OpenCloudOS-Kernel/include/linux/jump_label.h

422 lines
12 KiB
C
Raw Normal View History

#ifndef _LINUX_JUMP_LABEL_H
#define _LINUX_JUMP_LABEL_H
/*
* Jump label support
*
* Copyright (C) 2009-2012 Jason Baron <jbaron@redhat.com>
* Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
*
* DEPRECATED API:
*
* The use of 'struct static_key' directly, is now DEPRECATED. In addition
* static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
*
* struct static_key false = STATIC_KEY_INIT_FALSE;
* struct static_key true = STATIC_KEY_INIT_TRUE;
* static_key_true()
* static_key_false()
*
* The updated API replacements are:
*
* DEFINE_STATIC_KEY_TRUE(key);
* DEFINE_STATIC_KEY_FALSE(key);
* DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
* DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
* static_branch_likely()
* static_branch_unlikely()
*
* Jump labels provide an interface to generate dynamic branches using
* self-modifying code. Assuming toolchain and architecture support, if we
* define a "key" that is initially false via "DEFINE_STATIC_KEY_FALSE(key)",
* an "if (static_branch_unlikely(&key))" statement is an unconditional branch
* (which defaults to false - and the true block is placed out of line).
* Similarly, we can define an initially true key via
* "DEFINE_STATIC_KEY_TRUE(key)", and use it in the same
* "if (static_branch_unlikely(&key))", in which case we will generate an
* unconditional branch to the out-of-line true branch. Keys that are
* initially true or false can be using in both static_branch_unlikely()
* and static_branch_likely() statements.
*
* At runtime we can change the branch target by setting the key
* to true via a call to static_branch_enable(), or false using
* static_branch_disable(). If the direction of the branch is switched by
* these calls then we run-time modify the branch target via a
* no-op -> jump or jump -> no-op conversion. For example, for an
* initially false key that is used in an "if (static_branch_unlikely(&key))"
* statement, setting the key to true requires us to patch in a jump
* to the out-of-line of true branch.
*
* In addition to static_branch_{enable,disable}, we can also reference count
* the key or branch direction via static_branch_{inc,dec}. Thus,
* static_branch_inc() can be thought of as a 'make more true' and
* static_branch_dec() as a 'make more false'.
*
* Since this relies on modifying code, the branch modifying functions
* must be considered absolute slow paths (machine wide synchronization etc.).
* OTOH, since the affected branches are unconditional, their runtime overhead
* will be absolutely minimal, esp. in the default (off) case where the total
* effect is a single NOP of appropriate size. The on case will patch in a jump
* to the out-of-line block.
*
* When the control is directly exposed to userspace, it is prudent to delay the
* decrement to avoid high frequency code modifications which can (and do)
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
* cause significant performance degradation. Struct static_key_deferred and
* static_key_slow_dec_deferred() provide for this.
*
* Lacking toolchain and or architecture support, static keys fall back to a
* simple conditional branch.
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
*
* Additional babbling in: Documentation/static-keys.txt
*/
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
#ifndef __ASSEMBLY__
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
#include <linux/types.h>
#include <linux/compiler.h>
extern bool static_key_initialized;
#define STATIC_KEY_CHECK_USE() WARN(!static_key_initialized, \
"%s used before call to jump_label_init", \
__func__)
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
#ifdef HAVE_JUMP_LABEL
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
struct static_key {
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
atomic_t enabled;
jump_label: Reduce the size of struct static_key The static_key->next field goes mostly unused. The field is used for associating module uses with a static key. Most uses of struct static_key define a static key in the core kernel and make use of it entirely within the core kernel, or define the static key in a module and make use of it only from within that module. In fact, of the ~3,000 static keys defined, I found only about 5 or so that did not fit this pattern. Thus, we can remove the static_key->next field entirely and overload the static_key->entries field. That is, when all the static_key uses are contained within the same module, static_key->entries continues to point to those uses. However, if the static_key uses are not contained within the module where the static_key is defined, then we allocate a struct static_key_mod, store a pointer to the uses within that struct static_key_mod, and have the static key point at the static_key_mod. This does incur some extra memory usage when a static_key is used in a module that does not define it, but since there are only a handful of such cases there is a net savings. In order to identify if the static_key->entries pointer contains a struct static_key_mod or a struct jump_entry pointer, bit 1 of static_key->entries is set to 1 if it points to a struct static_key_mod and is 0 if it points to a struct jump_entry. We were already using bit 0 in a similar way to store the initial value of the static_key. This does mean that allocations of struct static_key_mod and that the struct jump_entry tables need to be at least 4-byte aligned in memory. As far as I can tell all arches meet this criteria. For my .config, the patch increased the text by 778 bytes, but reduced the data + bss size by 14912, for a net savings of 14,134 bytes. text data bss dec hex filename 8092427 5016512 790528 13899467 d416cb vmlinux.pre 8093205 5001600 790528 13885333 d3df95 vmlinux.post Link: http://lkml.kernel.org/r/1486154544-4321-1-git-send-email-jbaron@akamai.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Jason Baron <jbaron@akamai.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-02-04 04:42:24 +08:00
/*
* Note:
* To make anonymous unions work with old compilers, the static
* initialization of them requires brackets. This creates a dependency
* on the order of the struct with the initializers. If any fields
* are added, STATIC_KEY_INIT_TRUE and STATIC_KEY_INIT_FALSE may need
* to be modified.
