License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifndef __LINUX_CPUMASK_H
|
|
|
|
#define __LINUX_CPUMASK_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Cpumasks provide a bitmap suitable for representing the
|
2009-09-24 23:34:53 +08:00
|
|
|
* set of CPU's in a system, one bit position per CPU number. In general,
|
|
|
|
* only nr_cpu_ids (<= NR_CPUS) bits are valid.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/threads.h>
|
|
|
|
#include <linux/bitmap.h>
|
2019-07-09 22:23:40 +08:00
|
|
|
#include <linux/atomic.h>
|
2011-11-24 09:12:59 +08:00
|
|
|
#include <linux/bug.h>
|
2022-07-01 20:54:30 +08:00
|
|
|
#include <linux/gfp_types.h>
|
|
|
|
#include <linux/numa.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2015-03-05 08:19:19 +08:00
|
|
|
/* Don't assign or return these: may not be this big! */
|
2008-11-05 10:39:10 +08:00
|
|
|
typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-12-30 06:35:15 +08:00
|
|
|
/**
|
2009-09-24 23:34:53 +08:00
|
|
|
* cpumask_bits - get the bits in a cpumask
|
|
|
|
* @maskp: the struct cpumask *
|
2008-12-30 06:35:15 +08:00
|
|
|
*
|
2009-09-24 23:34:53 +08:00
|
|
|
* You should only assume nr_cpu_ids bits of this mask are valid. This is
|
|
|
|
* a macro so it's const-correct.
|
2008-12-30 06:35:15 +08:00
|
|
|
*/
|
2009-09-24 23:34:53 +08:00
|
|
|
#define cpumask_bits(maskp) ((maskp)->bits)
|
mempolicy: add bitmap_onto() and bitmap_fold() operations
The following adds two more bitmap operators, bitmap_onto() and bitmap_fold(),
with the usual cpumask and nodemask wrappers.
The bitmap_onto() operator computes one bitmap relative to another. If the
n-th bit in the origin mask is set, then the m-th bit of the destination mask
will be set, where m is the position of the n-th set bit in the relative mask.
The bitmap_fold() operator folds a bitmap into a second that has bit m set iff
the input bitmap has some bit n set, where m == n mod sz, for the specified sz
value.
There are two substantive changes between this patch and its
predecessor bitmap_relative:
1) Renamed bitmap_relative() to be bitmap_onto().
2) Added bitmap_fold().
The essential motivation for bitmap_onto() is to provide a mechanism for
converting a cpuset-relative CPU or Node mask to an absolute mask. Cpuset
relative masks are written as if the current task were in a cpuset whose CPUs
or Nodes were just the consecutive ones numbered 0..N-1, for some N. The
bitmap_onto() operator is provided in anticipation of adding support for the
first such cpuset relative mask, by the mbind() and set_mempolicy() system
calls, using a planned flag of MPOL_F_RELATIVE_NODES. These bitmap operators
(and their nodemask wrappers, in particular) will be used in code that
converts the user specified cpuset relative memory policy to a specific system
node numbered policy, given the current mems_allowed of the tasks cpuset.
Such cpuset relative mempolicies will address two deficiencies
of the existing interface between cpusets and mempolicies:
1) A task cannot at present reliably establish a cpuset
relative mempolicy because there is an essential race
condition, in that the tasks cpuset may be changed in
between the time the task can query its cpuset placement,
and the time the task can issue the applicable mbind or
set_memplicy system call.
2) A task cannot at present establish what cpuset relative
mempolicy it would like to have, if it is in a smaller
cpuset than it might have mempolicy preferences for,
because the existing interface only allows specifying
mempolicies for nodes currently allowed by the cpuset.
Cpuset relative mempolicies are useful for tasks that don't distinguish
particularly between one CPU or Node and another, but only between how many of
each are allowed, and the proper placement of threads and memory pages on the
various CPUs and Nodes available.
The motivation for the added bitmap_fold() can be seen in the following
example.
Let's say an application has specified some mempolicies that presume 16 memory
nodes, including say a mempolicy that specified MPOL_F_RELATIVE_NODES (cpuset
relative) nodes 12-15. Then lets say that application is crammed into a
cpuset that only has 8 memory nodes, 0-7. If one just uses bitmap_onto(),
this mempolicy, mapped to that cpuset, would ignore the requested relative
nodes above 7, leaving it empty of nodes. That's not good; better to fold the
higher nodes down, so that some nodes are included in the resulting mapped
mempolicy. In this case, the mempolicy nodes 12-15 are taken modulo 8 (the
weight of the mems_allowed of the confining cpuset), resulting in a mempolicy
specifying nodes 4-7.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: <kosaki.motohiro@jp.fujitsu.com>
Cc: <ray-lk@madrabbit.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:29 +08:00
|
|
|
|
2015-02-14 06:36:57 +08:00
|
|
|
/**
|
|
|
|
* cpumask_pr_args - printf args to output a cpumask
|
|
|
|
* @maskp: cpumask to be printed
|
|
|
|
*
|
|
|
|
* Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
|
|
|
|
*/
|
|
|
|
#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
|
|
|
|
|
lib/cpumask: add FORCE_NR_CPUS config option
The size of cpumasks is hard-limited by compile-time parameter NR_CPUS,
but defined at boot-time when kernel parses ACPI/DT tables, and stored in
nr_cpu_ids. In many practical cases, number of CPUs for a target is known
at compile time, and can be provided with NR_CPUS.
In that case, compiler may be instructed to rely on NR_CPUS as on actual
number of CPUs, not an upper limit. It allows to optimize many cpumask
routines and significantly shrink size of the kernel image.
This patch adds FORCE_NR_CPUS option to teach the compiler to rely on
NR_CPUS and enable corresponding optimizations.
If FORCE_NR_CPUS=y, kernel will not set nr_cpu_ids at boot, but only check
that the actual number of possible CPUs is equal to NR_CPUS, and WARN if
that doesn't hold.
The new option is especially useful in embedded applications because
kernel configurations are unique for each SoC, the number of CPUs is
constant and known well, and memory limitations are typically harder.
For my 4-CPU ARM64 build with NR_CPUS=4, FORCE_NR_CPUS=y saves 46KB:
add/remove: 3/4 grow/shrink: 46/729 up/down: 652/-46952 (-46300)
Signed-off-by: Yury Norov <yury.norov@gmail.com>
2022-09-06 07:08:20 +08:00
|
|
|
#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
|
|
|
|
#define nr_cpu_ids ((unsigned int)NR_CPUS)
|
2009-09-24 23:34:53 +08:00
|
|
|
#else
|
2017-09-09 07:14:18 +08:00
|
|
|
extern unsigned int nr_cpu_ids;
|
lib/cpumask: add FORCE_NR_CPUS config option
The size of cpumasks is hard-limited by compile-time parameter NR_CPUS,
but defined at boot-time when kernel parses ACPI/DT tables, and stored in
nr_cpu_ids. In many practical cases, number of CPUs for a target is known
at compile time, and can be provided with NR_CPUS.
In that case, compiler may be instructed to rely on NR_CPUS as on actual
number of CPUs, not an upper limit. It allows to optimize many cpumask
routines and significantly shrink size of the kernel image.
This patch adds FORCE_NR_CPUS option to teach the compiler to rely on
NR_CPUS and enable corresponding optimizations.
If FORCE_NR_CPUS=y, kernel will not set nr_cpu_ids at boot, but only check
that the actual number of possible CPUs is equal to NR_CPUS, and WARN if
that doesn't hold.
The new option is especially useful in embedded applications because
kernel configurations are unique for each SoC, the number of CPUs is
constant and known well, and memory limitations are typically harder.
For my 4-CPU ARM64 build with NR_CPUS=4, FORCE_NR_CPUS=y saves 46KB:
add/remove: 3/4 grow/shrink: 46/729 up/down: 652/-46952 (-46300)
Signed-off-by: Yury Norov <yury.norov@gmail.com>
2022-09-06 07:08:20 +08:00
|
|
|
#endif
|
2022-09-06 07:08:17 +08:00
|
|
|
|
|
|
|
static inline void set_nr_cpu_ids(unsigned int nr)
|
|
|
|
{
|
lib/cpumask: add FORCE_NR_CPUS config option
The size of cpumasks is hard-limited by compile-time parameter NR_CPUS,
but defined at boot-time when kernel parses ACPI/DT tables, and stored in
nr_cpu_ids. In many practical cases, number of CPUs for a target is known
at compile time, and can be provided with NR_CPUS.
In that case, compiler may be instructed to rely on NR_CPUS as on actual
number of CPUs, not an upper limit. It allows to optimize many cpumask
routines and significantly shrink size of the kernel image.
This patch adds FORCE_NR_CPUS option to teach the compiler to rely on
NR_CPUS and enable corresponding optimizations.
If FORCE_NR_CPUS=y, kernel will not set nr_cpu_ids at boot, but only check
that the actual number of possible CPUs is equal to NR_CPUS, and WARN if
that doesn't hold.
The new option is especially useful in embedded applications because
kernel configurations are unique for each SoC, the number of CPUs is
constant and known well, and memory limitations are typically harder.
For my 4-CPU ARM64 build with NR_CPUS=4, FORCE_NR_CPUS=y saves 46KB:
add/remove: 3/4 grow/shrink: 46/729 up/down: 652/-46952 (-46300)
Signed-off-by: Yury Norov <yury.norov@gmail.com>
2022-09-06 07:08:20 +08:00
|
|
|
#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
|
|
|
|
WARN_ON(nr != nr_cpu_ids);
|
|
|
|
#else
|
2022-09-06 07:08:17 +08:00
|
|
|
nr_cpu_ids = nr;
|
2008-05-13 03:21:13 +08:00
|
|
|
#endif
|
lib/cpumask: add FORCE_NR_CPUS config option
The size of cpumasks is hard-limited by compile-time parameter NR_CPUS,
but defined at boot-time when kernel parses ACPI/DT tables, and stored in
nr_cpu_ids. In many practical cases, number of CPUs for a target is known
at compile time, and can be provided with NR_CPUS.
In that case, compiler may be instructed to rely on NR_CPUS as on actual
number of CPUs, not an upper limit. It allows to optimize many cpumask
routines and significantly shrink size of the kernel image.
