OpenCloudOS-Kernel/drivers/net/wireless/rsi/rsi_91x_sdio_ops.c

567 lines
14 KiB
C
Raw Normal View History

/**
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "rsi_sdio.h"
#include "rsi_common.h"
/**
* rsi_sdio_master_access_msword() - This function sets the AHB master access
* MS word in the SDIO slave registers.
* @adapter: Pointer to the adapter structure.
* @ms_word: ms word need to be initialized.
*
* Return: status: 0 on success, -1 on failure.
*/
static int rsi_sdio_master_access_msword(struct rsi_hw *adapter,
u16 ms_word)
{
u8 byte;
u8 function = 0;
int status = 0;
byte = (u8)(ms_word & 0x00FF);
rsi_dbg(INIT_ZONE,
"%s: MASTER_ACCESS_MSBYTE:0x%x\n", __func__, byte);
status = rsi_sdio_write_register(adapter,
function,
SDIO_MASTER_ACCESS_MSBYTE,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: fail to access MASTER_ACCESS_MSBYTE\n",
__func__);
return -1;
}
byte = (u8)(ms_word >> 8);
rsi_dbg(INIT_ZONE, "%s:MASTER_ACCESS_LSBYTE:0x%x\n", __func__, byte);
status = rsi_sdio_write_register(adapter,
function,
SDIO_MASTER_ACCESS_LSBYTE,
&byte);
return status;
}
/**
* rsi_copy_to_card() - This function includes the actual funtionality of
* copying the TA firmware to the card.Basically this
* function includes opening the TA file,reading the
* TA file and writing their values in blocks of data.
* @common: Pointer to the driver private structure.
* @fw: Pointer to the firmware value to be written.
* @len: length of firmware file.
* @num_blocks: Number of blocks to be written to the card.
*
* Return: 0 on success and -1 on failure.
*/
static int rsi_copy_to_card(struct rsi_common *common,
const u8 *fw,
u32 len,
u32 num_blocks)
{
struct rsi_hw *adapter = common->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u32 indx, ii;
u32 block_size = dev->tx_blk_size;
u32 lsb_address;
__le32 data[] = { TA_HOLD_THREAD_VALUE, TA_SOFT_RST_CLR,
TA_PC_ZERO, TA_RELEASE_THREAD_VALUE };
u32 address[] = { TA_HOLD_THREAD_REG, TA_SOFT_RESET_REG,
TA_TH0_PC_REG, TA_RELEASE_THREAD_REG };
u32 base_address;
u16 msb_address;
base_address = TA_LOAD_ADDRESS;
msb_address = base_address >> 16;
for (indx = 0, ii = 0; ii < num_blocks; ii++, indx += block_size) {
lsb_address = ((u16) base_address | RSI_SD_REQUEST_MASTER);
if (rsi_sdio_write_register_multiple(adapter,
lsb_address,
(u8 *)(fw + indx),
block_size)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to load %s blk\n", __func__,
FIRMWARE_RSI9113);
return -1;
}
rsi_dbg(INIT_ZONE, "%s: loading block: %d\n", __func__, ii);
base_address += block_size;
if ((base_address >> 16) != msb_address) {
msb_address += 1;
if (rsi_sdio_master_access_msword(adapter,
msb_address)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word reg\n",
__func__);
return -1;
}
}
}
if (len % block_size) {
lsb_address = ((u16) base_address | RSI_SD_REQUEST_MASTER);
if (rsi_sdio_write_register_multiple(adapter,
lsb_address,
(u8 *)(fw + indx),
len % block_size)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to load f/w\n", __func__);
return -1;
}
}
rsi_dbg(INIT_ZONE,
"%s: Succesfully loaded TA instructions\n", __func__);
if (rsi_sdio_master_access_msword(adapter, TA_BASE_ADDR)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
return -1;
}
for (ii = 0; ii < ARRAY_SIZE(data); ii++) {
/* Bringing TA out of reset */
if (rsi_sdio_write_register_multiple(adapter,
(address[ii] |
RSI_SD_REQUEST_MASTER),
(u8 *)&data[ii],
4)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to hold TA threads\n", __func__);
return -1;
}
}
rsi_dbg(INIT_ZONE, "%s: loaded firmware\n", __func__);
return 0;
}
/**
* rsi_load_ta_instructions() - This function includes the actual funtionality
* of loading the TA firmware.This function also
* includes opening the TA file,reading the TA
* file and writing their value in blocks of data.
* @common: Pointer to the driver private structure.
*
* Return: status: 0 on success, -1 on failure.
