OpenCloudOS-Kernel/drivers/crypto/caam/caamalg_qi.c

2849 lines
75 KiB
C
Raw Normal View History

/*
* Freescale FSL CAAM support for crypto API over QI backend.
* Based on caamalg.c
*
* Copyright 2013-2016 Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*/
#include "compat.h"
#include "ctrl.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_qm.h"
#include "key_gen.h"
#include "qi.h"
#include "jr.h"
#include "caamalg_desc.h"
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 2000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
SHA512_DIGEST_SIZE * 2)
#define DESC_MAX_USED_BYTES (DESC_QI_AEAD_GIVENC_LEN + \
CAAM_MAX_KEY_SIZE)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
struct caam_alg_entry {
int class1_alg_type;
int class2_alg_type;
bool rfc3686;
bool geniv;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u32 sh_desc_givenc[DESC_MAX_USED_LEN];
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t key_dma;
enum dma_data_direction dir;
struct alginfo adata;
struct alginfo cdata;
unsigned int authsize;
struct device *qidev;
spinlock_t lock; /* Protects multiple init of driver context */
struct caam_drv_ctx *drv_ctx[NUM_OP];
};
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 ctx1_iv_off = 0;
u32 *nonce = NULL;
unsigned int data_len[2];
u32 inl_mask;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
}
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
if (alg->caam.geniv)
goto skip_enc;
/* aead_encrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_ENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_enc:
/* aead_decrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, alg->caam.geniv,
is_rfc3686, nonce, ctx1_iv_off, true,
ctrlpriv->era);
if (!alg->caam.geniv)
goto skip_givenc;
/* aead_givencrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_GIVENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_givencap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_givenc:
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
#ifdef DEBUG
dev_err(jrdev, "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* If DKP is supported, use it in the shared descriptor to generate
* the split key.
*/
if (ctrlpriv->era >= 6) {
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma,
ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
goto skip_split_key;
}
ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey,
keys.authkeylen, CAAM_MAX_KEY_SIZE -
keys.enckeylen);
if (ret)
goto badkey;
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
#endif
skip_split_key:
ctx->cdata.keylen = keys.enckeylen;
ret = aead_set_sh_desc(aead);
if (ret)
goto badkey;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
memzero_explicit(&keys, sizeof(keys));
return ret;
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(jrdev, ctx->key_dma, keylen, ctx->dir);
ctx->cdata.keylen = keylen;
ret = gcm_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
ret = rfc4106_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
ret = rfc4543_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablkcipher);
const char *alg_name = crypto_tfm_alg_name(tfm);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 ctx1_iv_off = 0;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = (ctr_mode && strstr(alg_name, "rfc3686"));
int ret = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* ablkcipher encrypt, decrypt, givencrypt shared descriptors */
cnstr_shdsc_ablkcipher_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
cnstr_shdsc_ablkcipher_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
cnstr_shdsc_ablkcipher_givencap(ctx->sh_desc_givenc, &ctx->cdata,
ivsize, is_rfc3686, ctx1_iv_off);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[GIVENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[GIVENCRYPT],
ctx->sh_desc_givenc);
if (ret) {
dev_err(jrdev, "driver givenc context update failed\n");
goto badkey;
}
}
return ret;
badkey:
crypto_ablkcipher_set_flags(ablkcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int xts_ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
int ret = 0;
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
crypto_ablkcipher_set_flags(ablkcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
dev_err(jrdev, "key size mismatch\n");
return -EINVAL;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts ablkcipher encrypt, decrypt shared descriptors */
cnstr_shdsc_xts_ablkcipher_encap(ctx->sh_desc_enc, &ctx->cdata);
cnstr_shdsc_xts_ablkcipher_decap(ctx->sh_desc_dec, &ctx->cdata);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
return ret;
badkey:
crypto_ablkcipher_set_flags(ablkcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return 0;
}
/*
* aead_edesc - s/w-extended aead descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @assoclen: associated data length, in CAAM endianness
* @assoclen_dma: bus physical mapped address of req->assoclen
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct aead_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
unsigned int assoclen;
dma_addr_t assoclen_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[0];
};
/*
* ablkcipher_edesc - s/w-extended ablkcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct ablkcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[0];
};
static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx,
enum optype type)
{
/*
* This function is called on the fast path with values of 'type'
* known at compile time. Invalid arguments are not expected and
* thus no checks are made.