This patch adds FORCE_NR_CPUS option to teach the compiler to rely on
NR_CPUS and enable corresponding optimizations.
If FORCE_NR_CPUS=y, kernel will not set nr_cpu_ids at boot, but only check
that the actual number of possible CPUs is equal to NR_CPUS, and WARN if
that doesn't hold.
The new option is especially useful in embedded applications because
kernel configurations are unique for each SoC, the number of CPUs is
constant and known well, and memory limitations are typically harder.
For my 4-CPU ARM64 build with NR_CPUS=4, FORCE_NR_CPUS=y saves 46KB:
add/remove: 3/4 grow/shrink: 46/729 up/down: 652/-46952 (-46300)
Signed-off-by: Yury Norov <yury.norov@gmail.com>
2022-09-06 07:08:20 +08:00
|
|
|
}
|
2008-05-13 03:21:13 +08:00
|
|
|
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
/*
|
|
|
|
* We have several different "preferred sizes" for the cpumask
|
|
|
|
* operations, depending on operation.
|
|
|
|
*
|
|
|
|
* For example, the bitmap scanning and operating operations have
|
|
|
|
* optimized routines that work for the single-word case, but only when
|
|
|
|
* the size is constant. So if NR_CPUS fits in one single word, we are
|
|
|
|
* better off using that small constant, in order to trigger the
|
|
|
|
* optimized bit finding. That is 'small_cpumask_size'.
|
|
|
|
*
|
|
|
|
* The clearing and copying operations will similarly perform better
|
|
|
|
* with a constant size, but we limit that size arbitrarily to four
|
|
|
|
* words. We call this 'large_cpumask_size'.
|
|
|
|
*
|
|
|
|
* Finally, some operations just want the exact limit, either because
|
|
|
|
* they set bits or just don't have any faster fixed-sized versions. We
|
2023-03-06 23:22:04 +08:00
|
|
|
* call this just 'nr_cpumask_bits'.
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
*
|
|
|
|
* Note that these optional constants are always guaranteed to be at
|
|
|
|
* least as big as 'nr_cpu_ids' itself is, and all our cpumask
|
|
|
|
* allocations are at least that size (see cpumask_size()). The
|
|
|
|
* optimization comes from being able to potentially use a compile-time
|
|
|
|
* constant instead of a run-time generated exact number of CPUs.
|
|
|
|
*/
|
|
|
|
#if NR_CPUS <= BITS_PER_LONG
|
|
|
|
#define small_cpumask_bits ((unsigned int)NR_CPUS)
|
|
|
|
#define large_cpumask_bits ((unsigned int)NR_CPUS)
|
|
|
|
#elif NR_CPUS <= 4*BITS_PER_LONG
|
|
|
|
#define small_cpumask_bits nr_cpu_ids
|
|
|
|
#define large_cpumask_bits ((unsigned int)NR_CPUS)
|
|
|
|
#else
|
|
|
|
#define small_cpumask_bits nr_cpu_ids
|
|
|
|
#define large_cpumask_bits nr_cpu_ids
|
|
|
|
#endif
|
|
|
|
#define nr_cpumask_bits nr_cpu_ids
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The following particular system cpumasks and operations manage
|
2008-12-30 06:35:14 +08:00
|
|
|
* possible, present, active and online cpus.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2008-12-30 06:35:14 +08:00
|
|
|
* cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
|
|
|
|
* cpu_present_mask - has bit 'cpu' set iff cpu is populated
|
|
|
|
* cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
|
|
|
|
* cpu_active_mask - has bit 'cpu' set iff cpu available to migration
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2008-12-30 06:35:14 +08:00
|
|
|
* If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2008-12-30 06:35:14 +08:00
|
|
|
* The cpu_possible_mask is fixed at boot time, as the set of CPU id's
|
|
|
|
* that it is possible might ever be plugged in at anytime during the
|
|
|
|
* life of that system boot. The cpu_present_mask is dynamic(*),
|
|
|
|
* representing which CPUs are currently plugged in. And
|
|
|
|
* cpu_online_mask is the dynamic subset of cpu_present_mask,
|
|
|
|
* indicating those CPUs available for scheduling.
|
|
|
|
*
|
|
|
|
* If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
|
2005-04-17 06:20:36 +08:00
|
|
|
* depending on what ACPI reports as currently plugged in, otherwise
|
2008-12-30 06:35:14 +08:00
|
|
|
* cpu_present_mask is just a copy of cpu_possible_mask.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2008-12-30 06:35:14 +08:00
|
|
|
* (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
|
|
|
|
* hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
* Subtleties:
|
|
|
|
* 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
|
|
|
|
* assumption that their single CPU is online. The UP
|
2008-12-30 06:35:14 +08:00
|
|
|
* cpu_{online,possible,present}_masks are placebos. Changing them
|
2005-04-17 06:20:36 +08:00
|
|
|
* will have no useful affect on the following num_*_cpus()
|
|
|
|
* and cpu_*() macros in the UP case. This ugliness is a UP
|
|
|
|
* optimization - don't waste any instructions or memory references
|
|
|
|
* asking if you're online or how many CPUs there are if there is
|
|
|
|
* only one CPU.
|
|
|
|
*/
|
|
|
|
|
2016-01-21 07:00:19 +08:00
|
|
|
extern struct cpumask __cpu_possible_mask;
|
|
|
|
extern struct cpumask __cpu_online_mask;
|
|
|
|
extern struct cpumask __cpu_present_mask;
|
|
|
|
extern struct cpumask __cpu_active_mask;
|
2021-01-20 01:43:45 +08:00
|
|
|
extern struct cpumask __cpu_dying_mask;
|
2016-01-21 07:00:25 +08:00
|
|
|
#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
|
|
|
|
#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
|
|
|
|
#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
|
|
|
|
#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
|
2021-01-20 01:43:45 +08:00
|
|
|
#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
|
2008-12-30 06:35:14 +08:00
|
|
|
|
2019-07-09 22:23:40 +08:00
|
|
|
extern atomic_t __num_online_cpus;
|
|
|
|
|
2019-07-23 02:47:16 +08:00
|
|
|
extern cpumask_t cpus_booted_once_mask;
|
|
|
|
|
2022-02-04 16:30:13 +08:00
|
|
|
static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
|
2008-11-05 10:39:10 +08:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
|
2018-06-30 12:26:41 +08:00
|
|
|
WARN_ON_ONCE(cpu >= bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
|
2018-06-30 12:26:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* verify cpu argument to cpumask_* operators */
|
2022-02-04 16:30:13 +08:00
|
|
|
static __always_inline unsigned int cpumask_check(unsigned int cpu)
|
2018-06-30 12:26:41 +08:00
|
|
|
{
|
2023-03-12 23:52:03 +08:00
|
|
|
cpu_max_bits_warn(cpu, small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
return cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_first - get the first cpu in a cpumask
|
|
|
|
* @srcp: the cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no cpus set.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_first(const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
2021-08-15 05:17:05 +08:00
|
|
|
/**
|
|
|
|
* cpumask_first_zero - get the first unset cpu in a cpumask
|
|
|
|
* @srcp: the cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if all cpus are set.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
|
2021-08-15 05:17:05 +08:00
|
|
|
}
|
|
|
|
|
2021-08-15 05:17:02 +08:00
|
|
|
/**
|
|
|
|
* cpumask_first_and - return the first cpu from *srcp1 & *srcp2
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
|
2021-08-15 05:17:02 +08:00
|
|
|
}
|
|
|
|
|
2017-10-23 21:01:54 +08:00
|
|
|
/**
|
|
|
|
* cpumask_last - get the last CPU in a cpumask
|
|
|
|
* @srcp: - the cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpumask_bits if no CPUs set.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_last(const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
|
2017-10-23 21:01:54 +08:00
|
|
|
}
|
|
|
|
|
2022-07-01 20:54:28 +08:00
|
|
|
/**
|
|
|
|
* cpumask_next - get the next cpu in a cpumask
|
|
|
|
* @n: the cpu prior to the place to search (ie. return will be > @n)
|
|
|
|
* @srcp: the cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no further cpus set.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_next(int n, const struct cpumask *srcp)
|
|
|
|
{
|
2022-10-15 23:53:51 +08:00
|
|
|
/* -1 is a legal arg here. */
|
|
|
|
if (n != -1)
|
|
|
|
cpumask_check(n);
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
|
2022-07-01 20:54:28 +08:00
|
|
|
}
|
2008-11-05 10:39:10 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_next_zero - get the next unset cpu in a cpumask
|
|
|
|
* @n: the cpu prior to the place to search (ie. return will be > @n)
|
|
|
|
* @srcp: the cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no further cpus unset.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
|
|
|
|
{
|
2022-10-15 23:53:51 +08:00
|
|
|
/* -1 is a legal arg here. */
|
|
|
|
if (n != -1)
|
|
|
|
cpumask_check(n);
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
2022-07-03 00:08:25 +08:00
|
|
|
#if NR_CPUS == 1
|
|
|
|
/* Uniprocessor: there is only one valid CPU */
|
|
|
|
static inline unsigned int cpumask_local_spread(unsigned int i, int node)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-08-10 01:36:33 +08:00
|
|
|
static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
2022-07-03 00:08:25 +08:00
|
|
|
return cpumask_first_and(src1p, src2p);
|
|
|
|
}
|
|
|
|
|
2022-08-10 01:36:33 +08:00
|
|
|
static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp)
|
2022-07-03 00:08:25 +08:00
|
|
|
{
|
|
|
|
return cpumask_first(srcp);
|
|
|
|
}
|
|
|
|
#else
|
cpumask_set_cpu_local_first => cpumask_local_spread, lament
da91309e0a7e (cpumask: Utility function to set n'th cpu...) created a
genuinely weird function. I never saw it before, it went through DaveM.
(He only does this to make us other maintainers feel better about our own
mistakes.)
cpumask_set_cpu_local_first's purpose is say "I need to spread things
across N online cpus, choose the ones on this numa node first"; you call
it in a loop.
It can fail. One of the two callers ignores this, the other aborts and
fails the device open.
It can fail in two ways: allocating the off-stack cpumask, or through a
convoluted codepath which AFAICT can only occur if cpu_online_mask
changes. Which shouldn't happen, because if cpu_online_mask can change
while you call this, it could return a now-offline cpu anyway.