*/
static int rsi_load_ta_instructions(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u32 len;
u32 num_blocks;
const u8 *fw;
const struct firmware *fw_entry = NULL;
u32 block_size = dev->tx_blk_size;
int status = 0;
u32 base_address;
u16 msb_address;
if (rsi_sdio_master_access_msword(adapter, TA_BASE_ADDR)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
return -1;
}
base_address = TA_LOAD_ADDRESS;
msb_address = (base_address >> 16);
if (rsi_sdio_master_access_msword(adapter, msb_address)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word reg\n", __func__);
return -1;
}
status = request_firmware(&fw_entry, FIRMWARE_RSI9113, adapter->device);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s Firmware file %s not found\n",
__func__, FIRMWARE_RSI9113);
return status;
}
fw = kmemdup(fw_entry->data, fw_entry->size, GFP_KERNEL);
len = fw_entry->size;
if (len % 4)
len += (4 - (len % 4));
num_blocks = (len / block_size);
rsi_dbg(INIT_ZONE, "%s: Instruction size:%d\n", __func__, len);
rsi_dbg(INIT_ZONE, "%s: num blocks: %d\n", __func__, num_blocks);
status = rsi_copy_to_card(common, fw, len, num_blocks);
release_firmware(fw_entry);
return status;
}
/**
* rsi_process_pkt() - This Function reads rx_blocks register and figures out
* the size of the rx pkt.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_process_pkt(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
u8 num_blks = 0;
u32 rcv_pkt_len = 0;
int status = 0;
status = rsi_sdio_read_register(adapter,
SDIO_RX_NUM_BLOCKS_REG,
&num_blks);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read pkt length from the card:\n",
__func__);
return status;
}
rcv_pkt_len = (num_blks * 256);
common->rx_data_pkt = kmalloc(rcv_pkt_len, GFP_KERNEL);
if (!common->rx_data_pkt) {
rsi_dbg(ERR_ZONE, "%s: Failed in memory allocation\n",
__func__);
return -ENOMEM;
}
status = rsi_sdio_host_intf_read_pkt(adapter,
common->rx_data_pkt,
rcv_pkt_len);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Failed to read packet from card\n",
__func__);
goto fail;
}
status = rsi_read_pkt(common, rcv_pkt_len);
fail:
kfree(common->rx_data_pkt);
return status;
}
/**
* rsi_init_sdio_slave_regs() - This function does the actual initialization
* of SDBUS slave registers.
* @adapter: Pointer to the adapter structure.
*
* Return: status: 0 on success, -1 on failure.
*/
int rsi_init_sdio_slave_regs(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 function = 0;
u8 byte;
int status = 0;
if (dev->next_read_delay) {
byte = dev->next_read_delay;
status = rsi_sdio_write_register(adapter,
function,
SDIO_NXT_RD_DELAY2,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_NXT_RD_DELAY2\n",
__func__);
return -1;
}
}
if (dev->sdio_high_speed_enable) {
rsi_dbg(INIT_ZONE, "%s: Enabling SDIO High speed\n", __func__);
byte = 0x3;
status = rsi_sdio_write_register(adapter,
function,
SDIO_REG_HIGH_SPEED,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to enable SDIO high speed\n",
__func__);
return -1;
}
}
/* This tells SDIO FIFO when to start read to host */
rsi_dbg(INIT_ZONE, "%s: Initialzing SDIO read start level\n", __func__);
byte = 0x24;
status = rsi_sdio_write_register(adapter,
function,
SDIO_READ_START_LVL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_READ_START_LVL\n", __func__);
return -1;
}
rsi_dbg(INIT_ZONE, "%s: Initialzing FIFO ctrl registers\n", __func__);
byte = (128 - 32);
status = rsi_sdio_write_register(adapter,
function,
SDIO_READ_FIFO_CTL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_READ_FIFO_CTL\n", __func__);
return -1;
}
byte = 32;
status = rsi_sdio_write_register(adapter,
function,
SDIO_WRITE_FIFO_CTL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_WRITE_FIFO_CTL\n", __func__);
return -1;
}
return 0;
}
/**
* rsi_interrupt_handler() - This function read and process SDIO interrupts.
* @adapter: Pointer to the adapter structure.
*
* Return: None.
