OpenCloudOS-Kernel/include/linux/string_helpers.h

118 lines
3.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_STRING_HELPERS_H_
#define _LINUX_STRING_HELPERS_H_
#include <linux/bits.h>
#include <linux/ctype.h>
#include <linux/string_choices.h>
#include <linux/string.h>
#include <linux/types.h>
struct device;
struct file;
struct task_struct;
static inline bool string_is_terminated(const char *s, int len)
{
return memchr(s, '\0', len) ? true : false;
}
/* Descriptions of the types of units to
* print in */
enum string_size_units {
STRING_UNITS_10, /* use powers of 10^3 (standard SI) */
STRING_UNITS_2, /* use binary powers of 2^10 */
};
void string_get_size(u64 size, u64 blk_size, enum string_size_units units,
char *buf, int len);
int parse_int_array_user(const char __user *from, size_t count, int **array);
#define UNESCAPE_SPACE BIT(0)
#define UNESCAPE_OCTAL BIT(1)
#define UNESCAPE_HEX BIT(2)
#define UNESCAPE_SPECIAL BIT(3)
#define UNESCAPE_ANY \
(UNESCAPE_SPACE | UNESCAPE_OCTAL | UNESCAPE_HEX | UNESCAPE_SPECIAL)
#define UNESCAPE_ALL_MASK GENMASK(3, 0)
int string_unescape(char *src, char *dst, size_t size, unsigned int flags);
static inline int string_unescape_inplace(char *buf, unsigned int flags)
{
return string_unescape(buf, buf, 0, flags);
}
static inline int string_unescape_any(char *src, char *dst, size_t size)
{
return string_unescape(src, dst, size, UNESCAPE_ANY);
}
static inline int string_unescape_any_inplace(char *buf)
{
return string_unescape_any(buf, buf, 0);
}
#define ESCAPE_SPACE BIT(0)
#define ESCAPE_SPECIAL BIT(1)
#define ESCAPE_NULL BIT(2)
#define ESCAPE_OCTAL BIT(3)
#define ESCAPE_ANY \
(ESCAPE_SPACE | ESCAPE_OCTAL | ESCAPE_SPECIAL | ESCAPE_NULL)
#define ESCAPE_NP BIT(4)
#define ESCAPE_ANY_NP (ESCAPE_ANY | ESCAPE_NP)
#define ESCAPE_HEX BIT(5)
#define ESCAPE_NA BIT(6)
#define ESCAPE_NAP BIT(7)
#define ESCAPE_APPEND BIT(8)
#define ESCAPE_ALL_MASK GENMASK(8, 0)
lib/string_helpers.c: change semantics of string_escape_mem The current semantics of string_escape_mem are inadequate for one of its current users, vsnprintf(). If that is to honour its contract, it must know how much space would be needed for the entire escaped buffer, and string_escape_mem provides no way of obtaining that (short of allocating a large enough buffer (~4 times input string) to let it play with, and that's definitely a big no-no inside vsnprintf). So change the semantics for string_escape_mem to be more snprintf-like: Return the size of the output that would be generated if the destination buffer was big enough, but of course still only write to the part of dst it is allowed to, and (contrary to snprintf) don't do '\0'-termination. It is then up to the caller to detect whether output was truncated and to append a '\0' if desired. Also, we must output partial escape sequences, otherwise a call such as snprintf(buf, 3, "%1pE", "\123") would cause printf to write a \0 to buf[2] but leaving buf[0] and buf[1] with whatever they previously contained. This also fixes a bug in the escaped_string() helper function, which used to unconditionally pass a length of "end-buf" to string_escape_mem(); since the latter doesn't check osz for being insanely large, it would happily write to dst. For example, kasprintf(GFP_KERNEL, "something and then %pE", ...); is an easy way to trigger an oops. In test-string_helpers.c, the -ENOMEM test is replaced with testing for getting the expected return value even if the buffer is too small. We also ensure that nothing is written (by relying on a NULL pointer deref) if the output size is 0 by passing NULL - this has to work for kasprintf("%pE") to work. In net/sunrpc/cache.c, I think qword_add still has the same semantics. Someone should definitely double-check this. In fs/proc/array.c, I made the minimum possible change, but longer-term it should stop poking around in seq_file internals. [andriy.shevchenko@linux.intel.com: simplify qword_add] [andriy.shevchenko@linux.intel.com: add missed curly braces] Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:17:28 +08:00
int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz,
unsigned int flags, const char *only);
static inline int string_escape_mem_any_np(const char *src, size_t isz,
char *dst, size_t osz, const char *only)
{
return string_escape_mem(src, isz, dst, osz, ESCAPE_ANY_NP, only);
}