It contains a nonsensical test "!cpumask_of_node(numa_node)". This was
drawn to my attention by Geert, who said this causes a warning on Sparc.
It sets a single bit in a cpumask instead of returning a cpu number,
because that's what the callers want.
It could be made more efficient by passing the previous cpu rather than
an index, but that would be more invasive to the callers.
Fixes: da91309e0a7e8966d916a74cce42ed170fde06bf
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (then rebased)
Tested-by: Amir Vadai <amirv@mellanox.com>
Acked-by: Amir Vadai <amirv@mellanox.com>
Acked-by: David S. Miller <davem@davemloft.net>
2015-05-09 01:44:13 +08:00
|
|
|
unsigned int cpumask_local_spread(unsigned int i, int node);
|
2022-08-08 08:52:35 +08:00
|
|
|
unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
|
2020-03-11 09:01:13 +08:00
|
|
|
const struct cpumask *src2p);
|
2022-08-08 08:52:35 +08:00
|
|
|
unsigned int cpumask_any_distribute(const struct cpumask *srcp);
|
2022-07-03 00:08:25 +08:00
|
|
|
#endif /* NR_CPUS */
|
2008-11-05 10:39:10 +08:00
|
|
|
|
2022-07-01 20:54:28 +08:00
|
|
|
/**
|
|
|
|
* cpumask_next_and - get the next cpu in *src1p & *src2p
|
|
|
|
* @n: the cpu prior to the place to search (ie. return will be > @n)
|
|
|
|
* @src1p: the first cpumask pointer
|
|
|
|
* @src2p: the second cpumask pointer
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no further cpus set in both.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
2022-10-15 23:53:51 +08:00
|
|
|
/* -1 is a legal arg here. */
|
|
|
|
if (n != -1)
|
|
|
|
cpumask_check(n);
|
2022-07-01 20:54:28 +08:00
|
|
|
return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits, n + 1);
|
2022-07-01 20:54:28 +08:00
|
|
|
}
|
|
|
|
|
2008-11-08 17:24:19 +08:00
|
|
|
/**
|
|
|
|
* for_each_cpu - iterate over every cpu in a mask
|
|
|
|
* @cpu: the (optionally unsigned) integer iterator
|
|
|
|
* @mask: the cpumask pointer
|
|
|
|
*
|
|
|
|
* After the loop, cpu is >= nr_cpu_ids.
|
|
|
|
*/
|
2008-11-05 10:39:10 +08:00
|
|
|
#define for_each_cpu(cpu, mask) \
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
|
2010-02-23 09:04:59 +08:00
|
|
|
|
2022-08-10 01:36:34 +08:00
|
|
|
#if NR_CPUS == 1
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap)
|
|
|
|
{
|
|
|
|
cpumask_check(start);
|
2022-10-15 23:53:51 +08:00
|
|
|
if (n != -1)
|
|
|
|
cpumask_check(n);
|
2022-08-10 01:36:34 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the first available CPU when wrapping, or when starting before cpu0,
|
|
|
|
* since there is only one valid option.
|
|
|
|
*/
|
|
|
|
if (wrap && n >= 0)
|
|
|
|
return nr_cpumask_bits;
|
|
|
|
|
|
|
|
return cpumask_first(mask);
|
|
|
|
}
|
|
|
|
#else
|
2022-08-08 08:52:35 +08:00
|
|
|
unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
|
2022-08-10 01:36:34 +08:00
|
|
|
#endif
|
2017-04-14 20:20:05 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
|
|
|
|
* @cpu: the (optionally unsigned) integer iterator
|
2021-07-08 09:07:34 +08:00
|
|
|
* @mask: the cpumask pointer
|
2017-04-14 20:20:05 +08:00
|
|
|
* @start: the start location
|
|
|
|
*
|
|
|
|
* The implementation does not assume any bit in @mask is set (including @start).
|
|
|
|
*
|
|
|
|
* After the loop, cpu is >= nr_cpu_ids.
|
|
|
|
*/
|
2022-09-20 05:05:57 +08:00
|
|
|
#define for_each_cpu_wrap(cpu, mask, start) \
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
|
2017-04-14 20:20:05 +08:00
|
|
|
|
2008-11-08 17:24:19 +08:00
|
|
|
/**
|
|
|
|
* for_each_cpu_and - iterate over every cpu in both masks
|
|
|
|
* @cpu: the (optionally unsigned) integer iterator
|
2019-09-26 07:47:30 +08:00
|
|
|
* @mask1: the first cpumask pointer
|
|
|
|
* @mask2: the second cpumask pointer
|
2008-11-08 17:24:19 +08:00
|
|
|
*
|
|
|
|
* This saves a temporary CPU mask in many places. It is equivalent to:
|
|
|
|
* struct cpumask tmp;
|
2019-09-26 07:47:30 +08:00
|
|
|
* cpumask_and(&tmp, &mask1, &mask2);
|
2008-11-08 17:24:19 +08:00
|
|
|
* for_each_cpu(cpu, &tmp)
|
|
|
|
* ...
|
|
|
|
*
|
|
|
|
* After the loop, cpu is >= nr_cpu_ids.
|
|
|
|
*/
|
2019-09-26 07:47:30 +08:00
|
|
|
#define for_each_cpu_and(cpu, mask1, mask2) \
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
|
2008-11-05 10:39:10 +08:00
|
|
|
|
2022-10-03 23:34:18 +08:00
|
|
|
/**
|
|
|
|
* for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
|
|
|
|
* those present in another.
|
|
|
|
* @cpu: the (optionally unsigned) integer iterator
|
|
|
|
* @mask1: the first cpumask pointer
|
|
|
|
* @mask2: the second cpumask pointer
|
|
|
|
*
|
|
|
|
* This saves a temporary CPU mask in many places. It is equivalent to:
|
|
|
|
* struct cpumask tmp;
|
|
|
|
* cpumask_andnot(&tmp, &mask1, &mask2);
|
|
|
|
* for_each_cpu(cpu, &tmp)
|
|
|
|
* ...
|
|
|
|
*
|
|
|
|
* After the loop, cpu is >= nr_cpu_ids.
|
|
|
|
*/
|
|
|
|
#define for_each_cpu_andnot(cpu, mask1, mask2) \
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
|
2022-10-03 23:34:18 +08:00
|
|
|
|
2023-03-16 08:31:02 +08:00
|
|
|
/**
|
|
|
|
* for_each_cpu_or - iterate over every cpu present in either mask
|
|
|
|
* @cpu: the (optionally unsigned) integer iterator
|
|
|
|
* @mask1: the first cpumask pointer
|
|
|
|
* @mask2: the second cpumask pointer
|
|
|
|
*
|
|
|
|
* This saves a temporary CPU mask in many places. It is equivalent to:
|
|
|
|
* struct cpumask tmp;
|
|
|
|
* cpumask_or(&tmp, &mask1, &mask2);
|
|
|
|
* for_each_cpu(cpu, &tmp)
|
|
|
|
* ...
|
|
|
|
*
|
|
|
|
* After the loop, cpu is >= nr_cpu_ids.
|
|
|
|
*/
|
|
|
|
#define for_each_cpu_or(cpu, mask1, mask2) \
|
|
|
|
for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
|
|
|
|
|
2022-07-01 20:54:28 +08:00
|
|
|
/**
|
|
|
|
* cpumask_any_but - return a "random" in a cpumask, but not this one.
|
|
|
|
* @mask: the cpumask to search
|
|
|
|
* @cpu: the cpu to ignore.
|
|
|
|
*
|
|
|
|
* Often used to find any cpu but smp_processor_id() in a mask.
|
|
|
|
* Returns >= nr_cpu_ids if no cpus set.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
cpumask_check(cpu);
|
|
|
|
for_each_cpu(i, mask)
|
|
|
|
if (i != cpu)
|
|
|
|
break;
|
|
|
|
return i;
|
|
|
|
}
|
2008-11-05 10:39:10 +08:00
|
|
|
|
2022-09-18 11:07:16 +08:00
|
|
|
/**
|
|
|
|
* cpumask_nth - get the first cpu in a cpumask
|
|
|
|
* @srcp: the cpumask pointer
|
|
|
|
* @cpu: the N'th cpu to find, starting from 0
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if such cpu doesn't exist.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
|
2022-09-18 11:07:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_nth_and - get the first cpu in 2 cpumasks
|
|
|
|
* @srcp1: the cpumask pointer
|
|
|
|
* @srcp2: the cpumask pointer
|
|
|
|
* @cpu: the N'th cpu to find, starting from 0
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if such cpu doesn't exist.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
|
|
|
|
const struct cpumask *srcp2)
|
|
|
|
{
|
|
|
|
return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits, cpumask_check(cpu));
|
2022-09-18 11:07:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_nth_andnot - get the first cpu set in 1st cpumask, and clear in 2nd.
|
|
|
|
* @srcp1: the cpumask pointer
|
|
|
|
* @srcp2: the cpumask pointer
|
|
|
|
* @cpu: the N'th cpu to find, starting from 0
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if such cpu doesn't exist.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
|
|
|
|
const struct cpumask *srcp2)
|
|
|
|
{
|
|
|
|
return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits, cpumask_check(cpu));
|
2022-09-18 11:07:16 +08:00
|
|
|
}
|
|
|
|
|
2023-01-21 12:24:29 +08:00
|
|
|
/**
|
|
|
|
* cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
|
|
|
|
* @srcp1: the cpumask pointer
|
|
|
|
* @srcp2: the cpumask pointer
|
|
|
|
* @srcp3: the cpumask pointer
|
|
|
|
* @cpu: the N'th cpu to find, starting from 0
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if such cpu doesn't exist.