*/
struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type];
u32 *desc;
if (unlikely(!drv_ctx)) {
spin_lock(&ctx->lock);
/* Read again to check if some other core init drv_ctx */
drv_ctx = ctx->drv_ctx[type];
if (!drv_ctx) {
int cpu;
if (type == ENCRYPT)
desc = ctx->sh_desc_enc;
else if (type == DECRYPT)
desc = ctx->sh_desc_dec;
else /* (type == GIVENCRYPT) */
desc = ctx->sh_desc_givenc;
cpu = smp_processor_id();
drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc);
if (likely(!IS_ERR_OR_NULL(drv_ctx)))
drv_ctx->op_type = type;
ctx->drv_ctx[type] = drv_ctx;
}
spin_unlock(&ctx->lock);
}
return drv_ctx;
}
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents, dma_addr_t iv_dma, int ivsize,
enum optype op_type, dma_addr_t qm_sg_dma,
int qm_sg_bytes)
{
if (dst != src) {
if (src_nents)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize,
op_type == GIVENCRYPT ? DMA_FROM_DEVICE :
DMA_TO_DEVICE);
if (qm_sg_bytes)
dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->drv_req.drv_ctx->op_type,
edesc->qm_sg_dma, edesc->qm_sg_bytes);
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}
static void ablkcipher_unmap(struct device *dev,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->drv_req.drv_ctx->op_type,
edesc->qm_sg_dma, edesc->qm_sg_bytes);
}
static void aead_done(struct caam_drv_req *drv_req, u32 status)
{
struct device *qidev;
struct aead_edesc *edesc;
struct aead_request *aead_req = drv_req->app_ctx;
struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
struct caam_ctx *caam_ctx = crypto_aead_ctx(aead);
int ecode = 0;
qidev = caam_ctx->qidev;
if (unlikely(status)) {
u32 ssrc = status & JRSTA_SSRC_MASK;
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
caam_jr_strstatus(qidev, status);
/*
* verify hw auth check passed else return -EBADMSG
*/
if (ssrc == JRSTA_SSRC_CCB_ERROR &&
err_id == JRSTA_CCBERR_ERRID_ICVCHK)
ecode = -EBADMSG;
else
ecode = -EIO;
}
edesc = container_of(drv_req, typeof(*edesc), drv_req);
aead_unmap(qidev, edesc, aead_req);
aead_request_complete(aead_req, ecode);
qi_cache_free(edesc);
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct aead_edesc *edesc;
dma_addr_t qm_sg_dma, iv_dma = 0;
int ivsize = 0;
unsigned int authsize = ctx->authsize;
int qm_sg_index = 0, qm_sg_ents = 0, qm_sg_bytes;
int in_len, out_len;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
enum optype op_type = encrypt ? ENCRYPT : DECRYPT;
drv_ctx = get_drv_ctx(ctx, op_type);
if (unlikely(IS_ERR_OR_NULL(drv_ctx)))
return (struct aead_edesc *)drv_ctx;
/* allocate space for base edesc and hw desc commands, link tables */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (likely(req->src == req->dst)) {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen +
(encrypt ? authsize : 0));
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen +
(encrypt ? authsize : 0));
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
dst_nents = sg_nents_for_len(req->dst, req->assoclen +
req->cryptlen +
(encrypt ? authsize :
(-authsize)));
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->assoclen + req->cryptlen +
(encrypt ? authsize : (-authsize)));
qi_cache_free(edesc);
return ERR_PTR(dst_nents);
}
if (src_nents) {
mapped_src_nents = dma_map_sg(qidev, req->src,
src_nents, DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
ivsize = crypto_aead_ivsize(aead);
/*
* Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
* Input is not contiguous.