*
jump_label: Reduce the size of struct static_key The static_key->next field goes mostly unused. The field is used for associating module uses with a static key. Most uses of struct static_key define a static key in the core kernel and make use of it entirely within the core kernel, or define the static key in a module and make use of it only from within that module. In fact, of the ~3,000 static keys defined, I found only about 5 or so that did not fit this pattern. Thus, we can remove the static_key->next field entirely and overload the static_key->entries field. That is, when all the static_key uses are contained within the same module, static_key->entries continues to point to those uses. However, if the static_key uses are not contained within the module where the static_key is defined, then we allocate a struct static_key_mod, store a pointer to the uses within that struct static_key_mod, and have the static key point at the static_key_mod. This does incur some extra memory usage when a static_key is used in a module that does not define it, but since there are only a handful of such cases there is a net savings. In order to identify if the static_key->entries pointer contains a struct static_key_mod or a struct jump_entry pointer, bit 1 of static_key->entries is set to 1 if it points to a struct static_key_mod and is 0 if it points to a struct jump_entry. We were already using bit 0 in a similar way to store the initial value of the static_key. This does mean that allocations of struct static_key_mod and that the struct jump_entry tables need to be at least 4-byte aligned in memory. As far as I can tell all arches meet this criteria. For my .config, the patch increased the text by 778 bytes, but reduced the data + bss size by 14912, for a net savings of 14,134 bytes. text data bss dec hex filename 8092427 5016512 790528 13899467 d416cb vmlinux.pre 8093205 5001600 790528 13885333 d3df95 vmlinux.post Link: http://lkml.kernel.org/r/1486154544-4321-1-git-send-email-jbaron@akamai.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Jason Baron <jbaron@akamai.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-02-04 04:42:24 +08:00
* bit 0 => 1 if key is initially true
* 0 if initially false
* bit 1 => 1 if points to struct static_key_mod
* 0 if points to struct jump_entry
*/
union {
unsigned long type;
struct jump_entry *entries;
struct static_key_mod *next;
};
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
};
#else
struct static_key {
atomic_t enabled;
};
#endif /* HAVE_JUMP_LABEL */
#endif /* __ASSEMBLY__ */
#ifdef HAVE_JUMP_LABEL
#include <asm/jump_label.h>
#endif
#ifndef __ASSEMBLY__
enum jump_label_type {
JUMP_LABEL_NOP = 0,
JUMP_LABEL_JMP,
};
struct module;
locking/static_key: Fix concurrent static_key_slow_inc() The following scenario is possible: CPU 1 CPU 2 static_key_slow_inc() atomic_inc_not_zero() -> key.enabled == 0, no increment jump_label_lock() atomic_inc_return() -> key.enabled == 1 now static_key_slow_inc() atomic_inc_not_zero() -> key.enabled == 1, inc to 2 return ** static key is wrong! jump_label_update() jump_label_unlock() Testing the static key at the point marked by (**) will follow the wrong path for jumps that have not been patched yet. This can actually happen when creating many KVM virtual machines with userspace LAPIC emulation; just run several copies of the following program: #include <fcntl.h> #include <unistd.h> #include <sys/ioctl.h> #include <linux/kvm.h> int main(void) { for (;;) { int kvmfd = open("/dev/kvm", O_RDONLY); int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); close(ioctl(vmfd, KVM_CREATE_VCPU, 1)); close(vmfd); close(kvmfd); } return 0; } Every KVM_CREATE_VCPU ioctl will attempt a static_key_slow_inc() call. The static key's purpose is to skip NULL pointer checks and indeed one of the processes eventually dereferences NULL. As explained in the commit that introduced the bug: 706249c222f6 ("locking/static_keys: Rework update logic") jump_label_update() needs key.enabled to be true. The solution adopted here is to temporarily make key.enabled == -1, and use go down the slow path when key.enabled <= 0. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> # v4.3+ Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 706249c222f6 ("locking/static_keys: Rework update logic") Link: http://lkml.kernel.org/r/1466527937-69798-1-git-send-email-pbonzini@redhat.com [ Small stylistic edits to the changelog and the code. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 00:52:17 +08:00
