{
return parser_init(parser, node, "ranges");
}
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
struct device_node *node)
{
return parser_init(parser, node, "dma-ranges");
}
EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
struct of_pci_range *range)
{
const int na = 3, ns = 2;
if (!range)
return NULL;
if (!parser->range || parser->range + parser->np > parser->end)
return NULL;
range->pci_space = be32_to_cpup(parser->range);
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
range->flags = of_bus_pci_get_flags(parser->range);
range->pci_addr = of_read_number(parser->range + 1, ns);
range->cpu_addr = of_translate_address(parser->node,
parser->range + na);
range->size = of_read_number(parser->range + parser->pna + na, ns);
parser->range += parser->np;
/* Now consume following elements while they are contiguous */
while (parser->range + parser->np <= parser->end) {
u32 flags;
of/pci: Provide support for parsing PCI DT ranges property This patch factors out common implementation patterns to reduce overall kernel code and provide a means for host bridge drivers to directly obtain struct resources from the DT's ranges property without relying on architecture specific DT handling. This will make it easier to write archiecture independent host bridge drivers and mitigate against further duplication of DT parsing code. This patch can be used in the following way: struct of_pci_range_parser parser; struct of_pci_range range; if (of_pci_range_parser_init(&parser, np)) ; //no ranges property for_each_of_pci_range(&parser, &range) { /* directly access properties of the address range, e.g.: range.pci_space, range.pci_addr, range.cpu_addr, range.size, range.flags alternatively obtain a struct resource, e.g.: struct resource res; of_pci_range_to_resource(&range, np, &res); */ } Additionally the implementation takes care of adjacent ranges and merges them into a single range (as was the case with powerpc and microblaze). Signed-off-by: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: Liviu Dudau <Liviu.Dudau@arm.com> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Reviewed-by: Rob Herring <rob.herring@calxeda.com> Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2013-05-16 23:55:17 +08:00
u64 pci_addr, cpu_addr, size;
flags = of_bus_pci_get_flags(parser->range);
pci_addr = of_read_number(parser->range + 1, ns);
cpu_addr = of_translate_address(parser->node,
parser->range + na);
size = of_read_number(parser->range + parser->pna + na, ns);
if (flags != range->flags)
break;
if (pci_addr != range->pci_addr + range->size ||
cpu_addr != range->cpu_addr + range->size)
break;
range->size += size;
parser->range += parser->np;
}
return range;
}
EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
/*
* of_pci_range_to_resource - Create a resource from an of_pci_range
* @range: the PCI range that describes the resource
* @np: device node where the range belongs to
* @res: pointer to a valid resource that will be updated to
* reflect the values contained in the range.
*
* Returns EINVAL if the range cannot be converted to resource.
*
* Note that if the range is an IO range, the resource will be converted
* using pci_address_to_pio() which can fail if it is called too early or
* if the range cannot be matched to any host bridge IO space (our case here).
* To guard against that we try to register the IO range first.
* If that fails we know that pci_address_to_pio() will do too.
*/
int of_pci_range_to_resource(struct of_pci_range *range,
struct device_node *np, struct resource *res)
{
int err;
res->flags = range->flags;
res->parent = res->child = res->sibling = NULL;
res->name = np->full_name;
if (res->flags & IORESOURCE_IO) {
unsigned long port;
err = pci_register_io_range(&np->fwnode, range->cpu_addr,
range->size);
if (err)
goto invalid_range;
port = pci_address_to_pio(range->cpu_addr);
if (port == (unsigned long)-1) {
err = -EINVAL;
goto invalid_range;
}
res->start = port;
} else {
if ((sizeof(resource_size_t) < 8) &&
upper_32_bits(range->cpu_addr)) {
err = -EINVAL;
goto invalid_range;
}
res->start = range->cpu_addr;
}
res->end = res->start + range->size - 1;
return 0;
invalid_range:
res->start = (resource_size_t)OF_BAD_ADDR;
res->end = (resource_size_t)OF_BAD_ADDR;
return err;
}