lib/string_helpers.c: change semantics of string_escape_mem The current semantics of string_escape_mem are inadequate for one of its current users, vsnprintf(). If that is to honour its contract, it must know how much space would be needed for the entire escaped buffer, and string_escape_mem provides no way of obtaining that (short of allocating a large enough buffer (~4 times input string) to let it play with, and that's definitely a big no-no inside vsnprintf). So change the semantics for string_escape_mem to be more snprintf-like: Return the size of the output that would be generated if the destination buffer was big enough, but of course still only write to the part of dst it is allowed to, and (contrary to snprintf) don't do '\0'-termination. It is then up to the caller to detect whether output was truncated and to append a '\0' if desired. Also, we must output partial escape sequences, otherwise a call such as snprintf(buf, 3, "%1pE", "\123") would cause printf to write a \0 to buf[2] but leaving buf[0] and buf[1] with whatever they previously contained. This also fixes a bug in the escaped_string() helper function, which used to unconditionally pass a length of "end-buf" to string_escape_mem(); since the latter doesn't check osz for being insanely large, it would happily write to dst. For example, kasprintf(GFP_KERNEL, "something and then %pE", ...); is an easy way to trigger an oops. In test-string_helpers.c, the -ENOMEM test is replaced with testing for getting the expected return value even if the buffer is too small. We also ensure that nothing is written (by relying on a NULL pointer deref) if the output size is 0 by passing NULL - this has to work for kasprintf("%pE") to work. In net/sunrpc/cache.c, I think qword_add still has the same semantics. Someone should definitely double-check this. In fs/proc/array.c, I made the minimum possible change, but longer-term it should stop poking around in seq_file internals. [andriy.shevchenko@linux.intel.com: simplify qword_add] [andriy.shevchenko@linux.intel.com: add missed curly braces] Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:17:28 +08:00
static inline int string_escape_str(const char *src, char *dst, size_t sz,
unsigned int flags, const char *only)
{
return string_escape_mem(src, strlen(src), dst, sz, flags, only);
}
lib/string_helpers.c: change semantics of string_escape_mem The current semantics of string_escape_mem are inadequate for one of its current users, vsnprintf(). If that is to honour its contract, it must know how much space would be needed for the entire escaped buffer, and string_escape_mem provides no way of obtaining that (short of allocating a large enough buffer (~4 times input string) to let it play with, and that's definitely a big no-no inside vsnprintf). So change the semantics for string_escape_mem to be more snprintf-like: Return the size of the output that would be generated if the destination buffer was big enough, but of course still only write to the part of dst it is allowed to, and (contrary to snprintf) don't do '\0'-termination. It is then up to the caller to detect whether output was truncated and to append a '\0' if desired. Also, we must output partial escape sequences, otherwise a call such as snprintf(buf, 3, "%1pE", "\123") would cause printf to write a \0 to buf[2] but leaving buf[0] and buf[1] with whatever they previously contained. This also fixes a bug in the escaped_string() helper function, which used to unconditionally pass a length of "end-buf" to string_escape_mem(); since the latter doesn't check osz for being insanely large, it would happily write to dst. For example, kasprintf(GFP_KERNEL, "something and then %pE", ...); is an easy way to trigger an oops. In test-string_helpers.c, the -ENOMEM test is replaced with testing for getting the expected return value even if the buffer is too small. We also ensure that nothing is written (by relying on a NULL pointer deref) if the output size is 0 by passing NULL - this has to work for kasprintf("%pE") to work. In net/sunrpc/cache.c, I think qword_add still has the same semantics. Someone should definitely double-check this. In fs/proc/array.c, I made the minimum possible change, but longer-term it should stop poking around in seq_file internals. [andriy.shevchenko@linux.intel.com: simplify qword_add] [andriy.shevchenko@linux.intel.com: add missed curly braces] Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 07:17:28 +08:00
static inline int string_escape_str_any_np(const char *src, char *dst,
size_t sz, const char *only)
{
return string_escape_str(src, dst, sz, ESCAPE_ANY_NP, only);
}
static inline void string_upper(char *dst, const char *src)
{
do {
*dst++ = toupper(*src);
} while (*src++);
}
static inline void string_lower(char *dst, const char *src)
{
do {
*dst++ = tolower(*src);
} while (*src++);
}
char *kstrdup_quotable(const char *src, gfp_t gfp);
char *kstrdup_quotable_cmdline(struct task_struct *task, gfp_t gfp);
char *kstrdup_quotable_file(struct file *file, gfp_t gfp);
char **kasprintf_strarray(gfp_t gfp, const char *prefix, size_t n);
void kfree_strarray(char **array, size_t n);
char **devm_kasprintf_strarray(struct device *dev, const char *prefix, size_t n);
#endif