OpenCloudOS-Kernel/arch/riscv/kernel/cpufeature.c

304 lines
7.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copied from arch/arm64/kernel/cpufeature.c
*
* Copyright (C) 2015 ARM Ltd.
* Copyright (C) 2017 SiFive
*/
#include <linux/bitmap.h>
#include <linux/ctype.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#include <linux/libfdt.h>
#include <linux/log2.h>
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-13 03:47:36 +08:00
#include <linux/memory.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#include <linux/module.h>
#include <linux/of.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#include <asm/alternative.h>
#include <asm/cacheflush.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#include <asm/errata_list.h>
#include <asm/hwcap.h>
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#include <asm/patch.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/smp.h>
#include <asm/switch_to.h>
#define NUM_ALPHA_EXTS ('z' - 'a' + 1)
unsigned long elf_hwcap __read_mostly;
/* Host ISA bitmap */
static DECLARE_BITMAP(riscv_isa, RISCV_ISA_EXT_MAX) __read_mostly;
/**
* riscv_isa_extension_base() - Get base extension word
*
* @isa_bitmap: ISA bitmap to use
* Return: base extension word as unsigned long value
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
unsigned long riscv_isa_extension_base(const unsigned long *isa_bitmap)
{
if (!isa_bitmap)
return riscv_isa[0];
return isa_bitmap[0];
}
EXPORT_SYMBOL_GPL(riscv_isa_extension_base);
/**
* __riscv_isa_extension_available() - Check whether given extension
* is available or not
*
* @isa_bitmap: ISA bitmap to use
* @bit: bit position of the desired extension
* Return: true or false
*
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
*/
bool __riscv_isa_extension_available(const unsigned long *isa_bitmap, int bit)
{
const unsigned long *bmap = (isa_bitmap) ? isa_bitmap : riscv_isa;
if (bit >= RISCV_ISA_EXT_MAX)
return false;
return test_bit(bit, bmap) ? true : false;
}
EXPORT_SYMBOL_GPL(__riscv_isa_extension_available);
static bool riscv_isa_extension_check(int id)
{
switch (id) {
case RISCV_ISA_EXT_ZICBOM:
if (!riscv_cbom_block_size) {
pr_err("Zicbom detected in ISA string, but no cbom-block-size found\n");
return false;
} else if (!is_power_of_2(riscv_cbom_block_size)) {
pr_err("cbom-block-size present, but is not a power-of-2\n");
return false;
}
return true;
}
return true;
}
void __init riscv_fill_hwcap(void)
{
struct device_node *node;
const char *isa;
char print_str[NUM_ALPHA_EXTS + 1];
int i, j, rc;
unsigned long isa2hwcap[26] = {0};
unsigned long hartid;
isa2hwcap['i' - 'a'] = COMPAT_HWCAP_ISA_I;
isa2hwcap['m' - 'a'] = COMPAT_HWCAP_ISA_M;
isa2hwcap['a' - 'a'] = COMPAT_HWCAP_ISA_A;
isa2hwcap['f' - 'a'] = COMPAT_HWCAP_ISA_F;
isa2hwcap['d' - 'a'] = COMPAT_HWCAP_ISA_D;
isa2hwcap['c' - 'a'] = COMPAT_HWCAP_ISA_C;
elf_hwcap = 0;
bitmap_zero(riscv_isa, RISCV_ISA_EXT_MAX);
for_each_of_cpu_node(node) {
unsigned long this_hwcap = 0;
DECLARE_BITMAP(this_isa, RISCV_ISA_EXT_MAX);
const char *temp;
rc = riscv_of_processor_hartid(node, &hartid);
if (rc < 0)
continue;
if (of_property_read_string(node, "riscv,isa", &isa)) {
pr_warn("Unable to find \"riscv,isa\" devicetree entry\n");
continue;
}
temp = isa;
#if IS_ENABLED(CONFIG_32BIT)
if (!strncmp(isa, "rv32", 4))
isa += 4;
#elif IS_ENABLED(CONFIG_64BIT)
if (!strncmp(isa, "rv64", 4))
isa += 4;
#endif
/* The riscv,isa DT property must start with rv64 or rv32 */
if (temp == isa)
continue;
bitmap_zero(this_isa, RISCV_ISA_EXT_MAX);
for (; *isa; ++isa) {
const char *ext = isa++;
const char *ext_end = isa;
bool ext_long = false, ext_err = false;
switch (*ext) {
case 's':
/**
* Workaround for invalid single-letter 's' & 'u'(QEMU).