EXPORT_SYMBOL(of_pci_range_to_resource);
#endif /* CONFIG_PCI */
/*
* ISA bus specific translator
*/
static int of_bus_isa_match(struct device_node *np)
{
return of_node_name_eq(np, "isa");
}
static void of_bus_isa_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
int pna)
{
u64 cp, s, da;
/* Check address type match */
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
return OF_BAD_ADDR;
/* Read address values, skipping high cell */
cp = of_read_number(range + 1, na - 1);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr + 1, na - 1);
pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
{
return of_bus_default_translate(addr + 1, offset, na - 1);
}
static unsigned int of_bus_isa_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
if (w & 1)
flags |= IORESOURCE_IO;
else
flags |= IORESOURCE_MEM;
return flags;
}
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
#ifdef CONFIG_PCI
/* PCI */
{
.name = "pci",
.addresses = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.translate = of_bus_pci_translate,
.get_flags = of_bus_pci_get_flags,
},
#endif /* CONFIG_PCI */
/* ISA */
{
.name = "isa",
.addresses = "reg",
.match = of_bus_isa_match,
.count_cells = of_bus_isa_count_cells,
.map = of_bus_isa_map,
.translate = of_bus_isa_translate,
.get_flags = of_bus_isa_get_flags,
},
/* Default */
{
.name = "default",
.addresses = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.translate = of_bus_default_translate,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int of_empty_ranges_quirk(struct device_node *np)
{
if (IS_ENABLED(CONFIG_PPC)) {
/* To save cycles, we cache the result for global "Mac" setting */
static int quirk_state = -1;
/* PA-SEMI sdc DT bug */
if (of_device_is_compatible(np, "1682m-sdc"))
return true;
/* Make quirk cached */
if (quirk_state < 0)
quirk_state =
of_machine_is_compatible("Power Macintosh") ||
of_machine_is_compatible("MacRISC");
return quirk_state;
}
return false;
}
static int of_translate_one(struct device_node *parent, struct of_bus *bus,
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
struct of_bus *pbus, __be32 *addr,
int na, int ns, int pna, const char *rprop)
{
const __be32 *ranges;
unsigned int rlen;
int rone;
u64 offset = OF_BAD_ADDR;
/*
* Normally, an absence of a "ranges" property means we are
* crossing a non-translatable boundary, and thus the addresses
* below the current cannot be converted to CPU physical ones.
* Unfortunately, while this is very clear in the spec, it's not
* what Apple understood, and they do have things like /uni-n or
* /ht nodes with no "ranges" property and a lot of perfectly
* useable mapped devices below them. Thus we treat the absence of
* "ranges" as equivalent to an empty "ranges" property which means
* a 1:1 translation at that level. It's up to the caller not to try
* to translate addresses that aren't supposed to be translated in
* the first place. --BenH.
*
* As far as we know, this damage only exists on Apple machines, so
* This code is only enabled on powerpc. --gcl
*/
ranges = of_get_property(parent, rprop, &rlen);
if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
pr_debug("no ranges; cannot translate\n");
return 1;
}
if (ranges == NULL || rlen == 0) {
offset = of_read_number(addr, na);
memset(addr, 0, pna * 4);
pr_debug("empty ranges; 1:1 translation\n");
goto finish;
}
pr_debug("walking ranges...\n");
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
offset = bus->map(addr, ranges, na, ns, pna);
if (offset != OF_BAD_ADDR)
break;
}
if (offset == OF_BAD_ADDR) {
pr_debug("not found !\n");
return 1;
}
memcpy(addr, ranges + na, 4 * pna);
finish:
of_dump_addr("parent translation for:", addr, pna);
pr_debug("with offset: %llx\n", (unsigned long long)offset);
/* Translate it into parent bus space */
return pbus->translate(addr, offset, pna);
}
/*
* Translate an address from the device-tree into a CPU physical address,
* this walks up the tree and applies the various bus mappings on the
* way.
*
* Note: We consider that crossing any level with #size-cells == 0 to mean
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*
* Whenever the translation fails, the *host pointer will be set to the
* device that had registered logical PIO mapping, and the return code is
* relative to that node.