|
|
|
|
*/
|
|
|
|
static __always_inline
|
|
|
|
unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
|
|
|
|
const struct cpumask *srcp2,
|
|
|
|
const struct cpumask *srcp3)
|
|
|
|
{
|
|
|
|
return find_nth_and_andnot_bit(cpumask_bits(srcp1),
|
|
|
|
cpumask_bits(srcp2),
|
|
|
|
cpumask_bits(srcp3),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits, cpumask_check(cpu));
|
2023-01-21 12:24:29 +08:00
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
#define CPU_BITS_NONE \
|
|
|
|
{ \
|
|
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define CPU_BITS_CPU0 \
|
|
|
|
{ \
|
|
|
|
[0] = 1UL \
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_set_cpu - set a cpu in a cpumask
|
|
|
|
* @cpu: cpu number (< nr_cpu_ids)
|
|
|
|
* @dstp: the cpumask pointer
|
|
|
|
*/
|
2022-01-13 23:53:57 +08:00
|
|
|
static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
|
2008-11-05 10:39:10 +08:00
|
|
|
{
|
|
|
|
set_bit(cpumask_check(cpu), cpumask_bits(dstp));
|
|
|
|
}
|
|
|
|
|
2022-01-13 23:53:57 +08:00
|
|
|
static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
|
2017-05-19 18:58:25 +08:00
|
|
|
{
|
|
|
|
__set_bit(cpumask_check(cpu), cpumask_bits(dstp));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/**
|
|
|
|
* cpumask_clear_cpu - clear a cpu in a cpumask
|
|
|
|
* @cpu: cpu number (< nr_cpu_ids)
|
|
|
|
* @dstp: the cpumask pointer
|
|
|
|
*/
|
2022-01-13 23:53:57 +08:00
|
|
|
static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
|
2008-11-05 10:39:10 +08:00
|
|
|
{
|
|
|
|
clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
|
|
|
|
}
|
|
|
|
|
2022-01-13 23:53:57 +08:00
|
|
|
static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
|
2017-05-19 18:58:25 +08:00
|
|
|
{
|
|
|
|
__clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
|
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/**
|
|
|
|
* cpumask_test_cpu - test for a cpu in a cpumask
|
|
|
|
* @cpu: cpu number (< nr_cpu_ids)
|
|
|
|
* @cpumask: the cpumask pointer
|
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* Returns true if @cpu is set in @cpumask, else returns false
|
2008-11-05 10:39:10 +08:00
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
|
2015-03-31 10:55:05 +08:00
|
|
|
{
|
|
|
|
return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
|
|
|
|
}
|
2008-11-05 10:39:10 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
|
|
|
|
* @cpu: cpu number (< nr_cpu_ids)
|
|
|
|
* @cpumask: the cpumask pointer
|
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* Returns true if @cpu is set in old bitmap of @cpumask, else returns false
|
2012-05-28 22:23:51 +08:00
|
|
|
*
|
2008-11-05 10:39:10 +08:00
|
|
|
* test_and_set_bit wrapper for cpumasks.
|
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
|
2008-11-05 10:39:10 +08:00
|
|
|
{
|
|
|
|
return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
|
|
|
|
}
|
|
|
|
|
generic-ipi: make struct call_function_data lockless
This patch can remove spinlock from struct call_function_data, the
reasons are below:
1: add a new interface for cpumask named cpumask_test_and_clear_cpu(),
it can atomically test and clear specific cpu, we can use it instead
of cpumask_test_cpu() and cpumask_clear_cpu() and no need data->lock
to protect those in generic_smp_call_function_interrupt().
2: in smp_call_function_many(), after csd_lock() return, the current's
cfd_data is deleted from call_function list, so it not have race
between other cpus, then cfs_data is only used in
smp_call_function_many() that must disable preemption and not from
a hardware interrupthandler or from a bottom half handler to call,
only the correspond cpu can use it, so it not have race in current
cpu, no need cfs_data->lock to protect it.
3: after 1 and 2, cfs_data->lock is only use to protect cfs_data->refs in
generic_smp_call_function_interrupt(), so we can define cfs_data->refs
to atomic_t, and no need cfs_data->lock any more.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
[akpm@linux-foundation.org: use atomic_dec_return()]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-23 07:43:39 +08:00
|
|
|
/**
|
|
|
|
* cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
|
|
|
|
* @cpu: cpu number (< nr_cpu_ids)
|
|
|
|
* @cpumask: the cpumask pointer
|
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* Returns true if @cpu is set in old bitmap of @cpumask, else returns false
|
2012-05-28 22:23:51 +08:00
|
|
|
*
|
generic-ipi: make struct call_function_data lockless
This patch can remove spinlock from struct call_function_data, the
reasons are below:
1: add a new interface for cpumask named cpumask_test_and_clear_cpu(),
it can atomically test and clear specific cpu, we can use it instead
of cpumask_test_cpu() and cpumask_clear_cpu() and no need data->lock
to protect those in generic_smp_call_function_interrupt().
2: in smp_call_function_many(), after csd_lock() return, the current's
cfd_data is deleted from call_function list, so it not have race
between other cpus, then cfs_data is only used in
smp_call_function_many() that must disable preemption and not from
a hardware interrupthandler or from a bottom half handler to call,
only the correspond cpu can use it, so it not have race in current
cpu, no need cfs_data->lock to protect it.
3: after 1 and 2, cfs_data->lock is only use to protect cfs_data->refs in
generic_smp_call_function_interrupt(), so we can define cfs_data->refs
to atomic_t, and no need cfs_data->lock any more.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
[akpm@linux-foundation.org: use atomic_dec_return()]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-23 07:43:39 +08:00
|
|
|
* test_and_clear_bit wrapper for cpumasks.
|
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
|
generic-ipi: make struct call_function_data lockless
This patch can remove spinlock from struct call_function_data, the
reasons are below:
1: add a new interface for cpumask named cpumask_test_and_clear_cpu(),
it can atomically test and clear specific cpu, we can use it instead
of cpumask_test_cpu() and cpumask_clear_cpu() and no need data->lock
to protect those in generic_smp_call_function_interrupt().
2: in smp_call_function_many(), after csd_lock() return, the current's
cfd_data is deleted from call_function list, so it not have race
between other cpus, then cfs_data is only used in
smp_call_function_many() that must disable preemption and not from
a hardware interrupthandler or from a bottom half handler to call,
only the correspond cpu can use it, so it not have race in current
cpu, no need cfs_data->lock to protect it.
3: after 1 and 2, cfs_data->lock is only use to protect cfs_data->refs in
generic_smp_call_function_interrupt(), so we can define cfs_data->refs
to atomic_t, and no need cfs_data->lock any more.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
[akpm@linux-foundation.org: use atomic_dec_return()]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-23 07:43:39 +08:00
|
|
|
{
|
|
|
|
return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
|
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/**
|
|
|
|
* cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
|
|
|
|
* @dstp: the cpumask pointer
|
|
|
|
*/
|
|
|
|
static inline void cpumask_setall(struct cpumask *dstp)
|
|
|
|
{
|
cpumask: be more careful with 'cpumask_setall()'
Commit 596ff4a09b89 ("cpumask: re-introduce constant-sized cpumask
optimizations") changed cpumask_setall() to use "bitmap_set()" instead
of "bitmap_fill()", because bitmap_fill() would explicitly set all the
bits of a constant sized small bitmap, and that's exactly what we don't
want: we want to only set bits up to 'nr_cpu_ids', which is what
"bitmap_set()" does.
However, Yury correctly points out that while "bitmap_set()" does indeed
only set bits up to the required bitmap size, it doesn't _clear_ bits
above that size, so the upper bits would still not have well-defined
values.
Now, none of this should really matter, since any bits set past
'nr_cpu_ids' should always be ignored in the first place. Yes, the bit
scanning functions might return them as a result, but since users should
always consider the ">= nr_cpu_ids" condition to mean "no more bits",
that shouldn't have any actual effect (see previous commit 8ca09d5fa354
"cpumask: fix incorrect cpumask scanning result checks").
But let's just do it right, the way the code was _intended_ to work. We
have had enough lazy code that works but bites us in the *rse later
(again, see previous commit) that there's no reason to not just do this
properly.
It turns out that "bitmap_fill()" gets this all right for the complex
case, and really only fails for the inlined optimized case that just
fills the whole word. And while we could just fix bitmap_fill() to use
the proper last word mask, there's two issues with that:
- the cpumask case wants to do the _optimization_ based on "NR_CPUS is
a small constant", but then wants to do the actual bit _fill_ based
on "nr_cpu_ids" that isn't necessarily that same constant
- we have lots of non-cpumask users of bitmap_fill(), and while they
hopefully don't care, and probably would want the proper semantics
anyway ("only set bits up to the limit"), I do not want the cpumask
changes to impact other parts
So this ends up just doing the single-word optimization by hand in the
cpumask code. If our cpumask is fundamentally limited to a single word,
just do the proper "fill in that word" exactly. And if it's the more
complex multi-word case, then the generic bitmap_fill() will DTRT.
This is all an example of how our bitmap function optimizations really
are somewhat broken. They conflate the "this is size of the bitmap"
optimizations with the actual bit(s) we want to set.
In many cases we really want to have the two be separate things:
sometimes we base our optimizations on the size of the whole bitmap ("I
know this whole bitmap fits in a single word, so I'll just use
single-word accesses"), and sometimes we base them on the bit we are
looking at ("this is just acting on bits that are in the first word, so
I'll use single-word accesses").
Notice how the end result of the two optimizations are the same, but the
way we get to them are quite different.
And all our cpumask optimization games are really about that fundamental
distinction, and we'd often really want to pass in both the "this is the
bit I'm working on" (which _can_ be a small constant but might be
variable), and "I know it's in this range even if it's variable" (based
on CONFIG_NR_CPUS).
So this cpumask_setall() implementation just makes that explicit. It
checks the "I statically know the size is small" using the known static
size of the cpumask (which is what that 'small_cpumask_bits' is all
about), but then sets the actual bits using the exact number of cpus we
have (ie 'nr_cpumask_bits')
Of course, in a perfect world, the compiler would have done all the
range analysis (possibly with help from us just telling it that
"this value is always in this range"), and would do all of this for us.
But that is not the world we live in.
While we dream of that perfect world, this does that manual logic to
make it all work out. And this was a very long explanation for a small
code change that shouldn't even matter.