*/
void rsi_interrupt_handler(struct rsi_hw *adapter)
{
struct rsi_common *common = adapter->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status;
enum sdio_interrupt_type isr_type;
u8 isr_status = 0;
u8 fw_status = 0;
dev->rx_info.sdio_int_counter++;
do {
mutex_lock(&common->tx_rxlock);
status = rsi_sdio_read_register(common->priv,
RSI_FN1_INT_REGISTER,
&isr_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to Read Intr Status Register\n",
__func__);
mutex_unlock(&common->tx_rxlock);
return;
}
if (isr_status == 0) {
rsi_set_event(&common->tx_thread.event);
dev->rx_info.sdio_intr_status_zero++;
mutex_unlock(&common->tx_rxlock);
return;
}
rsi_dbg(ISR_ZONE, "%s: Intr_status = %x %d %d\n",
__func__, isr_status, (1 << MSDU_PKT_PENDING),
(1 << FW_ASSERT_IND));
do {
RSI_GET_SDIO_INTERRUPT_TYPE(isr_status, isr_type);
switch (isr_type) {
case BUFFER_AVAILABLE:
dev->rx_info.watch_bufferfull_count = 0;
dev->rx_info.buffer_full = false;
dev->rx_info.semi_buffer_full = false;
dev->rx_info.mgmt_buffer_full = false;
rsi_sdio_ack_intr(common->priv,
(1 << PKT_BUFF_AVAILABLE));
rsi_set_event(&common->tx_thread.event);
rsi_dbg(ISR_ZONE,
"%s: ==> BUFFER_AVAILABLE <==\n",
__func__);
dev->rx_info.buf_available_counter++;
break;
case FIRMWARE_ASSERT_IND:
rsi_dbg(ERR_ZONE,
"%s: ==> FIRMWARE Assert <==\n",
__func__);
status = rsi_sdio_read_register(common->priv,
SDIO_FW_STATUS_REG,
&fw_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read f/w reg\n",
__func__);
} else {
rsi_dbg(ERR_ZONE,
"%s: Firmware Status is 0x%x\n",
__func__ , fw_status);
rsi_sdio_ack_intr(common->priv,
(1 << FW_ASSERT_IND));
}
common->fsm_state = FSM_CARD_NOT_READY;
break;
case MSDU_PACKET_PENDING:
rsi_dbg(ISR_ZONE, "Pkt pending interrupt\n");
dev->rx_info.total_sdio_msdu_pending_intr++;
status = rsi_process_pkt(common);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read pkt\n",
__func__);
mutex_unlock(&common->tx_rxlock);
return;
}
break;
default:
rsi_sdio_ack_intr(common->priv, isr_status);
dev->rx_info.total_sdio_unknown_intr++;
isr_status = 0;
rsi_dbg(ISR_ZONE,
"Unknown Interrupt %x\n",
isr_status);
break;
}
isr_status ^= BIT(isr_type - 1);
} while (isr_status);
mutex_unlock(&common->tx_rxlock);
} while (1);
}
/**
* rsi_device_init() - This Function Initializes The HAL.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_sdio_device_init(struct rsi_common *common)
{
if (rsi_load_ta_instructions(common))
return -1;
if (rsi_sdio_master_access_msword(common->priv, MISC_CFG_BASE_ADDR)) {
rsi_dbg(ERR_ZONE, "%s: Unable to set ms word reg\n",
__func__);
return -1;
}
rsi_dbg(INIT_ZONE,
"%s: Setting ms word to 0x41050000\n", __func__);
return 0;
}
/**
* rsi_sdio_read_buffer_status_register() - This function is used to the read
* buffer status register and set
* relevant fields in
* rsi_91x_sdiodev struct.
* @adapter: Pointer to the driver hw structure.
* @q_num: The Q number whose status is to be found.
*
* Return: status: -1 on failure or else queue full/stop is indicated.
*/
int rsi_sdio_read_buffer_status_register(struct rsi_hw *adapter, u8 q_num)
{
struct rsi_common *common = adapter->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 buf_status = 0;
int status = 0;
status = rsi_sdio_read_register(common->priv,
RSI_DEVICE_BUFFER_STATUS_REGISTER,
&buf_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read status register\n", __func__);
return -1;
}
if (buf_status & (BIT(PKT_MGMT_BUFF_FULL))) {
if (!dev->rx_info.mgmt_buffer_full)
dev->rx_info.mgmt_buf_full_counter++;
dev->rx_info.mgmt_buffer_full = true;
} else {
dev->rx_info.mgmt_buffer_full = false;
}
if (buf_status & (BIT(PKT_BUFF_FULL))) {
if (!dev->rx_info.buffer_full)
dev->rx_info.buf_full_counter++;
dev->rx_info.buffer_full = true;
} else {
dev->rx_info.buffer_full = false;
}
if (buf_status & (BIT(PKT_BUFF_SEMI_FULL))) {
if (!dev->rx_info.semi_buffer_full)
dev->rx_info.buf_semi_full_counter++;
dev->rx_info.semi_buffer_full = true;
} else {
dev->rx_info.semi_buffer_full = false;
}
if ((q_num == MGMT_SOFT_Q) && (dev->rx_info.mgmt_buffer_full))
return QUEUE_FULL;
if (dev->rx_info.buffer_full)
return QUEUE_FULL;
return QUEUE_NOT_FULL;
}
/**
* rsi_sdio_determine_event_timeout() - This Function determines the event
* timeout duration.
* @adapter: Pointer to the adapter structure.
*
* Return: timeout duration is returned.
*/
int rsi_sdio_determine_event_timeout(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
/* Once buffer full is seen, event timeout to occur every 2 msecs */
if (dev->rx_info.buffer_full)
return 2;
return EVENT_WAIT_FOREVER;
}