*/
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
static u64 __of_translate_address(struct device_node *dev,
struct device_node *(*get_parent)(const struct device_node *),
const __be32 *in_addr, const char *rprop,
struct device_node **host)
{
struct device_node *parent = NULL;
struct of_bus *bus, *pbus;
of/address: sparse fixes drivers/of/address.c:66:29: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:66:29: expected restricted __be32 const [usertype] *cell drivers/of/address.c:66:29: got unsigned int [usertype] *addr drivers/of/address.c:87:32: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:87:32: expected restricted __be32 const [usertype] *cell drivers/of/address.c:87:32: got unsigned int [usertype] *addr drivers/of/address.c:91:30: warning: incorrect type in assignment (different base types) drivers/of/address.c:91:30: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:91:30: got restricted __be32 [usertype] <noident> drivers/of/address.c:92:22: warning: incorrect type in assignment (different base types) drivers/of/address.c:92:22: expected unsigned int [unsigned] [usertype] <noident> drivers/of/address.c:92:22: got restricted __be32 [usertype] <noident> drivers/of/address.c:147:35: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:147:35: expected restricted __be32 const [usertype] *addr drivers/of/address.c:147:35: got unsigned int [usertype] *addr drivers/of/address.c:157:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:157:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:157:34: got unsigned int [usertype] * drivers/of/address.c:256:29: warning: restricted __be32 degrades to integer drivers/of/address.c:256:36: warning: restricted __be32 degrades to integer drivers/of/address.c:262:34: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:262:34: expected restricted __be32 const [usertype] *cell drivers/of/address.c:262:34: got unsigned int [usertype] * drivers/of/address.c:372:41: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:372:41: expected restricted __be32 const [usertype] *cell drivers/of/address.c:372:41: got unsigned int [usertype] *addr drivers/of/address.c:395:53: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:395:53: expected restricted __be32 const [usertype] *addr drivers/of/address.c:395:53: got unsigned int [usertype] *addr drivers/of/address.c:443:50: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:443:50: expected restricted __be32 const [usertype] *addr drivers/of/address.c:443:50: got unsigned int *<noident> drivers/of/address.c:455:49: warning: incorrect type in argument 1 (different base types) drivers/of/address.c:455:49: expected restricted __be32 const [usertype] *cell drivers/of/address.c:455:49: got unsigned int *<noident> drivers/of/address.c:480:60: warning: incorrect type in argument 2 (different base types) drivers/of/address.c:480:60: expected restricted __be32 const [usertype] *addr drivers/of/address.c:480:60: got unsigned int *<noident> drivers/of/address.c:412:5: warning: symbol '__of_translate_address' was not declared. Should it be static? drivers/of/address.c:520:14: error: symbol 'of_get_address' redeclared with different type (originally declared at include/linux/of_address.h:22) - different base types Signed-off-by: Kim Phillips <kim.phillips@freescale.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-10-09 08:41:58 +08:00
__be32 addr[OF_MAX_ADDR_CELLS];
int na, ns, pna, pns;
u64 result = OF_BAD_ADDR;
pr_debug("** translation for device %pOF **\n", dev);
/* Increase refcount at current level */
of_node_get(dev);
*host = NULL;
/* Get parent & match bus type */
parent = get_parent(dev);
if (parent == NULL)
goto bail;
bus = of_match_bus(parent);
/* Count address cells & copy address locally */
bus->count_cells(dev, &na, &ns);
if (!OF_CHECK_COUNTS(na, ns)) {
pr_debug("Bad cell count for %pOF\n", dev);
goto bail;
}
memcpy(addr, in_addr, na * 4);
pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
bus->name, na, ns, parent);
of_dump_addr("translating address:", addr, na);
/* Translate */
for (;;) {
struct logic_pio_hwaddr *iorange;
/* Switch to parent bus */
of_node_put(dev);
dev = parent;
parent = get_parent(dev);
/* If root, we have finished */
if (parent == NULL) {
pr_debug("reached root node\n");
result = of_read_number(addr, na);
break;
}
/*
* For indirectIO device which has no ranges property, get
* the address from reg directly.
*/
iorange = find_io_range_by_fwnode(&dev->fwnode);
if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
result = of_read_number(addr + 1, na - 1);
pr_debug("indirectIO matched(%pOF) 0x%llx\n",
dev, result);
*host = of_node_get(dev);
break;
}
/* Get new parent bus and counts */
pbus = of_match_bus(parent);
pbus->count_cells(dev, &pna, &pns);
if (!OF_CHECK_COUNTS(pna, pns)) {
pr_err("Bad cell count for %pOF\n", dev);
break;
}
pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
pbus->name, pna, pns, parent);
/* Apply bus translation */
if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
break;
/* Complete the move up one level */
na = pna;
ns = pns;
bus = pbus;
of_dump_addr("one level translation:", addr, na);
}
bail:
of_node_put(parent);
of_node_put(dev);
return result;
}
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