Reported-by: Yury Norov <yury.norov@gmail.com>
Link: https://lore.kernel.org/lkml/ZAV9nGG9e1%2FrV+L%2F@yury-laptop/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-08 04:16:18 +08:00
|
|
|
if (small_const_nbits(small_cpumask_bits)) {
|
|
|
|
cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
|
|
|
|
* @dstp: the cpumask pointer
|
|
|
|
*/
|
|
|
|
static inline void cpumask_clear(struct cpumask *dstp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_and - *dstp = *src1p & *src2p
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
2012-05-28 22:23:51 +08:00
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* If *@dstp is empty, returns false, else returns true
|
2008-11-05 10:39:10 +08:00
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static inline bool cpumask_and(struct cpumask *dstp,
|
2008-11-05 10:39:10 +08:00
|
|
|
const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
2009-08-22 00:26:15 +08:00
|
|
|
return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
cpumask_bits(src2p), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_or - *dstp = *src1p | *src2p
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
*/
|
|
|
|
static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
|
|
|
bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
cpumask_bits(src2p), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_xor - *dstp = *src1p ^ *src2p
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
*/
|
|
|
|
static inline void cpumask_xor(struct cpumask *dstp,
|
|
|
|
const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
|
|
|
bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
cpumask_bits(src2p), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_andnot - *dstp = *src1p & ~*src2p
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
2012-05-28 22:23:51 +08:00
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* If *@dstp is empty, returns false, else returns true
|
2008-11-05 10:39:10 +08:00
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static inline bool cpumask_andnot(struct cpumask *dstp,
|
2008-11-05 10:39:10 +08:00
|
|
|
const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
2009-08-22 00:26:15 +08:00
|
|
|
return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
cpumask_bits(src2p), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_equal - *src1p == *src2p
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
*/
|
|
|
|
static inline bool cpumask_equal(const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
|
|
|
return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
2019-07-23 02:47:24 +08:00
|
|
|
/**
|
|
|
|
* cpumask_or_equal - *src1p | *src2p == *src3p
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
* @src3p: the third input
|
|
|
|
*/
|
|
|
|
static inline bool cpumask_or_equal(const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p,
|
|
|
|
const struct cpumask *src3p)
|
|
|
|
{
|
|
|
|
return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
cpumask_bits(src3p), small_cpumask_bits);
|
2019-07-23 02:47:24 +08:00
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/**
|
|
|
|
* cpumask_intersects - (*src1p & *src2p) != 0
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
|
|
|
*/
|
|
|
|
static inline bool cpumask_intersects(const struct cpumask *src1p,
|
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
|
|
|
return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_subset - (*src1p & ~*src2p) == 0
|
|
|
|
* @src1p: the first input
|
|
|
|
* @src2p: the second input
|
2012-05-28 22:23:51 +08:00
|
|
|
*
|
2022-07-01 20:54:26 +08:00
|
|
|
* Returns true if *@src1p is a subset of *@src2p, else returns false
|
2008-11-05 10:39:10 +08:00
|
|
|
*/
|
2022-07-01 20:54:26 +08:00
|
|
|
static inline bool cpumask_subset(const struct cpumask *src1p,
|
2008-11-05 10:39:10 +08:00
|
|
|
const struct cpumask *src2p)
|
|
|
|
{
|
|
|
|
return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_empty - *srcp == 0
|
|
|
|
* @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
|
|
|
|
*/
|
|
|
|
static inline bool cpumask_empty(const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_full - *srcp == 0xFFFFFFFF...
|
|
|
|
* @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
|
|
|
|
*/
|
|
|
|
static inline bool cpumask_full(const struct cpumask *srcp)
|
|
|
|
{
|
|
|
|
return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_weight - Count of bits in *srcp
|
|
|
|
* @srcp: the cpumask to count bits (< nr_cpu_ids) in.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_weight(const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
2022-09-18 11:07:12 +08:00
|
|
|
/**
|
|
|
|
* cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
|
|
|
|
* @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
|
|
|
|
* @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1,
|
|
|
|
const struct cpumask *srcp2)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
|
2022-09-18 11:07:12 +08:00
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/**
|
|
|
|
* cpumask_shift_right - *dstp = *srcp >> n
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @srcp: the input to shift
|
|
|
|
* @n: the number of bits to shift by
|
|
|
|
*/
|
|
|
|
static inline void cpumask_shift_right(struct cpumask *dstp,
|
|
|
|
const struct cpumask *srcp, int n)
|
|
|
|
{
|
|
|
|
bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
small_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_shift_left - *dstp = *srcp << n
|
|
|
|
* @dstp: the cpumask result
|
|
|
|
* @srcp: the input to shift
|
|
|
|
* @n: the number of bits to shift by
|
|
|
|
*/
|
|
|
|
static inline void cpumask_shift_left(struct cpumask *dstp,
|
|
|
|
const struct cpumask *srcp, int n)
|
|
|
|
{
|
|
|
|
bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
|
|
|
|
nr_cpumask_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_copy - *dstp = *srcp
|
|
|
|
* @dstp: the result
|
|
|
|
* @srcp: the input cpumask
|
|
|
|
*/
|
|
|
|
static inline void cpumask_copy(struct cpumask *dstp,
|
|
|
|
const struct cpumask *srcp)
|
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_any - pick a "random" cpu from *srcp
|
|
|
|
* @srcp: the input cpumask
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no cpus set.
|
|
|
|
*/
|
|
|
|
#define cpumask_any(srcp) cpumask_first(srcp)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
|
|
|
|
* @mask1: the first input cpumask
|
|
|
|
* @mask2: the second input cpumask
|
|
|
|
*
|
|
|
|
* Returns >= nr_cpu_ids if no cpus set.
|
|
|
|
*/
|
|
|
|
#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
|
|
|
|
|
2008-11-07 08:12:29 +08:00
|
|
|
/**
|
|
|
|
* cpumask_of - the cpumask containing just a given cpu
|
|
|
|
* @cpu: the cpu (<= nr_cpu_ids)
|
|
|
|
*/
|
|
|
|
#define cpumask_of(cpu) (get_cpu_mask(cpu))
|
|
|
|
|
2008-12-13 18:50:25 +08:00
|
|
|
/**
|
|
|
|
* cpumask_parse_user - extract a cpumask from a user string
|
|
|
|
* @buf: the buffer to extract from
|
|
|
|
* @len: the length of the buffer
|
|
|
|
* @dstp: the cpumask to set.
|
|
|
|
*
|
|
|
|
* Returns -errno, or 0 for success.
|
|
|
|
*/
|
|
|
|
static inline int cpumask_parse_user(const char __user *buf, int len,
|
|
|
|
struct cpumask *dstp)
|
|
|
|
{
|
2017-02-09 06:30:56 +08:00
|
|
|
return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
|
2008-12-13 18:50:25 +08:00
|
|
|
}
|
|
|
|
|
bitmap, irq: add smp_affinity_list interface to /proc/irq
Manually adjusting the smp_affinity for IRQ's becomes unwieldy when the
cpu count is large.
Setting smp affinity to cpus 256 to 263 would be:
echo 000000ff,00000000,00000000,00000000,00000000,00000000,00000000,00000000 > smp_affinity
instead of:
echo 256-263 > smp_affinity_list
Think about what it looks like for cpus around say, 4088 to 4095.
We already have many alternate "list" interfaces:
/sys/devices/system/cpu/cpuX/indexY/shared_cpu_list
/sys/devices/system/cpu/cpuX/topology/thread_siblings_list
/sys/devices/system/cpu/cpuX/topology/core_siblings_list
/sys/devices/system/node/nodeX/cpulist
/sys/devices/pci***/***/local_cpulist
Add a companion interface, smp_affinity_list to use cpu lists instead of
cpu maps. This conforms to other companion interfaces where both a map
and a list interface exists.
This required adding a bitmap_parselist_user() function in a manner
similar to the bitmap_parse_user() function.
[akpm@linux-foundation.org: make __bitmap_parselist() static]
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:13:12 +08:00
|
|
|
/**
|
|
|
|
* cpumask_parselist_user - extract a cpumask from a user string
|
|
|
|
* @buf: the buffer to extract from
|
|
|
|
* @len: the length of the buffer
|
|
|
|
* @dstp: the cpumask to set.
|
|
|
|
*
|
|
|
|
* Returns -errno, or 0 for success.
|
|
|
|
*/
|
|
|
|
static inline int cpumask_parselist_user(const char __user *buf, int len,
|
|
|
|
struct cpumask *dstp)
|
|
|
|
{
|
|
|
|
return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
|
2017-02-09 06:30:56 +08:00
|
|
|
nr_cpumask_bits);
|
bitmap, irq: add smp_affinity_list interface to /proc/irq
Manually adjusting the smp_affinity for IRQ's becomes unwieldy when the
cpu count is large.
Setting smp affinity to cpus 256 to 263 would be:
echo 000000ff,00000000,00000000,00000000,00000000,00000000,00000000,00000000 > smp_affinity
instead of:
echo 256-263 > smp_affinity_list
Think about what it looks like for cpus around say, 4088 to 4095.
We already have many alternate "list" interfaces:
/sys/devices/system/cpu/cpuX/indexY/shared_cpu_list
/sys/devices/system/cpu/cpuX/topology/thread_siblings_list
/sys/devices/system/cpu/cpuX/topology/core_siblings_list
/sys/devices/system/node/nodeX/cpulist
/sys/devices/pci***/***/local_cpulist
Add a companion interface, smp_affinity_list to use cpu lists instead of
cpu maps. This conforms to other companion interfaces where both a map
and a list interface exists.
This required adding a bitmap_parselist_user() function in a manner
similar to the bitmap_parse_user() function.
[akpm@linux-foundation.org: make __bitmap_parselist() static]
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:13:12 +08:00
|
|
|
}
|
|
|
|
|
2013-03-13 02:30:04 +08:00
|
|
|
/**
|
2016-08-03 05:05:42 +08:00
|
|
|
* cpumask_parse - extract a cpumask from a string
|
2013-03-13 02:30:04 +08:00
|
|
|
* @buf: the buffer to extract from
|
|
|
|
* @dstp: the cpumask to set.
|
|
|
|
*
|
|
|
|
* Returns -errno, or 0 for success.
|
|
|
|
*/
|
|
|
|
static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
|
|
|
|
{
|
2020-02-04 09:37:41 +08:00
|
|
|
return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
|
2013-03-13 02:30:04 +08:00
|
|
|
}
|
|
|
|
|
2008-12-13 18:50:25 +08:00
|
|
|
/**
|
2012-07-27 07:59:42 +08:00
|
|
|
* cpulist_parse - extract a cpumask from a user string of ranges
|
2008-12-13 18:50:25 +08:00
|
|
|
* @buf: the buffer to extract from
|
|
|
|
* @dstp: the cpumask to set.
|
|
|
|
*
|
|
|
|
* Returns -errno, or 0 for success.
|
|
|
|
*/
|
|
|
|
static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
|
|
|
|
{
|
2017-02-09 06:30:56 +08:00
|
|
|
return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumask_size - size to allocate for a 'struct cpumask' in bytes
|
|
|
|
*/
|
2018-02-07 07:39:37 +08:00
|
|
|
static inline unsigned int cpumask_size(void)
|
2008-11-05 10:39:10 +08:00
|
|
|
{
|
cpumask: re-introduce constant-sized cpumask optimizations
Commit aa47a7c215e7 ("lib/cpumask: deprecate nr_cpumask_bits") resulted
in the cpumask operations potentially becoming hugely less efficient,
because suddenly the cpumask was always considered to be variable-sized.