#ifdef HAVE_JUMP_LABEL
jump_label: Reduce the size of struct static_key The static_key->next field goes mostly unused. The field is used for associating module uses with a static key. Most uses of struct static_key define a static key in the core kernel and make use of it entirely within the core kernel, or define the static key in a module and make use of it only from within that module. In fact, of the ~3,000 static keys defined, I found only about 5 or so that did not fit this pattern. Thus, we can remove the static_key->next field entirely and overload the static_key->entries field. That is, when all the static_key uses are contained within the same module, static_key->entries continues to point to those uses. However, if the static_key uses are not contained within the module where the static_key is defined, then we allocate a struct static_key_mod, store a pointer to the uses within that struct static_key_mod, and have the static key point at the static_key_mod. This does incur some extra memory usage when a static_key is used in a module that does not define it, but since there are only a handful of such cases there is a net savings. In order to identify if the static_key->entries pointer contains a struct static_key_mod or a struct jump_entry pointer, bit 1 of static_key->entries is set to 1 if it points to a struct static_key_mod and is 0 if it points to a struct jump_entry. We were already using bit 0 in a similar way to store the initial value of the static_key. This does mean that allocations of struct static_key_mod and that the struct jump_entry tables need to be at least 4-byte aligned in memory. As far as I can tell all arches meet this criteria. For my .config, the patch increased the text by 778 bytes, but reduced the data + bss size by 14912, for a net savings of 14,134 bytes. text data bss dec hex filename 8092427 5016512 790528 13899467 d416cb vmlinux.pre 8093205 5001600 790528 13885333 d3df95 vmlinux.post Link: http://lkml.kernel.org/r/1486154544-4321-1-git-send-email-jbaron@akamai.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Jason Baron <jbaron@akamai.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-02-04 04:42:24 +08:00
#define JUMP_TYPE_FALSE 0UL
#define JUMP_TYPE_TRUE 1UL
#define JUMP_TYPE_LINKED 2UL
#define JUMP_TYPE_MASK 3UL
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static __always_inline bool static_key_false(struct static_key *key)
{
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
return arch_static_branch(key, false);
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
}
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static __always_inline bool static_key_true(struct static_key *key)
{
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
return !arch_static_branch(key, true);
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
}
extern struct jump_entry __start___jump_table[];
extern struct jump_entry __stop___jump_table[];
extern void jump_label_init(void);
extern void jump_label_lock(void);
extern void jump_label_unlock(void);
extern void arch_jump_label_transform(struct jump_entry *entry,
enum jump_label_type type);
extern void arch_jump_label_transform_static(struct jump_entry *entry,
enum jump_label_type type);
extern int jump_label_text_reserved(void *start, void *end);
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
extern void static_key_slow_inc(struct static_key *key);
extern void static_key_slow_dec(struct static_key *key);
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
extern void jump_label_apply_nops(struct module *mod);
extern int static_key_count(struct static_key *key);
extern void static_key_enable(struct static_key *key);
extern void static_key_disable(struct static_key *key);
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
/*
* We should be using ATOMIC_INIT() for initializing .enabled, but
* the inclusion of atomic.h is problematic for inclusion of jump_label.h
* in 'low-level' headers. Thus, we are initializing .enabled with a
* raw value, but have added a BUILD_BUG_ON() to catch any issues in
* jump_label_init() see: kernel/jump_label.c.