{
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, of_get_parent,
in_addr, "ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_address);
static struct device_node *__of_get_dma_parent(const struct device_node *np)
{
struct of_phandle_args args;
int ret, index;
index = of_property_match_string(np, "interconnect-names", "dma-mem");
if (index < 0)
return of_get_parent(np);
ret = of_parse_phandle_with_args(np, "interconnects",
"#interconnect-cells",
index, &args);
if (ret < 0)
return of_get_parent(np);
return of_node_get(args.np);
}
static struct device_node *of_get_next_dma_parent(struct device_node *np)
{
struct device_node *parent;
parent = __of_get_dma_parent(np);
of_node_put(np);
return parent;
}
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
{
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, __of_get_dma_parent,
in_addr, "dma-ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_dma_address);
const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
unsigned int *flags)
{
const __be32 *prop;
unsigned int psize;
struct device_node *parent;
struct of_bus *bus;
int onesize, i, na, ns;
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
return NULL;
bus = of_match_bus(parent);
bus->count_cells(dev, &na, &ns);
of_node_put(parent);
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-26 07:34:37 +08:00
if (!OF_CHECK_ADDR_COUNT(na))
return NULL;
/* Get "reg" or "assigned-addresses" property */
prop = of_get_property(dev, bus->addresses, &psize);
if (prop == NULL)
return NULL;
psize /= 4;
onesize = na + ns;
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
if (i == index) {
if (size)
*size = of_read_number(prop + na, ns);
if (flags)
*flags = bus->get_flags(prop);
return prop;
}
return NULL;
}
EXPORT_SYMBOL(of_get_address);
static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
u64 size)
{
u64 taddr;
unsigned long port;
struct device_node *host;
taddr = __of_translate_address(dev, of_get_parent,
in_addr, "ranges", &host);
if (host) {
/* host-specific port access */
port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
of_node_put(host);
} else {
/* memory-mapped I/O range */
port = pci_address_to_pio(taddr);
}
if (port == (unsigned long)-1)
return OF_BAD_ADDR;
return port;
}
static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r)
{
u64 taddr;
if (flags & IORESOURCE_MEM)
taddr = of_translate_address(dev, addrp);
else if (flags & IORESOURCE_IO)
taddr = of_translate_ioport(dev, addrp, size);
else
return -EINVAL;
if (taddr == OF_BAD_ADDR)
return -EINVAL;
memset(r, 0, sizeof(struct resource));
r->start = taddr;
r->end = taddr + size - 1;
r->flags = flags;
r->name = name ? name : dev->full_name;
return 0;
}
/**
* of_address_to_resource - Translate device tree address and return as resource
*
* Note that if your address is a PIO address, the conversion will fail if
* the physical address can't be internally converted to an IO token with
* pci_address_to_pio(), that is because it's either called too early or it
* can't be matched to any host bridge IO space
*/
int of_address_to_resource(struct device_node *dev, int index,
struct resource *r)
{
const __be32 *addrp;
u64 size;
unsigned int flags;
const char *name = NULL;
addrp = of_get_address(dev, index, &size, &flags);
if (addrp == NULL)
return -EINVAL;
/* Get optional "reg-names" property to add a name to a resource */
of_property_read_string_index(dev, "reg-names", index, &name);
return __of_address_to_resource(dev, addrp, size, flags, name, r);
}
EXPORT_SYMBOL_GPL(of_address_to_resource);
/**
* of_iomap - Maps the memory mapped IO for a given device_node
* @device: the device whose io range will be mapped
* @index: index of the io range
*
* Returns a pointer to the mapped memory
*/
void __iomem *of_iomap(struct device_node *np, int index)
{
struct resource res;
if (of_address_to_resource(np, index, &res))
return NULL;
return ioremap(res.start, resource_size(&res));
}
EXPORT_SYMBOL(of_iomap);
/*
* of_io_request_and_map - Requests a resource and maps the memory mapped IO
* for a given device_node
* @device: the device whose io range will be mapped
* @index: index of the io range
* @name: name "override" for the memory region request or NULL
*
* Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
* error code on failure. Usage example:
*
* base = of_io_request_and_map(node, 0, "foo");
* if (IS_ERR(base))
* return PTR_ERR(base);
*/
void __iomem *of_io_request_and_map(struct device_node *np, int index,
const char *name)
{
struct resource res;
void __iomem *mem;
if (of_address_to_resource(np, index, &res))
return IOMEM_ERR_PTR(-EINVAL);
if (!name)
name = res.name;
if (!request_mem_region(res.start, resource_size(&res), name))
return IOMEM_ERR_PTR(-EBUSY);
mem = ioremap(res.start, resource_size(&res));
if (!mem) {
release_mem_region(res.start, resource_size(&res));
return IOMEM_ERR_PTR(-ENOMEM);
}
return mem;
}
EXPORT_SYMBOL(of_io_request_and_map);
/**
* of_dma_get_range - Get DMA range info
* @np: device node to get DMA range info
* @dma_addr: pointer to store initial DMA address of DMA range
* @paddr: pointer to store initial CPU address of DMA range
* @size: pointer to store size of DMA range
*
* Look in bottom up direction for the first "dma-ranges" property
* and parse it.