The optimization was then later added back in a limited form by commit
6f9c07be9d02 ("lib/cpumask: add FORCE_NR_CPUS config option"), but that
FORCE_NR_CPUS option is not useful in a generic kernel and more of a
special case for embedded situations with fixed hardware.
Instead, just re-introduce the optimization, with some changes.
Instead of depending on CPUMASK_OFFSTACK being false, and then always
using the full constant cpumask width, this introduces three different
cpumask "sizes":
- the exact size (nr_cpumask_bits) remains identical to nr_cpu_ids.
This is used for situations where we should use the exact size.
- the "small" size (small_cpumask_bits) is the NR_CPUS constant if it
fits in a single word and the bitmap operations thus end up able
to trigger the "small_const_nbits()" optimizations.
This is used for the operations that have optimized single-word
cases that get inlined, notably the bit find and scanning functions.
- the "large" size (large_cpumask_bits) is the NR_CPUS constant if it
is an sufficiently small constant that makes simple "copy" and
"clear" operations more efficient.
This is arbitrarily set at four words or less.
As a an example of this situation, without this fixed size optimization,
cpumask_clear() will generate code like
movl nr_cpu_ids(%rip), %edx
addq $63, %rdx
shrq $3, %rdx
andl $-8, %edx
callq memset@PLT
on x86-64, because it would calculate the "exact" number of longwords
that need to be cleared.
In contrast, with this patch, using a MAX_CPU of 64 (which is quite a
reasonable value to use), the above becomes a single
movq $0,cpumask
instruction instead, because instead of caring to figure out exactly how
many CPU's the system has, it just knows that the cpumask will be a
single word and can just clear it all.
Note that this does end up tightening the rules a bit from the original
version in another way: operations that set bits in the cpumask are now
limited to the actual nr_cpu_ids limit, whereas we used to do the
nr_cpumask_bits thing almost everywhere in the cpumask code.
But if you just clear bits, or scan for bits, we can use the simpler
compile-time constants.
In the process, remove 'cpumask_complement()' and 'for_each_cpu_not()'
which were not useful, and which fundamentally have to be limited to
'nr_cpu_ids'. Better remove them now than have somebody introduce use
of them later.
Of course, on x86-64 with MAXSMP there is no sane small compile-time
constant for the cpumask sizes, and we end up using the actual CPU bits,
and will generate the above kind of horrors regardless. Please don't
use MAXSMP unless you really expect to have machines with thousands of
cores.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-03-05 05:35:43 +08:00
|
|
|
return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long);
|
2008-11-05 10:39:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cpumask_var_t: struct cpumask for stack usage.
|
|
|
|
*
|
|
|
|
* Oh, the wicked games we play! In order to make kernel coding a
|
|
|
|
* little more difficult, we typedef cpumask_var_t to an array or a
|
|
|
|
* pointer: doing &mask on an array is a noop, so it still works.
|
|
|
|
*
|
|
|
|
* ie.
|
|
|
|
* cpumask_var_t tmpmask;
|
|
|
|
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
|
|
|
|
* return -ENOMEM;
|
|
|
|
*
|
|
|
|
* ... use 'tmpmask' like a normal struct cpumask * ...
|
|
|
|
*
|
|
|
|
* free_cpumask_var(tmpmask);
|
2011-07-27 07:08:45 +08:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* However, one notable exception is there. alloc_cpumask_var() allocates
|
|
|
|
* only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
|
|
|
|
* NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
|
|
|
|
*
|
|
|
|
* cpumask_var_t tmpmask;
|
|
|
|
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
|
|
|
|
* return -ENOMEM;
|
|
|
|
*
|
|
|
|
* var = *tmpmask;
|
|
|
|
*
|
|
|
|
* This code makes NR_CPUS length memcopy and brings to a memory corruption.
|
|
|
|
* cpumask_copy() provide safe copy functionality.
|
2014-08-27 08:12:21 +08:00
|
|
|
*
|
|
|
|
* Note that there is another evil here: If you define a cpumask_var_t
|
|
|
|
* as a percpu variable then the way to obtain the address of the cpumask
|
|
|
|
* structure differently influences what this_cpu_* operation needs to be
|
|
|
|
* used. Please use this_cpu_cpumask_var_t in those cases. The direct use
|
|
|
|
* of this_cpu_ptr() or this_cpu_read() will lead to failures when the
|
|
|
|
* other type of cpumask_var_t implementation is configured.
|
2017-01-31 01:57:43 +08:00
|
|
|
*
|
|
|
|
* Please also note that __cpumask_var_read_mostly can be used to declare
|
|
|
|
* a cpumask_var_t variable itself (not its content) as read mostly.
|
2008-11-05 10:39:10 +08:00
|
|
|
*/
|
|
|
|
#ifdef CONFIG_CPUMASK_OFFSTACK
|
|
|
|
typedef struct cpumask *cpumask_var_t;
|
|
|
|
|
2017-01-31 01:57:43 +08:00
|
|
|
#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
|
|
|
|
#define __cpumask_var_read_mostly __read_mostly
|
2014-08-27 08:12:21 +08:00
|
|
|
|
2008-12-19 14:26:37 +08:00
|
|
|
bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
|
2022-07-01 20:54:30 +08:00
|
|
|
|
|
|
|
static inline
|
|
|
|
bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
|
|
|
|
{
|
|
|
|
return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_cpumask_var - allocate a struct cpumask
|
|
|
|
* @mask: pointer to cpumask_var_t where the cpumask is returned
|
|
|
|
* @flags: GFP_ flags
|
|
|
|
*
|
|
|
|
* Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
|
|
|
|
* a nop returning a constant 1 (in <linux/cpumask.h>).
|
|
|
|
*
|
|
|
|
* See alloc_cpumask_var_node.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
|
|
|
|
{
|
|
|
|
return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline
|
|
|
|
bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
|
|
|
|
{
|
|
|
|
return alloc_cpumask_var(mask, flags | __GFP_ZERO);
|
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
|
|
|
|
void free_cpumask_var(cpumask_var_t mask);
|
2008-11-07 08:12:29 +08:00
|
|
|
void free_bootmem_cpumask_var(cpumask_var_t mask);
|
2008-11-05 10:39:10 +08:00
|
|
|
|
2017-04-13 02:20:29 +08:00
|
|
|
static inline bool cpumask_available(cpumask_var_t mask)
|
|
|
|
{
|
|
|
|
return mask != NULL;
|
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
#else
|
|
|
|
typedef struct cpumask cpumask_var_t[1];
|
|
|
|
|
2014-08-27 08:12:21 +08:00
|
|
|
#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
|
2017-01-31 01:57:43 +08:00
|
|
|
#define __cpumask_var_read_mostly
|
2014-08-27 08:12:21 +08:00
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-12-19 14:26:37 +08:00
|
|
|
static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
|
|
|
|
int node)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-06-07 05:50:36 +08:00
|
|
|
static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
|
|
|
|
{
|
|
|
|
cpumask_clear(*mask);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
|
|
|
|
int node)
|
|
|
|
{
|
|
|
|
cpumask_clear(*mask);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void free_cpumask_var(cpumask_var_t mask)
|
|
|
|
{
|
|
|
|
}
|
2008-11-07 08:12:29 +08:00
|
|
|
|
|
|
|
static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
|
|
|
|
{
|
|
|
|
}
|
2017-04-13 02:20:29 +08:00
|
|
|
|
|
|
|
static inline bool cpumask_available(cpumask_var_t mask)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
2008-11-05 10:39:10 +08:00
|
|
|
#endif /* CONFIG_CPUMASK_OFFSTACK */
|
|
|
|
|
|
|
|
/* It's common to want to use cpu_all_mask in struct member initializers,
|
|
|
|
* so it has to refer to an address rather than a pointer. */
|
|
|
|
extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
|
|
|
|
#define cpu_all_mask to_cpumask(cpu_all_bits)
|
|
|
|
|
|
|
|
/* First bits of cpu_bit_bitmap are in fact unset. */
|
|
|
|
#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
|
|
|
|
|
2022-07-03 00:08:27 +08:00
|
|
|
#if NR_CPUS == 1
|
|
|
|
/* Uniprocessor: the possible/online/present masks are always "1" */
|
|
|
|
#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
|
|
|
|
#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
|
|
|
|
#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
|
|
|
|
#else
|
2008-12-30 06:35:15 +08:00
|
|
|
#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
|
|
|
|
#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
|
|
|
|
#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
|
2022-07-03 00:08:27 +08:00
|
|
|
#endif
|
2008-12-30 06:35:15 +08:00
|
|
|
|
2008-11-05 10:39:10 +08:00
|
|
|
/* Wrappers for arch boot code to manipulate normally-constant masks */
|
2008-12-30 06:35:16 +08:00
|
|
|
void init_cpu_present(const struct cpumask *src);
|
|
|
|
void init_cpu_possible(const struct cpumask *src);
|
|
|
|
void init_cpu_online(const struct cpumask *src);
|
2009-09-24 23:34:53 +08:00
|
|
|
|
2016-12-14 02:32:28 +08:00
|
|
|
static inline void reset_cpu_possible_mask(void)
|
|
|
|
{
|
|
|
|
bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
|
|
|
|
}
|
|
|
|
|
2016-01-21 07:00:28 +08:00
|
|
|
static inline void
|
|
|
|
set_cpu_possible(unsigned int cpu, bool possible)
|
|
|
|
{
|
|
|
|
if (possible)
|
|
|
|
cpumask_set_cpu(cpu, &__cpu_possible_mask);
|
|
|
|
else
|
|
|
|
cpumask_clear_cpu(cpu, &__cpu_possible_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
set_cpu_present(unsigned int cpu, bool present)
|
|
|
|
{
|
|
|
|
if (present)
|
|
|
|
cpumask_set_cpu(cpu, &__cpu_present_mask);
|
|
|
|
else
|
|
|
|
cpumask_clear_cpu(cpu, &__cpu_present_mask);
|
|
|
|
}
|
|
|
|
|
2019-07-09 22:23:40 +08:00
|
|
|
void set_cpu_online(unsigned int cpu, bool online);
|
2016-01-21 07:00:28 +08:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
set_cpu_active(unsigned int cpu, bool active)
|
|
|
|
{
|
|
|
|
if (active)
|
|
|
|
cpumask_set_cpu(cpu, &__cpu_active_mask);
|
|
|
|
else
|
|
|
|
cpumask_clear_cpu(cpu, &__cpu_active_mask);
|
|
|
|
}
|
|
|
|
|
2021-01-20 01:43:45 +08:00
|
|
|
static inline void
|
|
|
|
set_cpu_dying(unsigned int cpu, bool dying)
|
|
|
|
{
|
|
|
|
if (dying)
|
|
|
|
cpumask_set_cpu(cpu, &__cpu_dying_mask);
|
|
|
|
else
|
|
|
|
cpumask_clear_cpu(cpu, &__cpu_dying_mask);
|
|
|
|
}
|
2016-01-21 07:00:28 +08:00
|
|
|
|
2009-09-24 23:34:53 +08:00
|
|
|
/**
|
|
|
|
* to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
|
|
|
|
* @bitmap: the bitmap
|
|
|
|
*
|
|
|
|
* There are a few places where cpumask_var_t isn't appropriate and
|
|
|
|
* static cpumasks must be used (eg. very early boot), yet we don't
|
|
|
|
* expose the definition of 'struct cpumask'.