*/
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
#define STATIC_KEY_INIT_TRUE \
{ .enabled = { 1 }, \
{ .entries = (void *)JUMP_TYPE_TRUE } }
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
#define STATIC_KEY_INIT_FALSE \
{ .enabled = { 0 }, \
{ .entries = (void *)JUMP_TYPE_FALSE } }
#else /* !HAVE_JUMP_LABEL */
#include <linux/atomic.h>
#include <linux/bug.h>
locking/static_key: Fix concurrent static_key_slow_inc() The following scenario is possible: CPU 1 CPU 2 static_key_slow_inc() atomic_inc_not_zero() -> key.enabled == 0, no increment jump_label_lock() atomic_inc_return() -> key.enabled == 1 now static_key_slow_inc() atomic_inc_not_zero() -> key.enabled == 1, inc to 2 return ** static key is wrong! jump_label_update() jump_label_unlock() Testing the static key at the point marked by (**) will follow the wrong path for jumps that have not been patched yet. This can actually happen when creating many KVM virtual machines with userspace LAPIC emulation; just run several copies of the following program: #include <fcntl.h> #include <unistd.h> #include <sys/ioctl.h> #include <linux/kvm.h> int main(void) { for (;;) { int kvmfd = open("/dev/kvm", O_RDONLY); int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); close(ioctl(vmfd, KVM_CREATE_VCPU, 1)); close(vmfd); close(kvmfd); } return 0; } Every KVM_CREATE_VCPU ioctl will attempt a static_key_slow_inc() call. The static key's purpose is to skip NULL pointer checks and indeed one of the processes eventually dereferences NULL. As explained in the commit that introduced the bug: 706249c222f6 ("locking/static_keys: Rework update logic") jump_label_update() needs key.enabled to be true. The solution adopted here is to temporarily make key.enabled == -1, and use go down the slow path when key.enabled <= 0. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> # v4.3+ Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 706249c222f6 ("locking/static_keys: Rework update logic") Link: http://lkml.kernel.org/r/1466527937-69798-1-git-send-email-pbonzini@redhat.com [ Small stylistic edits to the changelog and the code. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 00:52:17 +08:00
static inline int static_key_count(struct static_key *key)
{
return atomic_read(&key->enabled);
}
static __always_inline void jump_label_init(void)
{
static_key_initialized = true;
}
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static __always_inline bool static_key_false(struct static_key *key)
{
if (unlikely(static_key_count(key) > 0))
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
return true;
return false;
}
static __always_inline bool static_key_true(struct static_key *key)
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
{
if (likely(static_key_count(key) > 0))
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
return true;
return false;
}
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static inline void static_key_slow_inc(struct static_key *key)
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
{
STATIC_KEY_CHECK_USE();
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
atomic_inc(&key->enabled);
}
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static inline void static_key_slow_dec(struct static_key *key)
{
STATIC_KEY_CHECK_USE();
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
atomic_dec(&key->enabled);
}
static inline int jump_label_text_reserved(void *start, void *end)
{
return 0;
}
static inline void jump_label_lock(void) {}
static inline void jump_label_unlock(void) {}
jump label: Introduce static_branch() interface Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: Jason Baron <jbaron@redhat.com> Suggested-by: H. Peter Anvin <hpa@linux.intel.com> Tested-by: David Daney <ddaney@caviumnetworks.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-03-17 05:29:47 +08:00
static inline int jump_label_apply_nops(struct module *mod)
{
return 0;
}
static inline void static_key_enable(struct static_key *key)
{
int count = static_key_count(key);
WARN_ON_ONCE(count < 0 || count > 1);
if (!count)
static_key_slow_inc(key);
}
static inline void static_key_disable(struct static_key *key)
{
int count = static_key_count(key);
WARN_ON_ONCE(count < 0 || count > 1);
if (count)
static_key_slow_dec(key);
}
#define STATIC_KEY_INIT_TRUE { .enabled = ATOMIC_INIT(1) }
#define STATIC_KEY_INIT_FALSE { .enabled = ATOMIC_INIT(0) }
#endif /* HAVE_JUMP_LABEL */
#define STATIC_KEY_INIT STATIC_KEY_INIT_FALSE
#define jump_label_enabled static_key_enabled
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
/* -------------------------------------------------------------------------- */
/*
* Two type wrappers around static_key, such that we can use compile time
* type differentiation to emit the right code.