* dma-ranges format:
* DMA addr (dma_addr) : naddr cells
* CPU addr (phys_addr_t) : pna cells
* size : nsize cells
*
* It returns -ENODEV if "dma-ranges" property was not found
* for this device in DT.
*/
int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
{
struct device_node *node = of_node_get(np);
const __be32 *ranges = NULL;
int len, naddr, nsize, pna;
int ret = 0;
u64 dmaaddr;
if (!node)
return -EINVAL;
while (1) {
struct device_node *parent;
naddr = of_n_addr_cells(node);
nsize = of_n_size_cells(node);
parent = __of_get_dma_parent(node);
of_node_put(node);
node = parent;
if (!node)
break;
ranges = of_get_property(node, "dma-ranges", &len);
/* Ignore empty ranges, they imply no translation required */
if (ranges && len > 0)
break;
/*
* At least empty ranges has to be defined for parent node if
* DMA is supported
*/
if (!ranges)
break;
}
if (!ranges) {
pr_debug("no dma-ranges found for node(%pOF)\n", np);
ret = -ENODEV;
goto out;
}
len /= sizeof(u32);
pna = of_n_addr_cells(node);
/* dma-ranges format:
* DMA addr : naddr cells
* CPU addr : pna cells
* size : nsize cells
*/
dmaaddr = of_read_number(ranges, naddr);
*paddr = of_translate_dma_address(np, ranges);
if (*paddr == OF_BAD_ADDR) {
pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
dmaaddr, np);
ret = -EINVAL;
goto out;
}
*dma_addr = dmaaddr;
*size = of_read_number(ranges + naddr + pna, nsize);
pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
*dma_addr, *paddr, *size);
out:
of_node_put(node);
return ret;
}
/**
* of_dma_is_coherent - Check if device is coherent
* @np: device node
*
* It returns true if "dma-coherent" property was found
* for this device in DT.
*/
bool of_dma_is_coherent(struct device_node *np)
{
struct device_node *node = of_node_get(np);
while (node) {
if (of_property_read_bool(node, "dma-coherent")) {
of_node_put(node);
return true;
}
node = of_get_next_parent(node);
}
of_node_put(node);
return false;
}
Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into next Pull ARM updates from Russell King: - Major clean-up of the L2 cache support code. The existing mess was becoming rather unmaintainable through all the additions that others have done over time. This turns it into a much nicer structure, and implements a few performance improvements as well. - Clean up some of the CP15 control register tweaks for alignment support, moving some code and data into alignment.c - DMA properties for ARM, from Santosh and reviewed by DT people. This adds DT properties to specify bus translations we can't discover automatically, and to indicate whether devices are coherent. - Hibernation support for ARM - Make ftrace work with read-only text in modules - add suspend support for PJ4B CPUs - rework interrupt masking for undefined instruction handling, which allows us to enable interrupts earlier in the handling of these exceptions. - support for big endian page tables - fix stacktrace support to exclude stacktrace functions from the trace, and add save_stack_trace_regs() implementation so that kprobes can record stack traces. - Add support for the Cortex-A17 CPU. - Remove last vestiges of ARM710 support. - Removal of ARM "meminfo" structure, finally converting us solely to memblock to handle the early memory initialisation. * 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (142 commits) ARM: ensure C page table setup code follows assembly code (part II) ARM: ensure C page table setup code follows assembly code ARM: consolidate last remaining open-coded alignment trap enable ARM: remove global cr_no_alignment ARM: remove CPU_CP15 conditional from alignment.c ARM: remove unused adjust_cr() function ARM: move "noalign" command line option to alignment.c ARM: provide common method to clear bits in CPU control register ARM: 8025/1: Get rid of meminfo ARM: 8060/1: mm: allow sub-architectures to override PCI I/O memory type ARM: 8066/1: correction for ARM patch 8031/2 ARM: 8049/1: ftrace/add save_stack_trace_regs() implementation ARM: 8065/1: remove last use of CONFIG_CPU_ARM710 ARM: 8062/1: Modify ldrt fixup handler to re-execute the userspace instruction ARM: 8047/1: rwsem: use asm-generic rwsem implementation ARM: l2c: trial at enabling some Cortex-A9 optimisations ARM: l2c: add warnings for stuff modifying aux_ctrl register values ARM: l2c: print a warning with L2C-310 caches if the cache size is modified ARM: l2c: remove old .set_debug method ARM: l2c: kill L2X0_AUX_CTRL_MASK before anyone else makes use of this ...
2014-06-06 06:57:04 +08:00
EXPORT_SYMBOL_GPL(of_dma_is_coherent);