|
|
|
|
*
|
|
|
|
* This does the conversion, and can be used as a constant initializer.
|
|
|
|
*/
|
|
|
|
#define to_cpumask(bitmap) \
|
|
|
|
((struct cpumask *)(1 ? (bitmap) \
|
|
|
|
: (void *)sizeof(__check_is_bitmap(bitmap))))
|
|
|
|
|
|
|
|
static inline int __check_is_bitmap(const unsigned long *bitmap)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Special-case data structure for "single bit set only" constant CPU masks.
|
|
|
|
*
|
|
|
|
* We pre-generate all the 64 (or 32) possible bit positions, with enough
|
|
|
|
* padding to the left and the right, and return the constant pointer
|
|
|
|
* appropriately offset.
|
|
|
|
*/
|
|
|
|
extern const unsigned long
|
|
|
|
cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
|
|
|
|
|
|
|
|
static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
|
|
|
|
{
|
|
|
|
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
|
|
|
|
p -= cpu / BITS_PER_LONG;
|
|
|
|
return to_cpumask(p);
|
|
|
|
}
|
|
|
|
|
2021-01-25 23:46:49 +08:00
|
|
|
#if NR_CPUS > 1
|
|
|
|
/**
|
|
|
|
* num_online_cpus() - Read the number of online CPUs
|
|
|
|
*
|
|
|
|
* Despite the fact that __num_online_cpus is of type atomic_t, this
|
|
|
|
* interface gives only a momentary snapshot and is not protected against
|
|
|
|
* concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
|
|
|
|
* region.
|
|
|
|
*/
|
2023-01-13 03:43:46 +08:00
|
|
|
static __always_inline unsigned int num_online_cpus(void)
|
2021-01-25 23:46:49 +08:00
|
|
|
{
|
2023-01-13 03:43:46 +08:00
|
|
|
return arch_atomic_read(&__num_online_cpus);
|
2021-01-25 23:46:49 +08:00
|
|
|
}
|
|
|
|
#define num_possible_cpus() cpumask_weight(cpu_possible_mask)
|
|
|
|
#define num_present_cpus() cpumask_weight(cpu_present_mask)
|
|
|
|
#define num_active_cpus() cpumask_weight(cpu_active_mask)
|
|
|
|
|
|
|
|
static inline bool cpu_online(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpumask_test_cpu(cpu, cpu_online_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_possible(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpumask_test_cpu(cpu, cpu_possible_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_present(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpumask_test_cpu(cpu, cpu_present_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_active(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpumask_test_cpu(cpu, cpu_active_mask);
|
|
|
|
}
|
|
|
|
|
2021-01-20 01:43:45 +08:00
|
|
|
static inline bool cpu_dying(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpumask_test_cpu(cpu, cpu_dying_mask);
|
|
|
|
}
|
|
|
|
|
2021-01-25 23:46:49 +08:00
|
|
|
#else
|
|
|
|
|
|
|
|
#define num_online_cpus() 1U
|
|
|
|
#define num_possible_cpus() 1U
|
|
|
|
#define num_present_cpus() 1U
|
|
|
|
#define num_active_cpus() 1U
|
|
|
|
|
|
|
|
static inline bool cpu_online(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpu == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_possible(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpu == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_present(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpu == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cpu_active(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return cpu == 0;
|
|
|
|
}
|
|
|
|
|
2021-01-20 01:43:45 +08:00
|
|
|
static inline bool cpu_dying(unsigned int cpu)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-01-25 23:46:49 +08:00
|
|
|
#endif /* NR_CPUS > 1 */
|
|
|
|
|
2009-09-24 23:34:53 +08:00
|
|
|
#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
|
|
|
|
|
|
|
|
#if NR_CPUS <= BITS_PER_LONG
|
|
|
|
#define CPU_BITS_ALL \
|
|
|
|
{ \
|
2015-03-05 08:19:19 +08:00
|
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
|
2009-09-24 23:34:53 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#else /* NR_CPUS > BITS_PER_LONG */
|
|
|
|
|
|
|
|
#define CPU_BITS_ALL \
|
|
|
|
{ \
|
|
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
|
2015-03-05 08:19:19 +08:00
|
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
|
2009-09-24 23:34:53 +08:00
|
|
|
}
|
|
|
|
#endif /* NR_CPUS > BITS_PER_LONG */
|
|
|
|
|
2014-09-30 21:48:22 +08:00
|
|
|
/**
|
|
|
|
* cpumap_print_to_pagebuf - copies the cpumask into the buffer either
|
|
|
|
* as comma-separated list of cpus or hex values of cpumask
|
|
|
|
* @list: indicates whether the cpumap must be list
|
|
|
|
* @mask: the cpumask to copy
|
|
|
|
* @buf: the buffer to copy into
|
|
|
|
*
|
|
|
|
* Returns the length of the (null-terminated) @buf string, zero if
|
|
|
|
* nothing is copied.
|
|
|
|
*/
|
|
|
|
static inline ssize_t
|
|
|
|
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
|
|
|
|
{
|
|
|
|
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
|
cpumask: always use nr_cpu_ids in formatting and parsing functions
bitmap implements two variants of scnprintf functions to format a bitmap
into a string and cpumask and nodemask wrap them to provide equivalent
interfaces. The scnprintf family of functions require a string buffer as
an output target which complicates code paths which just want to print out
the mask through printk for informational or debug purposes as they have
to worry about how large the buffer should be and whether it's too large
to allocate on stack.
Neither cpumask or nodemask provides a guildeline on how large the target
buffer should be forcing users come up with their own solutions - some
allocate an arbitrarily sized buffer which is small enough to allocate on
stack but may be too short in corner cases, other come up with a custom
upper limit calculation considering the output format, some allocate the
buffer dynamically while one resorted to using lock to synchronize access
to a static buffer.
This is an artificial problem which is being solved repeatedly for no
benefit. In a lot of cases, the output area already exists and can be
targeted directly making the intermediate buffer unnecessary. This
patchset teaches printf family of functions how to format bitmaps and
replace the dedicated formatting functions with it.
Pointer formatting is extended to cover bitmap formatting. It uses the
field width for the number of bits instead of precision. The format used
is '%*pb[l]', with the optional trailing 'l' specifying list format
instead of hex masks. For more details, please see 0002.
This patch (of 31):
Currently, the formatting and parsing functions in cpumask.h use
nr_cpumask_bits like other cpumask functions; however, nr_cpumask_bits
is either NR_CPUS or nr_cpu_ids depending on CONFIG_CPUMASK_OFFSTACK.
This leads to inconsistent behaviors.
With CONFIG_NR_CPUS=512 and !CONFIG_CPUMASK_OFFSTACK
# cat /sys/devices/virtual/net/lo/queues/rx-0/rps_cpus
00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000
# cat /proc/self/status | grep Cpus_allowed:
Cpus_allowed: f
With CONFIG_NR_CPUS=1024 and CONFIG_CPUMASK_OFFSTACK (fedora default)
# cat /sys/devices/virtual/net/lo/queues/rx-0/rps_cpus
0
# cat /proc/self/status | grep Cpus_allowed:
Cpus_allowed: f
Note that /proc/self/status is always using nr_cpu_ids regardless of
config. This is because seq cpumask formattings functions always use
nr_cpu_ids.
Given that the same output fields may switch between the two forms,
converging on nr_cpu_ids always isn't too likely to surprise userland.
This patch updates the formatting and parsing functions in cpumask.h
to always use nr_cpu_ids. There's no point in dealing with CPUs which
aren't even possible on the machine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: "John W. Linville" <linville@tuxdriver.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:36:50 +08:00
|
|
|
nr_cpu_ids);
|
2014-09-30 21:48:22 +08:00
|
|
|
}
|
|
|
|
|
cpumask: introduce cpumap_print_list/bitmask_to_buf to support large bitmask and list
The existing cpumap_print_to_pagebuf() is used by cpu topology and other
drivers to export hexadecimal bitmask and decimal list to userspace by
sysfs ABI.
Right now, those drivers are using a normal attribute for this kind of
ABIs. A normal attribute typically has show entry as below:
static ssize_t example_dev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
...
return cpumap_print_to_pagebuf(true, buf, &pmu_mmdc->cpu);
}
show entry of attribute has no offset and count parameters and this
means the file is limited to one page only.
cpumap_print_to_pagebuf() API works terribly well for this kind of
normal attribute with buf parameter and without offset, count:
static inline ssize_t
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
{
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
nr_cpu_ids);
}
The problem is once we have many cpus, we have a chance to make bitmask
or list more than one page. Especially for list, it could be as complex
as 0,3,5,7,9,...... We have no simple way to know it exact size.