*/
qm_sg_ents = 1 + !!ivsize + mapped_src_nents +
(mapped_dst_nents > 1 ? mapped_dst_nents : 0);
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-10 13:40:31 +08:00
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
if (ivsize) {
u8 *iv = (u8 *)(sg_table + qm_sg_ents);
/* Make sure IV is located in a DMAable area */
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents,
dst_nents, 0, 0, 0, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = aead_done;
edesc->drv_req.drv_ctx = drv_ctx;
edesc->assoclen = cpu_to_caam32(req->assoclen);
edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->assoclen_dma)) {
dev_err(qidev, "unable to map assoclen\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, op_type, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
qm_sg_index++;
if (ivsize) {
dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
qm_sg_index++;
}
sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + qm_sg_index, 0);
qm_sg_index += mapped_src_nents;
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table +
qm_sg_index, 0);
qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
dma_unmap_single(qidev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, op_type, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->qm_sg_dma = qm_sg_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
out_len = req->assoclen + req->cryptlen +
(encrypt ? ctx->authsize : (-ctx->authsize));
in_len = 4 + ivsize + req->assoclen + req->cryptlen;
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0);
if (req->dst == req->src) {
if (mapped_src_nents == 1)
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src),
out_len, 0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma +
(1 + !!ivsize) * sizeof(*sg_table),
out_len, 0);
} else if (mapped_dst_nents == 1) {
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), out_len,
0);
} else {
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) *
qm_sg_index, out_len, 0);
}
return edesc;
}
static inline int aead_crypt(struct aead_request *req, bool encrypt)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, encrypt);
if (IS_ERR_OR_NULL(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int aead_encrypt(struct aead_request *req)
{
return aead_crypt(req, true);
}
static int aead_decrypt(struct aead_request *req)
{
return aead_crypt(req, false);
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return aead_crypt(req, true);
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return aead_crypt(req, false);
}
static void ablkcipher_done(struct caam_drv_req *drv_req, u32 status)
{
struct ablkcipher_edesc *edesc;
struct ablkcipher_request *req = drv_req->app_ctx;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *caam_ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *qidev = caam_ctx->qidev;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
#ifdef DEBUG
dev_err(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status);
#endif
edesc = container_of(drv_req, typeof(*edesc), drv_req);
if (status)
caam_jr_strstatus(qidev, status);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(qidev, edesc, req);
/* In case initial IV was generated, copy it in GIVCIPHER request */
if (edesc->drv_req.drv_ctx->op_type == GIVENCRYPT) {
u8 *iv;
struct skcipher_givcrypt_request *greq;
greq = container_of(req, struct skcipher_givcrypt_request,
creq);
iv = (u8 *)edesc->sgt + edesc->qm_sg_bytes;
memcpy(greq->giv, iv, ivsize);
}
/*
* The crypto API expects us to set the IV (req->info) to the last
* ciphertext block. This is used e.g. by the CTS mode.
*/
if (edesc->drv_req.drv_ctx->op_type != DECRYPT)
scatterwalk_map_and_copy(req->info, req->dst, req->nbytes -
ivsize, ivsize, 0);
qi_cache_free(edesc);
ablkcipher_request_complete(req, status);
}
static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
*req, bool encrypt)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
enum optype op_type = encrypt ? ENCRYPT : DECRYPT;
drv_ctx = get_drv_ctx(ctx, op_type);
if (unlikely(IS_ERR_OR_NULL(drv_ctx)))
return (struct ablkcipher_edesc *)drv_ctx;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->nbytes);
return ERR_PTR(src_nents);
}
if (unlikely(req->src != req->dst)) {
dst_nents = sg_nents_for_len(req->dst, req->nbytes);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->nbytes);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
}
qm_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = qm_sg_ents;
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-10 13:40:31 +08:00
qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry);
if (unlikely(offsetof(struct ablkcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-10 13:40:31 +08:00
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
memcpy(iv, req->info, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = ablkcipher_done;
edesc->drv_req.drv_ctx = drv_ctx;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + 1, 0);
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table +
dst_sg_idx, 0);
edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, op_type, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], edesc->qm_sg_dma,
ivsize + req->nbytes, 0);
if (req->src == req->dst) {
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma +
sizeof(*sg_table), req->nbytes, 0);
} else if (mapped_dst_nents > 1) {
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table), req->nbytes, 0);
} else {
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst),
req->nbytes, 0);
}
return edesc;
}
static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc(
struct skcipher_givcrypt_request *creq)
{
struct ablkcipher_request *req = &creq->creq;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents, mapped_dst_nents;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
struct qm_sg_entry *sg_table, *fd_sgt;
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct caam_drv_ctx *drv_ctx;
drv_ctx = get_drv_ctx(ctx, GIVENCRYPT);
if (unlikely(IS_ERR_OR_NULL(drv_ctx)))
return (struct ablkcipher_edesc *)drv_ctx;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->nbytes);
return ERR_PTR(src_nents);
}
if (unlikely(req->src != req->dst)) {
dst_nents = sg_nents_for_len(req->dst, req->nbytes);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->nbytes);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
dst_nents = src_nents;
mapped_dst_nents = src_nents;
}
qm_sg_ents = mapped_src_nents > 1 ? mapped_src_nents : 0;
dst_sg_idx = qm_sg_ents;
qm_sg_ents += 1 + mapped_dst_nents;
qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry);
if (unlikely(offsetof(struct ablkcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-10 13:40:31 +08:00
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (!edesc) {
dev_err(qidev, "could not allocate extended descriptor\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_FROM_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = ablkcipher_done;
edesc->drv_req.drv_ctx = drv_ctx;
if (mapped_src_nents > 1)
sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table, 0);
dma_to_qm_sg_one(sg_table + dst_sg_idx, iv_dma, ivsize, 0);
sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table + dst_sg_idx + 1,
0);
edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, GIVENCRYPT, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
fd_sgt = &edesc->drv_req.fd_sgt[0];
if (mapped_src_nents > 1)
dma_to_qm_sg_one_ext(&fd_sgt[1], edesc->qm_sg_dma, req->nbytes,
0);
else
dma_to_qm_sg_one(&fd_sgt[1], sg_dma_address(req->src),
req->nbytes, 0);
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table), ivsize + req->nbytes, 0);
return edesc;
}
static inline int ablkcipher_crypt(struct ablkcipher_request *req, bool encrypt)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, encrypt);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/*
* The crypto API expects us to set the IV (req->info) to the last
* ciphertext block.
*/
if (!encrypt)
scatterwalk_map_and_copy(req->info, req->src, req->nbytes -
ivsize, ivsize, 0);
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int ablkcipher_encrypt(struct ablkcipher_request *req)
{
return ablkcipher_crypt(req, true);
}
static int ablkcipher_decrypt(struct ablkcipher_request *req)
{
return ablkcipher_crypt(req, false);
}
static int ablkcipher_givencrypt(struct skcipher_givcrypt_request *creq)
{
struct ablkcipher_request *req = &creq->creq;
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = ablkcipher_giv_edesc_alloc(creq);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
#define template_ablkcipher template_u.ablkcipher
struct caam_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
u32 type;
union {
struct ablkcipher_alg ablkcipher;
} template_u;
u32 class1_alg_type;
u32 class2_alg_type;
};
static struct caam_alg_template driver_algs[] = {
/* ablkcipher descriptor */
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-caam-qi",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-caam-qi",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-caam-qi",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-caam-qi",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "chainiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "rfc3686(ctr(aes))",
.driver_name = "rfc3686-ctr-aes-caam-qi",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "xts(aes)",
.driver_name = "xts-aes-caam-qi",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = xts_ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
}
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
};
struct caam_crypto_alg {
struct list_head entry;
struct crypto_alg crypto_alg;
struct caam_alg_entry caam;
};
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
struct caam_drv_private *priv;
/*
* distribute tfms across job rings to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
priv = dev_get_drvdata(ctx->jrdev->parent);
if (priv->era >= 6 && uses_dkp)
ctx->dir = DMA_BIDIRECTIONAL;
else
ctx->dir = DMA_TO_DEVICE;
ctx->key_dma = dma_map_single(ctx->jrdev, ctx->key, sizeof(ctx->key),
ctx->dir);