* No need to set the bit in riscv_isa as 's' & 'u' are
* not valid ISA extensions. It works until multi-letter
* extension starting with "Su" appears.
*/
if (ext[-1] != '_' && ext[1] == 'u') {
++isa;
ext_err = true;
break;
}
fallthrough;
case 'x':
case 'z':
ext_long = true;
/* Multi-letter extension must be delimited */
for (; *isa && *isa != '_'; ++isa)
if (unlikely(!islower(*isa)
&& !isdigit(*isa)))
ext_err = true;
/* Parse backwards */
ext_end = isa;
if (unlikely(ext_err))
break;
if (!isdigit(ext_end[-1]))
break;
/* Skip the minor version */
while (isdigit(*--ext_end))
;
if (ext_end[0] != 'p'
|| !isdigit(ext_end[-1])) {
/* Advance it to offset the pre-decrement */
++ext_end;
break;
}
/* Skip the major version */
while (isdigit(*--ext_end))
;
++ext_end;
break;
default:
if (unlikely(!islower(*ext))) {
ext_err = true;
break;
}
/* Find next extension */
if (!isdigit(*isa))
break;
/* Skip the minor version */
while (isdigit(*++isa))
;
if (*isa != 'p')
break;
if (!isdigit(*++isa)) {
--isa;
break;
}
/* Skip the major version */
while (isdigit(*++isa))
;
break;
}
if (*isa != '_')
--isa;
#define SET_ISA_EXT_MAP(name, bit) \
do { \
if ((ext_end - ext == sizeof(name) - 1) && \
!memcmp(ext, name, sizeof(name) - 1) && \
riscv_isa_extension_check(bit)) \
set_bit(bit, this_isa); \
} while (false) \
if (unlikely(ext_err))
continue;
if (!ext_long) {
int nr = *ext - 'a';
if (riscv_isa_extension_check(nr)) {
this_hwcap |= isa2hwcap[nr];
set_bit(nr, this_isa);
}
} else {
/* sorted alphabetically */
SET_ISA_EXT_MAP("sscofpmf", RISCV_ISA_EXT_SSCOFPMF);
SET_ISA_EXT_MAP("sstc", RISCV_ISA_EXT_SSTC);
SET_ISA_EXT_MAP("svinval", RISCV_ISA_EXT_SVINVAL);
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
SET_ISA_EXT_MAP("svpbmt", RISCV_ISA_EXT_SVPBMT);
SET_ISA_EXT_MAP("zbb", RISCV_ISA_EXT_ZBB);
SET_ISA_EXT_MAP("zicbom", RISCV_ISA_EXT_ZICBOM);
SET_ISA_EXT_MAP("zihintpause", RISCV_ISA_EXT_ZIHINTPAUSE);
}
#undef SET_ISA_EXT_MAP
}
/*
* All "okay" hart should have same isa. Set HWCAP based on
* common capabilities of every "okay" hart, in case they don't
* have.
*/
if (elf_hwcap)
elf_hwcap &= this_hwcap;
else
elf_hwcap = this_hwcap;
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
bitmap_copy(riscv_isa, this_isa, RISCV_ISA_EXT_MAX);
else
bitmap_and(riscv_isa, riscv_isa, this_isa, RISCV_ISA_EXT_MAX);
}
/* We don't support systems with F but without D, so mask those out
* here. */
if ((elf_hwcap & COMPAT_HWCAP_ISA_F) && !(elf_hwcap & COMPAT_HWCAP_ISA_D)) {
pr_info("This kernel does not support systems with F but not D\n");
elf_hwcap &= ~COMPAT_HWCAP_ISA_F;
}
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (riscv_isa[0] & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: base ISA extensions %s\n", print_str);
memset(print_str, 0, sizeof(print_str));
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
if (elf_hwcap & BIT_MASK(i))
print_str[j++] = (char)('a' + i);
pr_info("riscv: ELF capabilities %s\n", print_str);
}
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
#ifdef CONFIG_RISCV_ALTERNATIVE
void __init_or_module riscv_cpufeature_patch_func(struct alt_entry *begin,
struct alt_entry *end,
unsigned int stage)
{
struct alt_entry *alt;
void *oldptr, *altptr;
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
if (stage == RISCV_ALTERNATIVES_EARLY_BOOT)
return;
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
for (alt = begin; alt < end; alt++) {
if (alt->vendor_id != 0)
continue;
if (alt->errata_id >= RISCV_ISA_EXT_MAX) {
WARN(1, "This extension id:%d is not in ISA extension list",
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
alt->errata_id);
continue;
}
if (!__riscv_isa_extension_available(NULL, alt->errata_id))
continue;
oldptr = ALT_OLD_PTR(alt);
altptr = ALT_ALT_PTR(alt);
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-13 03:47:36 +08:00
mutex_lock(&text_mutex);
patch_text_nosync(oldptr, altptr, alt->alt_len);
riscv_alternative_fix_offsets(oldptr, alt->alt_len, oldptr - altptr);