It turns out bin_attribute is a way to break this limit. bin_attribute
has show entry as below:
static ssize_t
example_bin_attribute_show(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
...
}
With the new offset and count parameters, this makes sysfs ABI be able
to support file size more than one page. For example, offset could be
>= 4096.
This patch introduces cpumap_print_bitmask/list_to_buf() and their bitmap
infrastructure bitmap_print_bitmask/list_to_buf() so that those drivers
can move to bin_attribute to support large bitmask and list. At the same
time, we have to pass those corresponding parameters such as offset, count
from bin_attribute to this new API.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Brivio <sbrivio@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: "Ma, Jianpeng" <jianpeng.ma@intel.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Link: https://lore.kernel.org/r/20210806110251.560-2-song.bao.hua@hisilicon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-06 19:02:47 +08:00
|
|
|
/**
|
|
|
|
* cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
|
|
|
|
* hex values of cpumask
|
|
|
|
*
|
|
|
|
* @buf: the buffer to copy into
|
|
|
|
* @mask: the cpumask to copy
|
|
|
|
* @off: in the string from which we are copying, we copy to @buf
|
|
|
|
* @count: the maximum number of bytes to print
|
|
|
|
*
|
|
|
|
* The function prints the cpumask into the buffer as hex values of
|
|
|
|
* cpumask; Typically used by bin_attribute to export cpumask bitmask
|
|
|
|
* ABI.
|
|
|
|
*
|
2021-09-17 06:27:05 +08:00
|
|
|
* Returns the length of how many bytes have been copied, excluding
|
|
|
|
* terminating '\0'.
|
cpumask: introduce cpumap_print_list/bitmask_to_buf to support large bitmask and list
The existing cpumap_print_to_pagebuf() is used by cpu topology and other
drivers to export hexadecimal bitmask and decimal list to userspace by
sysfs ABI.
Right now, those drivers are using a normal attribute for this kind of
ABIs. A normal attribute typically has show entry as below:
static ssize_t example_dev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
...
return cpumap_print_to_pagebuf(true, buf, &pmu_mmdc->cpu);
}
show entry of attribute has no offset and count parameters and this
means the file is limited to one page only.
cpumap_print_to_pagebuf() API works terribly well for this kind of
normal attribute with buf parameter and without offset, count:
static inline ssize_t
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
{
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
nr_cpu_ids);
}
The problem is once we have many cpus, we have a chance to make bitmask
or list more than one page. Especially for list, it could be as complex
as 0,3,5,7,9,...... We have no simple way to know it exact size.
It turns out bin_attribute is a way to break this limit. bin_attribute
has show entry as below:
static ssize_t
example_bin_attribute_show(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
...
}
With the new offset and count parameters, this makes sysfs ABI be able
to support file size more than one page. For example, offset could be
>= 4096.
This patch introduces cpumap_print_bitmask/list_to_buf() and their bitmap
infrastructure bitmap_print_bitmask/list_to_buf() so that those drivers
can move to bin_attribute to support large bitmask and list. At the same
time, we have to pass those corresponding parameters such as offset, count
from bin_attribute to this new API.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Brivio <sbrivio@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: "Ma, Jianpeng" <jianpeng.ma@intel.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Link: https://lore.kernel.org/r/20210806110251.560-2-song.bao.hua@hisilicon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-06 19:02:47 +08:00
|
|
|
*/
|
|
|
|
static inline ssize_t
|
|
|
|
cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
|
|
|
|
loff_t off, size_t count)
|
|
|
|
{
|
|
|
|
return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
|
2021-09-17 06:27:05 +08:00
|
|
|
nr_cpu_ids, off, count) - 1;
|
cpumask: introduce cpumap_print_list/bitmask_to_buf to support large bitmask and list
The existing cpumap_print_to_pagebuf() is used by cpu topology and other
drivers to export hexadecimal bitmask and decimal list to userspace by
sysfs ABI.
Right now, those drivers are using a normal attribute for this kind of
ABIs. A normal attribute typically has show entry as below:
static ssize_t example_dev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
...
return cpumap_print_to_pagebuf(true, buf, &pmu_mmdc->cpu);
}
show entry of attribute has no offset and count parameters and this
means the file is limited to one page only.
cpumap_print_to_pagebuf() API works terribly well for this kind of
normal attribute with buf parameter and without offset, count:
static inline ssize_t
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
{
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
nr_cpu_ids);
}
The problem is once we have many cpus, we have a chance to make bitmask
or list more than one page. Especially for list, it could be as complex
as 0,3,5,7,9,...... We have no simple way to know it exact size.
It turns out bin_attribute is a way to break this limit. bin_attribute
has show entry as below:
static ssize_t
example_bin_attribute_show(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
...
}
With the new offset and count parameters, this makes sysfs ABI be able
to support file size more than one page. For example, offset could be
>= 4096.
This patch introduces cpumap_print_bitmask/list_to_buf() and their bitmap
infrastructure bitmap_print_bitmask/list_to_buf() so that those drivers
can move to bin_attribute to support large bitmask and list. At the same
time, we have to pass those corresponding parameters such as offset, count
from bin_attribute to this new API.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Brivio <sbrivio@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: "Ma, Jianpeng" <jianpeng.ma@intel.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Link: https://lore.kernel.org/r/20210806110251.560-2-song.bao.hua@hisilicon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-06 19:02:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpumap_print_list_to_buf - copies the cpumask into the buffer as
|
|
|
|
* comma-separated list of cpus
|
|
|
|
*
|
|
|
|
* Everything is same with the above cpumap_print_bitmask_to_buf()
|
|
|
|
* except the print format.
|
|
|
|
*/
|
|
|
|
static inline ssize_t
|
|
|
|
cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
|
|
|
|
loff_t off, size_t count)
|
|
|
|
{
|
|
|
|
return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
|
2021-09-17 06:27:05 +08:00
|
|
|
nr_cpu_ids, off, count) - 1;
|
cpumask: introduce cpumap_print_list/bitmask_to_buf to support large bitmask and list
The existing cpumap_print_to_pagebuf() is used by cpu topology and other
drivers to export hexadecimal bitmask and decimal list to userspace by
sysfs ABI.
Right now, those drivers are using a normal attribute for this kind of
ABIs. A normal attribute typically has show entry as below:
static ssize_t example_dev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
...
return cpumap_print_to_pagebuf(true, buf, &pmu_mmdc->cpu);
}
show entry of attribute has no offset and count parameters and this
means the file is limited to one page only.
cpumap_print_to_pagebuf() API works terribly well for this kind of
normal attribute with buf parameter and without offset, count:
static inline ssize_t
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
{
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
nr_cpu_ids);
}
The problem is once we have many cpus, we have a chance to make bitmask
or list more than one page. Especially for list, it could be as complex
as 0,3,5,7,9,...... We have no simple way to know it exact size.
It turns out bin_attribute is a way to break this limit. bin_attribute
has show entry as below:
static ssize_t
example_bin_attribute_show(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
...
}
With the new offset and count parameters, this makes sysfs ABI be able
to support file size more than one page. For example, offset could be
>= 4096.
This patch introduces cpumap_print_bitmask/list_to_buf() and their bitmap
infrastructure bitmap_print_bitmask/list_to_buf() so that those drivers
can move to bin_attribute to support large bitmask and list. At the same
time, we have to pass those corresponding parameters such as offset, count
from bin_attribute to this new API.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Brivio <sbrivio@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: "Ma, Jianpeng" <jianpeng.ma@intel.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Link: https://lore.kernel.org/r/20210806110251.560-2-song.bao.hua@hisilicon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-06 19:02:47 +08:00
|
|
|
}
|
|
|
|
|
2009-09-24 23:34:53 +08:00
|
|
|
#if NR_CPUS <= BITS_PER_LONG
|
|
|
|
#define CPU_MASK_ALL \
|
|
|
|
(cpumask_t) { { \
|
2015-03-05 08:19:19 +08:00
|
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
|
2009-09-24 23:34:53 +08:00
|
|
|
} }
|
|
|
|
#else
|
|
|
|
#define CPU_MASK_ALL \
|
|
|
|
(cpumask_t) { { \
|
|
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
|
2015-03-05 08:19:19 +08:00
|
|
|
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
|
2009-09-24 23:34:53 +08:00
|
|
|
} }
|
2015-03-05 08:19:19 +08:00
|
|
|
#endif /* NR_CPUS > BITS_PER_LONG */
|
2009-09-24 23:34:53 +08:00
|
|
|
|
|
|
|
#define CPU_MASK_NONE \
|
|
|
|
(cpumask_t) { { \
|
|
|
|
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
|
|
|
|
} }
|
|
|
|
|
2015-04-16 11:03:51 +08:00
|
|
|
#define CPU_MASK_CPU0 \
|
|
|
|
(cpumask_t) { { \
|
|
|
|
[0] = 1UL \
|
|
|
|
} }
|
|
|
|
|
2022-07-15 21:49:24 +08:00
|
|
|
/*
|
|
|
|
* Provide a valid theoretical max size for cpumap and cpulist sysfs files
|
|
|
|
* to avoid breaking userspace which may allocate a buffer based on the size
|
|
|
|
* reported by e.g. fstat.
|
|
|
|
*
|
|
|
|
* for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
|
|
|
|
*
|
|
|
|
* For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
|
|
|
|
* to 2 orders of magnitude larger than 8192. And then we divide by 2 to
|
|
|
|
* cover a worst-case of every other cpu being on one of two nodes for a
|
|
|
|
* very large NR_CPUS.
|
|
|
|
*
|
2022-09-07 04:35:42 +08:00
|
|
|
* Use PAGE_SIZE as a minimum for smaller configurations while avoiding
|
|
|
|
* unsigned comparison to -1.
|
2022-07-15 21:49:24 +08:00
|
|
|
*/
|
2022-09-07 04:35:42 +08:00
|
|
|
#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
|
2022-07-15 21:49:24 +08:00
|
|
|
? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
|
|
|
|
#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif /* __LINUX_CPUMASK_H */
|