if (dma_mapping_error(ctx->jrdev, ctx->key_dma)) {
dev_err(ctx->jrdev, "unable to map key\n");
caam_jr_free(ctx->jrdev);
return -ENOMEM;
}
/* copy descriptor header template value */
ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
ctx->qidev = priv->qidev;
spin_lock_init(&ctx->lock);
ctx->drv_ctx[ENCRYPT] = NULL;
ctx->drv_ctx[DECRYPT] = NULL;
ctx->drv_ctx[GIVENCRYPT] = NULL;
return 0;
}
static int caam_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct caam_crypto_alg *caam_alg = container_of(alg, typeof(*caam_alg),
crypto_alg);
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam, false);
}
static int caam_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
aead);
struct caam_ctx *ctx = crypto_aead_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam,
alg->setkey == aead_setkey);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]);
caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]);
caam_drv_ctx_rel(ctx->drv_ctx[GIVENCRYPT]);
dma_unmap_single(ctx->jrdev, ctx->key_dma, sizeof(ctx->key), ctx->dir);
caam_jr_free(ctx->jrdev);
}
static void caam_cra_exit(struct crypto_tfm *tfm)
{
caam_exit_common(crypto_tfm_ctx(tfm));
}
static void caam_aead_exit(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
static struct list_head alg_list;
static void __exit caam_qi_algapi_exit(void)
{
struct caam_crypto_alg *t_alg, *n;
int i;
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
if (!alg_list.next)
return;
list_for_each_entry_safe(t_alg, n, &alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
}
static struct caam_crypto_alg *caam_alg_alloc(struct caam_alg_template
*template)
{
struct caam_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &t_alg->crypto_alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_cra_init;
alg->cra_exit = caam_cra_exit;
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct caam_ctx);
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
template->type;
switch (template->type) {
case CRYPTO_ALG_TYPE_GIVCIPHER:
alg->cra_type = &crypto_givcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
}
t_alg->caam.class1_alg_type = template->class1_alg_type;
t_alg->caam.class2_alg_type = template->class2_alg_type;
return t_alg;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_aead_init;
alg->exit = caam_aead_exit;
}
static int __init caam_qi_algapi_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
struct caam_drv_private *priv;
int i = 0, err = 0;
u32 cha_vid, cha_inst, des_inst, aes_inst, md_inst;
unsigned int md_limit = SHA512_DIGEST_SIZE;
bool registered = false;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
of_node_put(dev_node);
if (!pdev)
return -ENODEV;
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
/*
* If priv is NULL, it's probably because the caam driver wasn't
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
*/
if (!priv || !priv->qi_present)
return -ENODEV;
if (caam_dpaa2) {
dev_info(ctrldev, "caam/qi frontend driver not suitable for DPAA 2.x, aborting...\n");
return -ENODEV;
}
INIT_LIST_HEAD(&alg_list);
/*
* Register crypto algorithms the device supports.
* First, detect presence and attributes of DES, AES, and MD blocks.
*/
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >> CHA_ID_LS_DES_SHIFT;
aes_inst = (cha_inst & CHA_ID_LS_AES_MASK) >> CHA_ID_LS_AES_SHIFT;
md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
/* If MD is present, limit digest size based on LP256 */
if (md_inst && ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256))
md_limit = SHA256_DIGEST_SIZE;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_crypto_alg *t_alg;
struct caam_alg_template *alg = driver_algs + i;
u32 alg_sel = alg->class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((alg_sel == OP_ALG_ALGSEL_3DES) ||
(alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
continue;
t_alg = caam_alg_alloc(alg);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
dev_warn(priv->qidev, "%s alg allocation failed\n",
alg->driver_name);
continue;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
dev_warn(priv->qidev, "%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
continue;
}
list_add_tail(&t_alg->entry, &alg_list);
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
(c1_alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES algorithms not available
* on LP devices.
*/
if (((cha_vid & CHA_ID_LS_AES_MASK) == CHA_ID_LS_AES_LP) &&
(alg_aai == OP_ALG_AAI_GCM))
continue;
/*
* Skip algorithms requiring message digests
* if MD or MD size is not supported by device.
*/
if (c2_alg_sel &&
(!md_inst || (t_alg->aead.maxauthsize > md_limit)))
continue;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->aead.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
dev_info(priv->qidev, "algorithms registered in /proc/crypto\n");
return err;
}
module_init(caam_qi_algapi_init);
module_exit(caam_qi_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Support for crypto API using CAAM-QI backend");
MODULE_AUTHOR("Freescale Semiconductor");