*
* All the below code is macros in order to play type games.
*/
struct static_key_true {
struct static_key key;
};
struct static_key_false {
struct static_key key;
};
#define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, }
#define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, }
#define DEFINE_STATIC_KEY_TRUE(name) \
struct static_key_true name = STATIC_KEY_TRUE_INIT
#define DECLARE_STATIC_KEY_TRUE(name) \
extern struct static_key_true name
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
#define DEFINE_STATIC_KEY_FALSE(name) \
struct static_key_false name = STATIC_KEY_FALSE_INIT
#define DECLARE_STATIC_KEY_FALSE(name) \
extern struct static_key_false name
#define DEFINE_STATIC_KEY_ARRAY_TRUE(name, count) \
struct static_key_true name[count] = { \
[0 ... (count) - 1] = STATIC_KEY_TRUE_INIT, \
}
#define DEFINE_STATIC_KEY_ARRAY_FALSE(name, count) \
struct static_key_false name[count] = { \
[0 ... (count) - 1] = STATIC_KEY_FALSE_INIT, \
}
extern bool ____wrong_branch_error(void);
#define static_key_enabled(x) \
({ \
if (!__builtin_types_compatible_p(typeof(*x), struct static_key) && \
!__builtin_types_compatible_p(typeof(*x), struct static_key_true) &&\
!__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \
____wrong_branch_error(); \
static_key_count((struct static_key *)x) > 0; \
})
locking/static_keys: Add a new static_key interface There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-24 21:09:55 +08:00
#ifdef HAVE_JUMP_LABEL
/*
* Combine the right initial value (type) with the right branch order
* to generate the desired result.
*
*
* type\branch| likely (1) | unlikely (0)
* -----------+-----------------------+------------------
* | |
* true (1) | ... | ...
* | NOP | JMP L
* | <br-stmts> | 1: ...
* | L: ... |
* | |
* | | L: <br-stmts>
* | | jmp 1b
* | |
* -----------+-----------------------+------------------
* | |
* false (0) | ... | ...
* | JMP L | NOP
* | <br-stmts> | 1: ...
* | L: ... |
* | |
* | | L: <br-stmts>
* | | jmp 1b
* | |
* -----------+-----------------------+------------------
*
* The initial value is encoded in the LSB of static_key::entries,
* type: 0 = false, 1 = true.
*
* The branch type is encoded in the LSB of jump_entry::key,
* branch: 0 = unlikely, 1 = likely.
*
* This gives the following logic table:
*
* enabled type branch instuction
* -----------------------------+-----------
* 0 0 0 | NOP
* 0 0 1 | JMP
* 0 1 0 | NOP
* 0 1 1 | JMP
*
* 1 0 0 | JMP
* 1 0 1 | NOP
* 1 1 0 | JMP
* 1 1 1 | NOP
*
* Which gives the following functions:
*
* dynamic: instruction = enabled ^ branch
* static: instruction = type ^ branch
*
* See jump_label_type() / jump_label_init_type().
*/
#define static_branch_likely(x) \
({ \
bool branch; \
if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \
branch = !arch_static_branch(&(x)->key, true); \
else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \
branch = !arch_static_branch_jump(&(x)->key, true); \
else \
branch = ____wrong_branch_error(); \
branch; \
})
#define static_branch_unlikely(x) \
({ \
bool branch; \
if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \
branch = arch_static_branch_jump(&(x)->key, false); \
else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \
branch = arch_static_branch(&(x)->key, false); \
else \
branch = ____wrong_branch_error(); \
branch; \
})
#else /* !HAVE_JUMP_LABEL */
#define static_branch_likely(x) likely(static_key_enabled(&(x)->key))
#define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key))
#endif /* HAVE_JUMP_LABEL */
/*
* Advanced usage; refcount, branch is enabled when: count != 0
*/
#define static_branch_inc(x) static_key_slow_inc(&(x)->key)
#define static_branch_dec(x) static_key_slow_dec(&(x)->key)
/*
* Normal usage; boolean enable/disable.
*/
#define static_branch_enable(x) static_key_enable(&(x)->key)
#define static_branch_disable(x) static_key_disable(&(x)->key)
#endif /* __ASSEMBLY__ */
#endif /* _LINUX_JUMP_LABEL_H */