RISC-V: take text_mutex during alternative patching Guenter reported a splat during boot, that Samuel pointed out was the lockdep assertion failing in patch_insn_write(): WARNING: CPU: 0 PID: 0 at arch/riscv/kernel/patch.c:63 patch_insn_write+0x222/0x2f6 epc : patch_insn_write+0x222/0x2f6 ra : patch_insn_write+0x21e/0x2f6 epc : ffffffff800068c6 ra : ffffffff800068c2 sp : ffffffff81803df0 gp : ffffffff81a1ab78 tp : ffffffff81814f80 t0 : ffffffffffffe000 t1 : 0000000000000001 t2 : 4c45203a76637369 s0 : ffffffff81803e40 s1 : 0000000000000004 a0 : 0000000000000000 a1 : ffffffffffffffff a2 : 0000000000000004 a3 : 0000000000000000 a4 : 0000000000000001 a5 : 0000000000000000 a6 : 0000000000000000 a7 : 0000000052464e43 s2 : ffffffff80b4889c s3 : 000000000000082c s4 : ffffffff80b48828 s5 : 0000000000000828 s6 : ffffffff8131a0a0 s7 : 0000000000000fff s8 : 0000000008000200 s9 : ffffffff8131a520 s10: 0000000000000018 s11: 000000000000000b t3 : 0000000000000001 t4 : 000000000000000d t5 : ffffffffd8180000 t6 : ffffffff81803bc8 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff800068c6>] patch_insn_write+0x222/0x2f6 [<ffffffff80006a36>] patch_text_nosync+0xc/0x2a [<ffffffff80003b86>] riscv_cpufeature_patch_func+0x52/0x98 [<ffffffff80003348>] _apply_alternatives+0x46/0x86 [<ffffffff80c02d36>] apply_boot_alternatives+0x3c/0xfa [<ffffffff80c03ad8>] setup_arch+0x584/0x5b8 [<ffffffff80c0075a>] start_kernel+0xa2/0x8f8 This issue was exposed by 702e64550b12 ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()"), as it is the patching in has_fpu() that triggers the splats in Guenter's report. Take the text_mutex before doing any code patching to satisfy lockdep. Fixes: ff689fd21cb1 ("riscv: add RISC-V Svpbmt extension support") Fixes: a35707c3d850 ("riscv: add memory-type errata for T-Head") Fixes: 1a0e5dbd3723 ("riscv: sifive: Add SiFive alternative ports") Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/20230212154333.GA3760469@roeck-us.net/ Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20230212194735.491785-1-conor@kernel.org Cc: stable@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-13 03:47:36 +08:00
mutex_unlock(&text_mutex);
riscv: add RISC-V Svpbmt extension support Svpbmt (the S should be capitalized) is the "Supervisor-mode: page-based memory types" extension that specifies attributes for cacheability, idempotency and ordering. The relevant settings are done in special bits in PTEs: Here is the svpbmt PTE format: | 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 N MT RSW D A G U X W R V ^ Of the Reserved bits [63:54] in a leaf PTE, the high bit is already allocated (as the N bit), so bits [62:61] are used as the MT (aka MemType) field. This field specifies one of three memory types that are close equivalents (or equivalent in effect) to the three main x86 and ARMv8 memory types - as shown in the following table. RISC-V Encoding & MemType RISC-V Description ---------- ------------------------------------------------ 00 - PMA Normal Cacheable, No change to implied PMA memory type 01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory 10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory 11 - Rsvd Reserved for future standard use As the extension will not be present on all implementations, implement a method to handle cpufeatures via alternatives to not incur runtime penalties on cpu variants not supporting specific extensions and patch relevant code parts at runtime. Co-developed-by: Wei Fu <wefu@redhat.com> Signed-off-by: Wei Fu <wefu@redhat.com> Co-developed-by: Liu Shaohua <liush@allwinnertech.com> Signed-off-by: Liu Shaohua <liush@allwinnertech.com> Co-developed-by: Guo Ren <guoren@kernel.org> Signed-off-by: Guo Ren <guoren@kernel.org> [moved to use the alternatives mechanism] Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu> Link: https://lore.kernel.org/r/20220511192921.2223629-10-heiko@sntech.de Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-05-12 03:29:18 +08:00
}
}
#endif